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High-energy electroproduction in an atomic field
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The differential cross section of high-energy electroproduction in the electric field of heavy atoms is derived.
The results are obtained with the exact account for the atomic field. We use the quasiclassical approximation
to the wave functions in the external field. For heavy atoms, the Coulomb corrections substantially modify the
differential cross section as compared with the Born result. They lead to the azimuth asymmetry in the differential
cross section for the polarized incoming electron. The Coulomb corrections to the total cross section are obtained
in the leading logarithmic approximation.
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I. INTRODUCTION

The process of e+e− pair production at collisions of
high-energy electron with atoms, which is commonly referred
to as electroproduction or the trident process, is one of the most
interesting and important QED processes. This process should
be taken into account when considering electromagnetic
showers in detectors. Electroproduction is also important in
some fixed target experiments, such as dark-photon search
experiments [1,2]. In these experiments electroproduction is
the basic irreducible background process.

The process of electroproduction has been under consid-
eration for a long time. The earliest papers are those of
Bhabha [3,4] and Racah [5,6]. In Refs. [3,4] calculations
are performed with the use of the Weizsäcker-Williams
approximation (see, e.g., Ref. [7]). This approximation allows
one to calculate the total cross section of the process in the
leading order with respect to the parameter ln(ε/m); here
m is the electron mass and ε is the energy of the incoming
electron, � = c = 1. In Refs. [5,6] the total cross section is
obtained without restrictions needed for applicability of the
Weizsäcker-Williams approximation. However, the effect of
Fermi statistics for two outgoing electrons was not taken
into account at that time. In Ref. [8] the approximate result
for the total cross section, which is in good agreement with
that given by Racah [5,6], is obtained. In Refs. [9,10] it is
shown that Bhabha’s formula for the total electroproduction
cross section has a good accuracy at ε � 10 GeV. The first
numerical evaluation of the electroproduction cross section is
performed in Ref. [11], where the differential cross section of
high-energy electroproduction is obtained with the account for
the effect of Fermi statistics. The differential cross section of
high-energy electroproduction for massless leptons is derived
in Refs. [12–15].

In all papers mentioned above, the cross sections are ob-
tained in the leading in the parameter η = Zα approximation
(in the Born approximation), where Z is the atomic charge
number and α is the fine-structure constant. The Coulomb
corrections to the differential cross section of electroproduc-
tion (the difference between the result exact in η and the
Born result) have not been derived till now. However, it is
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well known from the results for the differential cross sections
of photoproduction and bremsstrahlung that the Coulomb
corrections may drastically change the result for heavy
atoms [16–18]. It is very difficult to calculate the Coulomb
corrections to the electroproduction cross section because the
amplitude of this process contains four wave functions in the
atomic field; see Fig. 1 where the corresponding Feynman
diagrams in the Furry representation are shown. Even in
the case of photoproduction and bremsstrahlung, where the
corresponding amplitudes contain only two wave functions in
the atomic field, exact calculations of the Coulomb corrections
for any energies are a very complicated task. Fortunately,
the use of the quasiclassical approximation to the electron
wave and Green’s functions in the atomic field significantly
simplifies calculations at high electron energies (though does
not make them simple).

At high energies and small angles between outgoing and
incoming particles, the main contribution to the processes in
the atomic field is given by large angular momenta of the par-
ticles. The quasiclassical approximation provides a possibility
to account for the contribution of this large angular-momenta
region. For the Coulomb potential, the wave functions in
the leading quasiclassical approximation are the famous
Furry-Sommerfeld-Maue wave functions [19,20] (see also
Ref. [7]). For the atomic potential, the wave functions and
the Green’s functions in the leading and next-to-leading
quasiclassical approximation are derived in Refs. [21,22].
Using the quasiclassical approximation, the differential cross
sections exact in η for photoproduction and bremsstrahlung
in the atomic field are obtained in Refs. [16–18,23] in the
leading quasiclassical approximation. The first quasiclassical
corrections exact in η to the results obtained in Refs. [16–
18,23] for the differential cross sections of bremsstrahlung
and photoproduction are obtained in Refs. [22] and [24]. In
Refs. [25] and [26] the cross section of e+e− photoproduction
accompanied by bremsstrahlung and the cross section of
double bremsstrahlung are obtained exactly in η in the leading
quasiclassical approximation.

In the present paper, we apply the quasiclassical approach
to investigate, exactly in η, the differential cross section
of high-energy electroproduction. The Coulomb corrections
to the cross section of photoproduction are determined
by the region of small impact parameters ρ ∼ λC = 1/m,
while the Coulomb corrections to the cross section of
bremsstrahlung are determined by large impact parameters
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FIG. 1. Diagrams for the amplitude of the process e−Z →
e−e+e−Z. Wavy line denotes the photon propagator, straight lines
denote the wave functions in the atomic field.

ρ ∼ min{λCεε′/(mω), rscr}, where ω is the energy of the
emitted photon, ε′ = ε − ω, and rscr ∼ λCZ−1/3/α is the
screening radius. For the differential cross section of electro-
production, both regions of small and large impact parameters
give the contribution to the Coulomb corrections. We show
that the Coulomb corrections for heavy atoms drastically
change the result as compared with that obtained in the Born
approximation.

II. GENERAL DISCUSSION

The differential cross section of high-energy electroproduc-
tion in an atomic field reads [7]

dσ = α2

(2π )8
ε2

2ε
2
3ε

2
4 dε3dε4 d
2 d
3d
4 |T |2, (1)

where d
2, d
3 are the solid angles corresponding to the
momenta p2 and p3 of the outgoing electrons, d
4 is the solid
angle corresponding to the positron momentum p4, p1 is the
incoming electron momentum (see Fig. 1), ε1 = ε2 + ε3 + ε4

is the incoming electron energy, and εi =
√

p2
i + m2. Below

we assume that εi � m. The matrix element T reads

T = T + T̃ , T̃ = −T (2 ↔ 3),

T =
3∑

a,b=1

∫
dk

(2π )3
Dabja J b,

Dab = − 4π

ω2 − k2 + i0

(
δab − kakb

ω2

)
,

j =
∫

d r e−ik·r ū(−)
p2

(r)γ u(+)
p1

(r),

J =
∫

d r eik·r ū(−)
p3

(r)γ v(+)
p4

(r),

ω = ε1 − ε2 = ε3 + ε4, (2)

where Dμν is the photon propagator (Dμ0 = 0), γ ν are the
Dirac matrices, u

(+)
p (r) and u

(−)
p (r) are the positive-energy

solutions of the Dirac equation in the atomic potential V (r),
v

(+)
p (r) is the negative-energy solution of the Dirac equation

in the atomic potential, and the superscripts (−) and (+)
indicate that the asymptotic forms of the wave functions
contain at large distances r , in addition to the plane wave,

the spherical convergent and divergent waves, respectively.
We calculate the matrix element of electroproduction in the
leading quasiclassical approximation. In this case the wave
functions have the form [21]

ū(−)
p (r) = ū p[f0(r, p) − α · f 1(r, p)],

u(+)
p (r) = [g0(r, p) − α · g1(r, p)]u p,

v(+)
p (r) = [G0(r, p) + α · G1(r, p)]v p,

u p =
√

εp + m

2εp

(
φ

σ · p
εp + m

φ

)
,

v p =
√

εp + m

2εp

( σ · p
εp + m

χ

χ

)
, (3)

where φ and χ are spinors, α = γ 0γ , and σ are the Pauli
matrices. The functions f0 and f 1 read

f0(r, p) = − i

π
e−i p·r

∫
d Q exp

[
iQ2 − i

∫ ∞

0
dxV (rp)

]
,

f 1(r, p) = 1

2εp

(i∇ − p)f0(r, p),

rp = r + xnp +
√

2x

εp

Q, (4)

where Q is a two-dimensional vector perpendicular to the
vector np = p/p. The expressions for the functions g0 and g1

follow from the relations

g0(r, p) = f0(r,− p), g1(r, p) = f1(r,− p), (5)

and the expressions for the functions G0 and G1 can be
obtained from the functions f0 and f 1, respectively, by the
replacement V (rp) → −V (rp).

It is convenient to calculate the matrix element for definite
helicities of the particles. Let μi be a sign of the helicity of a
particle with the momentum pi . We direct the z axis along a
unit vector ν assuming that the angles between ν and pi are
small. The final result will be independent of the direction of
ν. Then, to calculate the matrix element, we use the matrices
F = u p1 μ1 ū p2 μ2 and F̃ = v p4 μ4 ū p3 μ3 [22,25]:

F = 1
8 (aμ1μ2 + � · bμ1μ2 )[γ 0(1 + P1P2) + γ 0γ 5(P1 + P2)

+ (1 − P1P2) − γ 5(P1 − P2)],

F̃ = 1
8 (̃aμ3μ4 + � · b̃μ3μ4 )[γ 0(P3 − P4) + γ 0γ 5(1 − P3P4)

− (P3 + P4) − γ 5(1 + P3P4)]. (6)
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Here Pi = μipi/(εi + m), � = −γ 5α, γ 5 = −iγ 0γ 1γ 2γ 3; aμ1μ2 , bμ1μ2 , ãμ3μ4 , and b̃μ3μ4 are

aμμ = 1, aμμ̄ = μ√
2

sμ · θ12, bμμ = μν + μ

2
(θ1 + θ2) + i

2
[θ12 × ν], bμμ̄ =

√
2sμ − 1√

2
(sμ,θ1 + θ2)ν, ãμμ̄ = μ,

ãμμ = − 1√
2

s∗
μ · θ34, b̃μμ̄=ν + 1

2
(θ3+θ4)− iμ

2
[θ34 × ν], b̃μμ= − μ

√
2s∗

μ + μ√
2

(s∗
μ,θ3 + θ4)ν, sμ= 1√

2
(ex + iμey),

(7)

where μ̄ = −μ, ex and ey are two orthogonal unit vectors perpendicular to ν, θ i = pi⊥/pi , θ ij = θ i − θ j , and the notation
X⊥ = X − (X · ν)ν for any vector X is used.

It is convenient to write the photon propagator Dab as follows:

Dab = Dab
⊥ + Dab

‖ , Dab
⊥ = − 4π

ω2 − k2 + i0

(
δab − kakb

k2

)
= − 4π

ω2 − k2 + i0

∑
λ=±

sa∗
λ sb

λ, Dab
‖ = − 4π

ω2k2
kakb = −4π

ω2
νaνb,

(8)

where we direct the vector ν along the vector k. Substituting this expression in Eq. (2), we obtain for T

T = T⊥ + T‖, T⊥ = −4π
∑
λ=±

∫
dk jλ Jλ

(2π )3(ω2 − k2 + i0)
,

T‖ = −4π

ω2

∫
dk

(2π )3
j‖ J‖, jλ = j · s∗

λ, Jλ = J · sλ, j‖ = j · ν, J‖ = J · ν. (9)

The functions j and J correspond to the matrix elements of virtual photon bremsstrahlung and pair production by virtual photon,
respectively. The calculation of these functions can be performed in the same way as is done for the real bremsstrahlung cross
section [22,23] and for the pair production cross section by a real photon [25]. As a result we obtain the following expressions
for the matrix elements jλ and j‖ of virtual bremsstrahlung:

jλ = −A(�)

[
δμ1μ2

(
ε1δλμ1 + ε2δλμ̄1

)(
s∗
λ,

θ2

ε1D1
+ θ1

ε2D2

)
+ δμ1μ̄2δλμ1

mωμ1√
2ε1ε2

(
1

D1
+ 1

D2

)]
,

j‖ = −A(�)δμ1μ2

(
1

D1
+ 1

D2

)
, A(�) = − i

�2
⊥

∫
d r exp[−i� · r − iχ (ρ)]�⊥ · ∇⊥V (r), χ (ρ) =

∫ ∞

−∞
dz V (

√
z2 + ρ2),

D1 = �2
⊥

2ε1
+ n1 · � − i0, D2=�2

⊥
2ε2

− n2 · � − i0, � = k + p2 − p1, ni = pi/pi. (10)

At �⊥ � max(�‖,r−1
scr ), where �‖ = � · ν and rscr is a screening radius, the function A(�) is independent of the potential shape

(see Ref. [23]). It has the following asymptotic form:

Aas(�) = −4πη(L�⊥)2iη�(1 − iη)

�2
⊥�(1 + iη)

, (11)

where �(x) is the Euler � function, a specific value of L ∼ max(�‖,r−1
scr ) is irrelevant because the factor L2iη disappears in |Ttot|2.

At �⊥ � max(�‖,r−1
scr ), the function A(�) strongly depends on �‖ and the shape of the atomic potential [23].

The matrix elements Jλ and J‖ of pair production by virtual photon read

Jλ = J
(0)
λ + J

(1)
λ , J‖ = J

(0)
‖ + J

(1)
‖ , J

(0)
λ = (2π )3δ( p3 + p4 − k)

[
δμ3μ̄4

(
sλ,δλμ3θ4 + δλμ4θ3

) − δμ3μ4δλμ3

mωμ3√
2ε3ε4

]
,

J
(1)
λ = iε3ε4

2πω

∫ ∞

0

dz

z
eiz(p3+p4−k+i0)

∫∫
d2Q3 d2Q4 J ei�

[
δμ3μ̄4

ωz
(sλ · Q34)

(
ε3δλμ3 − ε4δλμ4

) + δμ3μ4δλμ3

mωμ3√
2ε3ε4

]
,

J
(0)
‖ = (2π )3δ( p3 + p4 − k)δμ3μ̄4 , J

(1)
‖ = − iε3ε4

2πω

∫ ∞

0

dz

z
eiz(p3+p4−k+i0)

∫∫
d2Q3 d2Q4 J ei�δμ3μ̄4 ,

J = ei[χ(Q4)−χ(Q3)] − 1, � = ε3ε4

2ωz
Q2

34 − (ε3 Q3 · θ3 + ε4 Q4 · θ4), (12)

where Q34 = Q3 − Q4. The matrix elements J
(0)
λ and J

(0)
‖ correspond to the virtual photon decay into the e+e− pair noninteracting

with the atomic field, while the matrix elements J
(1)
λ and J

(1)
‖ correspond to production of a pair interacting with the atomic field.
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Then we substitute Eqs. (10) and (12) in Eq. (2) and write the amplitudes T⊥ and T‖ as

T⊥ = T
(0)
⊥ + T

(1)
⊥ , T‖ = T

(0)
‖ + T

(1)
‖ . (13)

Integrating over k, we obtain for the terms T
(0)
⊥ and T

(0)
‖

T
(0)
⊥ = 8πε3ε4A(�0)

m2ω2 + ε2
3ε

2
4θ

2
34

{
δμ1μ2δμ3μ̄4

[
ε3

ω2

(
s∗
μ3

· X
)(

sμ3 · θ34
)(

ε1δμ1μ3 + ε2δμ1μ4

) − ε4

ω2

(
s∗
μ4

· X
)(

sμ4 · θ34
)(

ε1δμ1μ4 + ε2δμ1μ3

)]
− mμ1√

2ε1ε2

Rδμ1μ̄2δμ3μ̄4

(
sμ1 · θ34

)( − ε3δμ1μ3 + ε4δμ1μ4

) + mμ3√
2ε3ε4

δμ1μ2δμ3μ4

(
s∗
μ3

· X
)(

ε1δμ3μ1 + ε2δμ3μ̄1

)
+ m2ω2

2ε1ε2ε3ε4
Rδμ1μ̄2δμ3μ4δμ1μ3

}
, T

(0)
‖ = −8π

ω2
A(�0)Rδμ1μ2δμ3μ̄4 . (14)

Here

�0 = p2 + p3 + p4 − p1, �0⊥ = ε2θ21 + ε3θ31 + ε4θ41, �0‖ = −1

2

[
m2ω

(
1

ε1ε2
+ 1

ε3ε4

)
+ ε2θ

2
21 + ε3θ

2
31 + ε4θ

2
41

]
,

R = 1

d1d2
[�2

0⊥(ε1 + ε2) + 2ε1ε2(θ12 · �0⊥)], X = 1

d1
(ε3θ23 + ε4θ24) − 1

d2
(ε3θ13 + ε4θ14),

d1 = m2ωε1

(
1

ε1ε2
+ 1

ε3ε4

)
+ ε2ε3θ

2
23 + ε2ε4θ

2
24 + ε3ε4θ

2
34,

d2 = m2ωε2

(
1

ε1ε2
+ 1

ε3ε4

)
+ ε2ε3θ

2
31 + ε2ε4θ

2
41 + (ε3θ31 + ε4θ41)2. (15)

These amplitudes correspond to production of a e+e− pair noninteracting with the atomic field, so that they have the dependence
on the atomic potential similar to that of the bremsstrahlung amplitude; see, e.g., Refs. [23,26].

To derive the terms T
(1)
⊥ and T

(1)
‖ , we take the integral over kz by closing the contour of integration in the lower half-plane

of the complex variable kz. Then the main contribution to the integral is given by the pole of the function 1/D2 in Eq. (10). We
have

T
(1)
⊥ = −ε1ε3ε4

2π2ω

∫
d�⊥ A(�⊥)

m2ω2 + ε2
1Y

2

∫ ∞

0

dz

z
exp

(
− iz

2
�1

) ∫∫
d2Q3 d2Q4 J ei�2

×
{

δμ1μ2δμ3μ̄4

ω2z

[
ε1

(
ε3δμ1μ3 − ε4δμ1μ4

)(
s∗
μ1

· Y
)(

sμ1 · Q34
)

+ ε2
(
ε3δμ1μ̄3 − ε4δμ1μ̄4

)(
sμ1 · Y

)(
s∗
μ1

· Q34
)] − δμ1μ̄2δμ3μ̄4

mμ1√
2ε1z

(
ε3δμ1μ3 − ε4δμ1μ4

)(
sμ1 · Q34

)
+ δμ1μ2δμ3μ4

mμ3√
2ε3ε4

(
ε1δμ1μ3 + ε2δμ1μ̄3

)(
s∗
μ3

· Y
) − m2ω2

2ε1ε3ε4
δμ1μ̄2δμ3μ4δμ1μ3

}
,

T
(1)
‖ = ε3ε4

2π2ω3

∫
d�⊥ A(�⊥)

∫ ∞

0

dz

z
exp

(
− iz

2
�1

) ∫∫
d2Q3 d2Q4 J ei�2δμ1μ2δμ3μ̄4 ,

�1 = m2ω

(
1

ε1ε2
+ 1

ε3ε4

)
+ ε1

ε2ω
Y 2, Y = �⊥ − ε2θ21,

�2 = ε3ε4

2ωz
Q2

34 + ε3

ω
Q3 · (Y − ωθ31) + ε4

ω
Q4 · (Y − ωθ41). (16)

Here J is given in Eq. (12), A(�⊥) is the function A(�) at �‖ = 0, and �⊥ is a two-dimensional vector perpendicular to the z

axis.

III. COULOMB FIELD

Let us consider the region min(�0,�1) � r−1
scr , where rscr is the screening radius and �1 =

√
(ε2θ21)2 + (mω/ε1)2. In this

case we can neglect the effect of screening and use the Coulomb potential VC(r) = −η/r instead of the atomic potential V (r).
Then we have

χ (ρ) = −2η ln(2L/ρ), J =
(

Q4

Q3

)2iη

− 1, AC(�) = −4πη(L�)2iη

�2
�(1 − iη)�(2 − iη)F

(
1 − iη,iη,2,

�2
⊥

�2

)
, (17)
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where F (a,b,c,x) is the hypergeometric function, �(x) is the Euler � function, L ∼ rscr, and AC(�) is A(�) in (10) for the
Coulomb potential. At �⊥ � �‖ the function AC(�) coincides with Aas(�) [Eq. (11)].

In the Coulomb field, the amplitudes T
(0)
⊥ and T

(0)
‖ are given by Eq. (14) with the replacement A(�0) → AC(�0). To derive

the amplitudes T
(1)
⊥ and T

(1)
‖ from Eq. (16), we integrate over the variables Q3 + Q4 and z in the same way as is done in the

case of the photoproduction cross section (see, e.g., Ref. [25]). The integration over Q34 = Q3 − Q4 is performed with the use
of the Feynman parametrization. As a result we obtain

T
(1)
⊥ = 8iηε1

ω
|�(1 − iη)|2

∫
d�⊥ Aas(�⊥)

Q2M2
(
m2ω2 + ε2

1Y
2
)(

ξ2

ξ1

)iη

M,

M = −δμ1μ2δμ3μ̄4

ω

[
ε1

(
ε3δμ1μ3 − ε4δμ1μ4

)(
s∗
μ1

· Y
)(

sμ1 · I1
) + ε2

(
ε3δμ1μ̄3 − ε4δμ1μ̄4

)(
sμ1 · Y

)(
s∗
μ1

· I1
)]

+ δμ1μ̄2δμ3μ̄4

mωμ1√
2ε1

(
ε3δμ1μ3 − ε4δμ1μ4

)(
sμ1 · I1

) + δμ1μ2δμ3μ4

mμ3√
2

(
ε1δμ1μ3 + ε2δμ1μ̄3

)(
s∗
μ3

· Y
)
I0

− m2ω2

2ε1
δμ1μ̄2δμ3μ4δμ1μ3I0, T

(1)
‖ = −8iηε3ε4

ω3
|�(1 − iη)|2

∫
d�⊥ Aas(�⊥)

Q2M2

(
ξ2

ξ1

)iη

I0δμ1μ2δμ3μ̄4 , (18)

where the function Aas(�⊥) is given in Eq. (11) and the following notations are used:

M2 = m2

(
1 + ε3ε4

ε1ε2

)
+ ε1ε3ε4

ε2ω2
Y 2, Y = �⊥ − ε2θ21, ζ = ε3ε4

ω
θ34, Q = �⊥ − �0, q1 = ε3

ω
Q⊥ − ζ ,

q2 = ε4

ω
Q⊥ + ζ , I0 = (ξ1 − ξ2)F (x) + (ξ1 + ξ2 − 1)(1 − x)

F ′(x)

iη
,

I1 = (ξ1q1 + ξ2q2)F (x) + (ξ1q1 − ξ2q2)(1 − x)
F ′(x)

iη
, ξ1 = M2

M2 + q2
1

, ξ2 = M2

M2 + q2
2

, x = 1 − Q2
⊥ξ1ξ2

M2
,

F (x) = F (iη,−iη,1,x), F ′(x) = ∂

∂x
F (x). (19)

Note that Q‖ = −�0‖. In contrast to the term T (0), the Coulomb corrections to the term T (1) significantly modify the differential
cross section of electroproduction not only at small �0 but also at �0 ∼ m.

A. Born amplitude

In the leading Born approximation, the terms T
(0)
B⊥ and T

(0)
B‖ are given by Eq. (14) with the replacement

A(�0) → AB(�0) = −4πη/�2
0.

To derive the terms T
(1)
B⊥ and T

(1)
B‖ from Eq. (18), we use the relation

lim
η→0

η

∫
d�⊥ �

2iη−2
⊥ G(�⊥) = −iπG(0), (20)

where G(�⊥) is some function. Then we obtain

T
(1)
B⊥ = 8πε1ε2AB(�0)

ω2M2
B

(
m2ω2 + ε2

1ε
2
2θ

2
21

)MB, T
(1)
B‖ = −8πε3ε4AB(�0)

ω3M2
B

IB0δμ1μ2δμ3μ̄4 ,

MB = δμ1μ2δμ3μ̄4

[
ε1

(
ε3δμ1μ3 − ε4δμ1μ4

)(
s∗
μ1

· θ21
)(

sμ1 · IB1
)

+ ε2
(
ε3δμ1μ̄3 − ε4δμ1μ̄4

)(
sμ1 · θ21

)(
s∗
μ1

· IB1
)] + δμ1μ̄2δμ3μ̄4

mω2μ1√
2ε1ε2

(
ε3δμ1μ3 − ε4δμ1μ4

)(
sμ1 · IB1

)
− δμ1μ2δμ3μ4

mμ3ω√
2

(
ε1δμ1μ3 + ε2δμ1μ̄3

)(
s∗
μ3

· θ21
)
IB0 − m2ω3

2ε1ε2
δμ1μ̄2δμ3μ4δμ1μ3IB0,

M2
B = m2

(
1 + ε3ε4

ε1ε2

)
+ ε1ε2ε3ε4

ω2
θ2

21, IB0 = ξB1 − ξB2, IB1 = ξB1qB1 + ξB2qB2,

ξB1 = M2
B

M2
B + q2

B1

, ξB2 = M2
B

M2
B + q2

B2

, ζ = ε3ε4

ω
θ34, qB1 = −ε3

ω
�0⊥ − ζ , qB2 = −ε4

ω
�0⊥ + ζ . (21)
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The leading logarithmic contribution to the Born cross section is given by the region

m � ω � ε1,
m2

ω
� �0⊥ � m,

mω

ε1
� ε1θ21 � m, ζ ∼ m. (22)

In this region

T
(1)
B⊥ = 32π2ηε1δμ1μ2

ω2(m2 + ζ 2)�2
1⊥�2

0⊥
Mas, Mas = δμ3μ̄4

[
ε3

(
s∗
μ3

· θ21
)(

sμ3 · X0
) − ε4

(
s∗
μ4

· θ21
)(

sμ4 · X0
)]

−μ3

√
2mωδμ3μ4

(
s∗
μ3

· θ21
) (ζ · �0⊥)

m2 + ζ 2
, X0 = �0⊥ − 2ζ (ζ · �0⊥)

m2 + ζ 2
, (23)

and the terms T
(0)
B⊥, T

(0)
B‖ , and T

(1)
B‖ are suppressed as compared with T

(1)
B⊥. Substituting the matrix element (23) in (1) and

performing the integration over the region (22) with the logarithmic accuracy, we obtain the well-known result [4,6] for the
leading logarithmic contribution to the total cross section of high-energy electroproduction:

σB = 28η2α2

27πm2
ln3 ε1

m
. (24)

B. Asymptotic forms of the amplitudes exact in η in the Coulomb field

In the region (22) we have |T | = |TB |, where T is the asymptotic result exact in η and TB is given by (23). For ε2θ21 � m,
ε3θ31 � m, ε4θ41 � m, but �0 � m, we obtain

T
(0)
⊥ = 8πAC(�0)

ε1ε2ε3ε4ωc1θ
2
34

δμ1μ2δμ3μ̄4

[
ε3

(
s∗
μ3

· X1
)(

sμ3 · θ34
)(

ε1δμ1μ3 + ε2δμ1μ4

) − ε4
(
s∗
μ4

· X1
)(

sμ4 · θ34
)(

ε1δμ1μ4 + ε2δμ1μ3

)]
,

T
(0)
‖ = 16πAC(�0)

ω2c2
1

δμ1μ2δμ3μ̄4 (θ21 · �0⊥), c1 = ε2θ
2
21 + ε3θ

2
31 + ε4θ

2
41, X1 = �0⊥ − 2ε1ε2

ωc1
(θ21 · �0⊥)θ21. (25)

In this region the terms T
(1)
⊥ and T

(1)
‖ read

T
(1)
⊥ = − 8πAC(�0)

ε1ε2ε3ε4c2θ
2
21

δμ1μ2δμ3μ̄4

[
ε1

(
ε3δμ1μ3 − ε4δμ1μ4

)(
s∗
μ1

· θ21
)(

sμ1 · X2
) + ε2

(
ε3δμ1μ̄3 − ε4δμ1μ̄4

)(
sμ1 · θ21

)(
s∗
μ1

· X2
)]

,

T
(1)
‖ = 16πAC(�0)

c2
2

δμ1μ2δμ3μ̄4 (θ34 · �0⊥), c2 = ε1ε2θ
2
21 + ε3ε4θ

2
34, X2 = �0⊥ − 2ε3ε4

c2
(θ34 · �0⊥)θ34. (26)

To derive this formula, we use the relation

iη

∫
d�⊥Aas(�⊥)

(�⊥ − q⊥)

(�⊥ − q)2
= −πq⊥ AC(q), (27)

which is valid for any three-dimensional vector q = q‖ν + q⊥, where ν · q⊥ = 0 and ν · �⊥ = 0.
In the region ω � ε1 and ε2θ21 � min(m,�0), which provides the applicability of the Weizsäcker-Williams approximation [7],

the leading contribution to the amplitude of electroproduction is

T
(1)
⊥ = 8πAC(�1)

ω2�2
0m

2
|�(1 − iη)|2

(
ξW2

ξW1

)iη

(�1⊥ · TW ) δμ1μ2 ,

TW = δμ3μ̄4

[(
ε3(sμ3 · IW1

)
s∗
μ3

− ε4
(
sμ4 · IW1

)
s∗
μ4

] − δμ3μ4

mωμ3√
2

IW0 s∗
μ3

,

qW1 = −ε3

ω
�0⊥ − ζ , qW2 = −ε4

ω
�0⊥ + ζ , ζ = ε3ε4

ω
θ34,

IW0 = (ξW1 − ξW2)F (xW ) + (ξW1 + ξW2 − 1)(1 − xW )
F ′(xW )

iη
,

IW1 = (ξW1qW1 + ξW2qW2)F (xW ) + (ξW1qW1 − ξW2qW2)(1 − xW )
F ′(xW )

iη
,

ξW1 = m2

m2 + q2
W1

, ξW2 = m2

m2 + q2
W2

, xW = 1 − �2
0⊥ξW1ξ2W

m2
, (28)
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where �1⊥ = ε2θ21, �1‖ = mω/ε1, and the functions F (x)
and F ′(x) are defined in (19). Note that the amplitude Treal of
e+e− photoproduction by a real photon with the polarization
vector e is [24]

Treal = 8πη

ω�2
0m

2
|�(1 − iη)|2

(
ξW2

ξW1

)iη

(e · TW ), (29)

where the function TW is the same as in Eq. (28).
In the leading logarithmic approximation, the Coulomb cor-

rections to the cross section in the Coulomb field, proportional
to ln2(ε1/m), are originated from three regions:

1.
m2

ω
∼ �0⊥, max

{
mω

ε1
,�0⊥

}
� �1⊥ � m,

2. max

{
�1⊥,

m2

ω

}
� �0⊥ � m,

mω

ε1
∼ �1⊥,

3. �0 ∼ m,
mω

ε1
� �1⊥ � m, (30)

where in all regions m � ω � ε1 and ζ ∼ m. Using Eq. (18),
we find the amplitude T

(1)
⊥ in the first region in (30):

T
(1)
⊥ = −8πε1AC(�0)δμ1μ2

ω2(m2 + ζ 2)�2
1⊥

Mas, (31)

where Mas is given in Eq. (23). In the second region in (30),
the amplitude T

(1)
⊥ has the form

T
(1)
⊥ = −8πε1AC(�1)δμ1μ2

ω2(m2 + ζ 2)�2
0⊥

Mas . (32)

To derive Eqs. (31) and (32), we use the relation (27). The
expression for T

(1)
⊥ in the third region in (30) is given by

Eq. (28) with the replacement AC(�1) → Aas(�1). In all
regions in (30), the terms T

(0)
⊥ , T (0)

‖ , and T
(1)
‖ are suppressed as

compared with T
(1)
⊥ .

Performing calculations with the logarithmic accuracy, we
find that the contributions of the first and second regions
in (30) are equal to each other and two times smaller than
the contribution of the third region, so that the total result
reads

σC = −56η2α2

9πm2
f (η) ln2 ε1

m
, f (η) = Re[ψ(1 + iη)−ψ(1)],

(33)

where ψ(x) = d�(x)/dx. However, the origin of these con-
tributions are different. The contribution of the third region
can be easily obtained within the Weizsäcker-Williams ap-
proximation. It corresponds to the Coulomb corrections to
the cross section of electroproduction in the Coulomb field
by a relativistic particle noninteracting with this field [27,28].
Therefore, the Coulomb corrections coming from the third
region are given by the momentum transfer �0 ∼ m. Using
the language of exchanges by the Coulomb quanta with the
nucleus, we can say that the contributions to the Coulomb
corrections of the first and second regions in (30) correspond

FIG. 2. The dependence of σtot = σB + σC (solid curve) and σB

(dashed curve) on ε1/m for η = 0.6 (lead); see Eqs. (24) and (33).
The cross sections are shown in units σ0 = 28α2η2/27πm2.

to the case when all particles interact with the Coulomb center.
In this case, to derive the Coulomb corrections to the total
cross section from Eqs. (31) and (32), it is necessary to use the
relation [23,28]∫

d�⊥�2
⊥[|AC(�)|2 − |AB(�)|2] = −32π3η2f (η). (34)

Therefore, the Coulomb corrections coming from the first and
second regions are given by the small momentum transfer
�0,�1 � m.

To illustrate the importance of the Coulomb corrections to
the total cross section, we show in Fig. 2 the dependence of
σtot = σB + σC (solid curve) and σB (dashed curve) on ε1/m,
see Eqs. (24) and (33), for η = 0.6 (lead).

It is seen from Fig. 2 that the Coulomb corrections are very
important for the total cross section even for a moderate value
of Z.

IV. EFFECT OF SCREENING

The effect of screening is important if �0 � r−1
scr or �1 �

r−1
scr . In this case the main contribution to the integrals in (16)

is given by �⊥ ∼ min(�0,�1). The effect of screening in the
amplitude J

(1)
λ of photoproduction by a virtual photon (12) can

be taken into account similarly to the case of photoproduction
by a real photon. Namely, one should multiply J

(1)
λ in the

Coulomb field by the atomic form factor F (Q2), where
Q = p3 + p4 − k. This recipe is valid, because at Q � m

screening affect only the term of J
(1)
λ leading in η, while

the Coulomb corrections to J
(1)
λ originate from the region

Q ∼ m where F (Q2) = 1. Screening is taken into account
in the matrix element jλ of virtual photon bremsstrahlung (10)
via the function A(�) in the atomic field, Eq. (10). Thus,
the terms T

(0)
⊥ and T

(0)
‖ in the amplitude of electroproduction

in the atomic field are given directly by Eq. (14). Then,
multiplying the integrands in Eq. (18) for the Coulomb field
by the atomic form factor F (Q2) and making the replacement
Aas(�⊥) → A(�⊥), we obtain the terms T

(1)
⊥ and T

(1)
‖ in the

atomic field. This result will be valid for any values of �0

and �1.
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Let us now discuss the impact of screening on the total
cross section of electroproduction. To obtain the result in the
leading logarithmic approximation, one should consider the
region [cf. (22)]

m � ω � ε1, max

{
m2

ω
, r−1

scr

}
� �0⊥ � m,

mω

ε1
� ε1θ21 � m,

ε3ε4

ω
θ34 ∼ m, (35)

where the leading term of the cross section coincides with the
Born result. Under the conditions (35), the main contribution
to the amplitude TB is given by the terms T

(1)
B⊥ (23), while

the terms T
(0)
B⊥, T

(0)
B‖ , and T

(1)
B‖ are suppressed. Performing

the integration with the logarithmic accuracy, we obtain for
ε1 > m2rscr ∼ mZ−1/3/α

σB = 28η2α2

27πm2

[
ln3(mrscr) + 3 ln

ε1

m
ln(mrscr) ln

ε1

m2rscr

]
.

(36)

This result coincides with that obtained in Ref. [10]. For
m � ε1 < m2rscr the total cross section in the leading logarith-
mic approximation is independent of rscr and coincides with
Eq. (24). Note that the asymptotics (36) has good accuracy only
at very high energy. To obtain the result with high accuracy, it
is necessary to perform the integration of our results beyond
the leading logarithmic approximation.

In the leading logarithmic approximation, the Coulomb
corrections to the total cross section of electroproduction in
the atomic field originate from three regions [cf. (30)]:

1. max

{
m2

ω
,r−1

scr

}
∼�0⊥, max

{
mω

ε1
,�0⊥

}
� �1⊥ � m,

2. max

{
�1⊥,

m2

ω

}
��0⊥ � m, max

{
mω

ε1
, r−1

scr

}
∼ �1⊥,

3. �0 ∼ m,
mω

ε1
� �1⊥ � m, (37)

where m � ω � ε1 and ζ = ε3ε4θ34/ω ∼ m in all regions.
To obtain the amplitude T

(1)
⊥ in the first region in (37), we

use the following transformation:

iη

∫
d�⊥A(�⊥)F [(q − �⊥)2]

(q⊥ − �⊥)

(q − �⊥)2

= − 1

4π

∫
d�⊥d rA(�⊥)∇⊥V (r)e−i(q−�⊥)r

= −iπ

∫
d r ∇⊥V (r) exp[−iχ (ρ) − iq · r] = πq⊥ A(q),

(38)

where the function A(�) is given in Eq. (10). Then the
amplitude T

(1)
⊥ in the first region in (37) is

T
(1)
⊥ = − 8πε1A(�0)δμ1μ2

ω2(m2 + ζ 2)�2
1⊥

Mas, (39)

where Mas is given in Eq. (31). Similarly to Eq. (39), we
obtain the amplitude T

(1)
⊥ in the second region in (37):

T
(1)
⊥ = −8πε1A1(�1)δμ1μ2

ω2(m2 + ζ 2)�2
0⊥

Mas,

A1(�) = − i

�2
⊥

∫
d r exp[−i� · r − iχ (ρ)]�⊥ · ∇⊥VC(r).

(40)

The amplitude T
(1)
⊥ in the third region in (37) is independent

of rscr and coincides with the expression (28) with the
replacement AC(�1) → Aas(�1) [Eq. (11)]. In all regions
in (37), the terms T

(0)
⊥ , T

(0)
‖ , and T

(1)
‖ are suppressed as

compared with T
(1)
⊥ .

For the total cross section, the contributions of the first and
second regions to the Coulomb corrections calculated within
logarithmic accuracy are equal to each other,

δσ
(1)
C = δσ

(2)
C = −56η2α2

9πm2
f (η) ln(mrscr) ln

ε1

m2rscr
(41)

for ε1 > m3r2
scr and

δσ
(1)
C = δσ

(2)
C = −14η2α2

9πm2
f (η) ln2 ε1

m
(42)

for m � ε1 < m3r2
scr. To derive Eqs. (41) and (42) we use the

relations [23]∫
d�0⊥�2

0⊥
[|A(�0)|2 − |AB(�0)|2] = −32π3η2f (η),∫

d�1⊥�2
1⊥

[|A1(�1)|2 − |A1B(�1)|2] = −32π3η2f (η),

A1B(�1) = −4πη/�2
1,

(43)

FIG. 3. The dependence of σtot = σB + σC (solid curve for
η = l0.6 and dash-dotted curve for η = 0.34) and σB (dashed curve
for η = 0.6 and dotted curve for η = 0.34) on ε1/m for the case of
screening; see Eqs. (36), (24), (45), and (46), rscr = (mα)−1Z−1/3.
The cross sections are shown in units σ0 = 28α2η2/27πm2.
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FIG. 4. The quantity S [see Eq. (47)] as a function of the azimuth
angle ϕ3 for ε2/ε1 = 0.28, ε3/ε1 = 0.42, ε4/ε1 = 0.3, p2⊥ = 0.3m,
p3⊥ = 0.5m, p4⊥ = 1.2m, and ϕ2 = π/4; the Born result (dashed
curve) and the result exact in η for η = 0.6 (solid curve).

valid for any atomic potential V (r). The contribution of the
third region is independent of rscr and equals

δσ
(3)
C = −28η2α2

9πm2
f (η) ln2 ε1

m
(44)

for all ε1 � m. Thus, the total Coulomb corrections
σC = δσ

(1)
C + δσ

(2)
C + δσ

(3)
C are

σC = −28η2α2

9πm2
f (η)

[
ln2 ε1

m
+ 4 ln(mrcsr) ln

ε1

m2rcsr

]
(45)

for ε1 > m3r2
scr and

σC = −56η2α2

9πm2
f (η) ln2 ε1

m
(46)

for m � ε1 < m3r2
scr; see Eq. (33). Note that the contribu-

tion δσ
(1)
C + δσ

(2)
C , coming from small momentum transfers

�0 � m, approximately equals to δσ
(3)
C , coming from �0 ∼ m,

up to very high energy ε1. The values of ε1, which separate
the asymptotic forms of the Born result and the asymptotic

forms of the Coulomb corrections (ε1 = m2rscr for the Born
cross section and ε1 = m3r2

scr for the Coulomb corrections),
are different. This is due to the different regions of integration,
which give the main contribution to the Born cross section (35)
and to the Coulomb corrections (37).

For the case of screening, we show in Fig. 3 the dependence
of σtot = σB + σC (solid curve for η = 0.6 and dash-dotted
curve for η = 0.34) and σB (dashed curve for η = 0.6 and
dotted curve for η = 0.34) on ε1/m [see Eqs. (36), (24), (45),
and (46)], rscr = (mα)−1Z−1/3. It is seen that Z dependence of
the total cross section is more pronounced for the exact result
(which includes the Coulomb corrections) than for the Born
result.

V. IMPACT OF THE COULOMB CORRECTIONS ON THE
DIFFERENTIAL CROSS SECTION

To compare the differential cross section exact in η with the
Born result, we introduce the dimensionless quantity S,

S =
∑

μ1μ2μ3μ4

∣∣∣∣ε1m
4Tμ1μ2μ3μ4

η(2π )2

∣∣∣∣2

, (47)

which is the normalized differential cross section summed over
polarizations of all particles. We consider the region �0‖ �
1/rscr and ω/ε1 � 1/(mrscr), where it is not necessary to take
screening into account. Besides, for �0⊥ � �0‖ the function
S depends only on the ratios εi/ε1, but not on the energy ε1

itself.
We direct the z axis along p1 and x axis along p4⊥. In Fig. 4

we show the dependence of S on ϕ3 at some values of εi , pi⊥,
and ϕ2, where ϕ2 is the azimuth angle of p2⊥ and ϕ3 is the
azimuth angle of p3⊥.

In Fig. 5 the dependence of S on δ4 = p4⊥/m is shown at
some values of εi and pi⊥. In the right panel in Fig. 5 the
point δ4 = 0.8, where S = 0, corresponds to the momentum
transfer �0⊥ = 0. It is seen from Figs. 4 and 5 that the Coulomb
corrections significantly modify the differential cross section
compared to the Born result.

FIG. 5. The quantity S [see Eq. (47)] as a function of δ4 = p4⊥/m for ε1 = 100m, ε2/ε1 = 0.28, ε3/ε1 = 0.42, ε4/ε1 = 0.3, p2⊥ = 0.3m,
p3⊥ = 0.5m, ϕ2 = ϕ3 = 0 (left picture), and ϕ2 = ϕ3 = π (right picture); Born result (dashed curve) and the result exact in η for η = 0.6
(solid curve).

062120-9



P. A. KRACHKOV AND A. I. MILSTEIN PHYSICAL REVIEW A 93, 062120 (2016)

FIG. 6. The quantity A [see Eq. (48)] as a function of ϕ3 for
ε2/ε1 = 0.28, ε3/ε1 = 0.42, ε4/ε1 = 0.3, p2⊥ = 0.3m, p3⊥ = 0.5m,
p4⊥ = 1.2m, η = 0.6; ϕ2 = 0 (solid curve), and ϕ2 = π (dashed
curve). In the Born approximation A = 0 (dotted curve).

The differential cross section exact in η for the polarized
incoming particle possesses the azimuth asymmetry A:

A = S+ − S−
S+ + S−

, S± =
∑

μ2μ3μ4

∣∣∣∣ε1m
4T±μ2μ3μ4

η(2π )2

∣∣∣∣2

. (48)

In the Born approximation the asymmetry vanishes for any pi

due to the relation

T B
μ1μ2μ3μ4

= −μ1μ2μ3μ4
(
T B

μ1μ2μ3μ4

)∗
, (49)

following from Eq. (21). However, this relation is not valid for
the Coulomb corrections because the integrand in Eq. (18) is

not a real quantity. The asymmetry A is shown in Fig. 6 as a
function of ϕ3 at some values of εi , pi⊥, and ϕ2. As it should
be, the asymmetry vanishes when all momenta are in the same
plane (ϕ2 = 0, π and ϕ3 = 0, π in Fig. 6). It is seen that the
asymmetry can reach tens of a percent.

VI. CONCLUSION

We have derived the differential cross section of high-
energy electroproduction in the atomic field exact in the param-
eter η. The helicity amplitudes of the process for the Coulomb
field are given in Eqs. (14) and (18), and the modification of
these formulas for the atomic field (the effect of screening) is
pointed out in Sec. IV. The Coulomb corrections substantially
modify the differential cross section compared with the Born
result. For the polarized incoming electron, the Coulomb
corrections lead to the azimuth asymmetry in the differential
cross section [Eq. (48)]. The leading logarithmic contribution
to the Coulomb corrections to the total cross section is given
not only by moderate momentum transfers �0 ∼ m, but also
by small momentum transfers �0 � m. We emphasize that the
latter contribution appears due to interaction of the incoming
electron with the atomic field.
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