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High-energy electroproduction in an atomic field
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The differential cross section of high-energy electroproduction in the electric field of heavy atoms is derived.
The results are obtained with the exact account for the atomic field. We use the quasiclassical approximation
to the wave functions in the external field. For heavy atoms, the Coulomb corrections substantially modify the
differential cross section as compared with the Born result. They lead to the azimuth asymmetry in the differential
cross section for the polarized incoming electron. The Coulomb corrections to the total cross section are obtained

in the leading logarithmic approximation.
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I. INTRODUCTION

The process of eTe™ pair production at collisions of
high-energy electron with atoms, which is commonly referred
to as electroproduction or the trident process, is one of the most
interesting and important QED processes. This process should
be taken into account when considering electromagnetic
showers in detectors. Electroproduction is also important in
some fixed target experiments, such as dark-photon search
experiments [1,2]. In these experiments electroproduction is
the basic irreducible background process.

The process of electroproduction has been under consid-
eration for a long time. The earliest papers are those of
Bhabha [3,4] and Racah [5,6]. In Refs. [3,4] calculations
are performed with the use of the Weizsacker-Williams
approximation (see, e.g., Ref. [7]). This approximation allows
one to calculate the total cross section of the process in the
leading order with respect to the parameter In(e/m); here
m is the electron mass and ¢ is the energy of the incoming
electron, h = ¢ = 1. In Refs. [5,6] the total cross section is
obtained without restrictions needed for applicability of the
Weizsacker-Williams approximation. However, the effect of
Fermi statistics for two outgoing electrons was not taken
into account at that time. In Ref. [8] the approximate result
for the total cross section, which is in good agreement with
that given by Racah [5,6], is obtained. In Refs. [9,10] it is
shown that Bhabha’s formula for the total electroproduction
cross section has a good accuracy at ¢ = 10GeV. The first
numerical evaluation of the electroproduction cross section is
performed in Ref. [11], where the differential cross section of
high-energy electroproduction is obtained with the account for
the effect of Fermi statistics. The differential cross section of
high-energy electroproduction for massless leptons is derived
in Refs. [12-15].

In all papers mentioned above, the cross sections are ob-
tained in the leading in the parameter n = Zo approximation
(in the Born approximation), where Z is the atomic charge
number and « is the fine-structure constant. The Coulomb
corrections to the differential cross section of electroproduc-
tion (the difference between the result exact in n and the
Born result) have not been derived till now. However, it is
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well known from the results for the differential cross sections
of photoproduction and bremsstrahlung that the Coulomb
corrections may drastically change the result for heavy
atoms [16—18]. It is very difficult to calculate the Coulomb
corrections to the electroproduction cross section because the
amplitude of this process contains four wave functions in the
atomic field; see Fig. 1 where the corresponding Feynman
diagrams in the Furry representation are shown. Even in
the case of photoproduction and bremsstrahlung, where the
corresponding amplitudes contain only two wave functions in
the atomic field, exact calculations of the Coulomb corrections
for any energies are a very complicated task. Fortunately,
the use of the quasiclassical approximation to the electron
wave and Green’s functions in the atomic field significantly
simplifies calculations at high electron energies (though does
not make them simple).

At high energies and small angles between outgoing and
incoming particles, the main contribution to the processes in
the atomic field is given by large angular momenta of the par-
ticles. The quasiclassical approximation provides a possibility
to account for the contribution of this large angular-momenta
region. For the Coulomb potential, the wave functions in
the leading quasiclassical approximation are the famous
Furry-Sommerfeld-Maue wave functions [19,20] (see also
Ref. [7]). For the atomic potential, the wave functions and
the Green’s functions in the leading and next-to-leading
quasiclassical approximation are derived in Refs. [21,22].
Using the quasiclassical approximation, the differential cross
sections exact in n for photoproduction and bremsstrahlung
in the atomic field are obtained in Refs. [16-18,23] in the
leading quasiclassical approximation. The first quasiclassical
corrections exact in 7 to the results obtained in Refs. [16—
18,23] for the differential cross sections of bremsstrahlung
and photoproduction are obtained in Refs. [22] and [24]. In
Refs. [25] and [26] the cross section of e™e™ photoproduction
accompanied by bremsstrahlung and the cross section of
double bremsstrahlung are obtained exactly in 7 in the leading
quasiclassical approximation.

In the present paper, we apply the quasiclassical approach
to investigate, exactly in 7, the differential cross section
of high-energy electroproduction. The Coulomb corrections
to the cross section of photoproduction are determined
by the region of small impact parameters p ~ A¢c = 1/m,
while the Coulomb corrections to the cross section of
bremsstrahlung are determined by large impact parameters
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FIG. 1. Diagrams for the amplitude of the process e~ Z —
e~ eTe”Z. Wavy line denotes the photon propagator, straight lines
denote the wave functions in the atomic field.

o ~ min{Aceg’/(mw), ry}, Where @ is the energy of the
emitted photon, &' = ¢ — w, and ry; ~ ACZ’1/3/a is the
screening radius. For the differential cross section of electro-
production, both regions of small and large impact parameters
give the contribution to the Coulomb corrections. We show
that the Coulomb corrections for heavy atoms drastically
change the result as compared with that obtained in the Born
approximation.

II. GENERAL DISCUSSION

The differential cross section of high-energy electroproduc-
tion in an atomic field reads [7]

2

(2“ 5 e2e2e2 desdes d dSud [T, (1)

where d<2,, d<2; are the solid angles corresponding to the
momenta p, and pj of the outgoing electrons, d 24 is the solid
angle corresponding to the positron momentum p4, p; is the
incoming electron momentum (see Fig. 1), & = &, + &3 + &4

is the incoming electron energy, and &; = ,/ p? + m2. Below

we assume that &; > m. The matrix element 7 reads

T=T+T, T=-TQ2<3),

= Z/anﬁpub B

Db — 47 <8“b B k“k”)
2 9
w

—k2+i0 ?
j= /dr e @y ulr),

J = /dr el )y v,

W =€ — & = &3+ &, 2

where D™’ is the photon propagator (D*° = 0), y" are the
Dirac matrices, u;r)(r) and u(p_)(r) are the positive-energy
solutions of the Dirac equation in the atomic potential V (r),

(+) (r) is the negative-energy solution of the Dirac equation
1n the atomic potential, and the superscripts (—) and (+)
indicate that the asymptotic forms of the wave functions
contain at large distances r, in addition to the plane wave,
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the spherical convergent and divergent waves, respectively.
We calculate the matrix element of electroproduction in the
leading quasiclassical approximation. In this case the wave
functions have the form [21]

zz(p—>(r) = iyl for,p) —a - fi(r,p)l,

WD) = [go(r.p) — & - g1(r,p)luyp,
V) = [Go(r,p) + a - Gi(r,p)lv,

P Ep—i—m (7-¢p
P 2¢, ¢

&p+m
g-p

o= |2 SR, 3)
2g, X

where ¢ and x are spinors, & = y°y, and o are the Pauli
matrices. The functions f and f read

folr.p) = ——e T / dQexp [i 0 i / Oode(m],
0

1
fi(r,p) = 2—(iV - p) fo(r,p),
Ep

2x
rp=r+xn,+ |—Q, “4)
€p

where Q is a two-dimensional vector perpendicular to the
vector n, = p/p. The expressions for the functions go and g,
follow from the relations

go(r,p) = fo(r,—p), gi(r,p)= fi(r,—p), )

and the expressions for the functions Gy and G; can be
obtained from the functions fy and f, respectively, by the
replacement V(r,) — —V(r,).

It is convenient to calculate the matrix element for definite
helicities of the particles. Let u; be a sign of the helicity of a
particle with the momentum p;. We direct the z axis along a
unit vector v assuming that the angles between v and p; are
small. The final result will be independent of the direction of
v. Then, to calculate tlle matrix element, we use the matrices
F =up pip,p, and F = vy, il py 0, [22,25]:

F = %(amuz +X ‘buluz)[Vo(l + PiPy) + ¥y (P + Py)
+(1 = PP — y’(P) — P,

F = Y@y + T b )y (Ps — Po) + y°y°(1 — PsPy)
—(Ps+ Py) — y>(1+ PsPy)]. (6)
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Here P; = w;pi/(si + m), T = —y3a, ¥ = =iy 'y v2y3; ap, s By > Qs> and by, are

i 1 ~
Aup = 17 Aup = isu‘0127 buu ::u'v“‘%(ol +02)+5[012 XV], buﬂ:ﬁsu__(s;ugl +02)V, Aup = W,

V2 V2
~ | ~ 1 i ~ . o, 1 :
Ay = —Esﬂ 034, bup=v+ 5(934-04)—7[934 xv], by,=-— M“/zsﬂ + E(S,p% +04)v, S;L:E(ex +iuey),
(7N
where fi = —u, e, and e, are two orthogonal unit vectors perpendicular to v, 8; = p;1 /p;, 6;; = 0; — 0;, and the notation

X, =X — (X - v)p for any vector X is used.
It is convenient to write the photon propagator D as follows:

arb
D = pib +D” , DI = -5 dm <6“b _ Kk ) = 4m Zsf*sf, Dﬁ’b = _Am kKb = —4—nv“vb,
1) w

—k2+i0 k2 —k2+i0/\ w?k? w?
(®)
where we direct the vector v along the vector k. Substituting this expression in Eq. (2), we obtain for 7'
dk jy J
T=T+T, T . =—-4 ,
14, L T ;/ 27 (@ — K2 + i0)
Ty = /(2 Fhh = S50 h=J s qi=j-v. Jy=Jv. ©

The functions j and J correspond to the matrix elements of virtual photon bremsstrahlung and pair production by virtual photon,
respectively. The calculation of these functions can be performed in the same way as is done for the real bremsstrahlung cross
section [22,23] and for the pair production cross section by a real photon [25]. As a result we obtain the following expressions
for the matrix elements j, and j of virtual bremsstrahlung:

. . 0 0 M 1 1
Jr = _A(A)[alilﬂz (815/\M1 + 8231111)(sk’ - + 1 ) + SO —l<_ + _>i|’

1D eDs V2e18:\ D1 Ds
. 1 1 1 . ) 00
i = —AA) +-—], AA)= ——Z/dr expl[—iA-r —ix(p)]AL -V V(r), x(p)= / dz V(2> + p?),
D, ' D, A% oo
A% A2
Di=—4n-A—-i0, Dy=—:—n,-A—i0, A=k+p,—p,, n;=p:/pi. (10)
2¢e 285

At A; > max(Aj,rg)), where Aj = A - v and ry is a screening radius, the function A(A) is independent of the potential shape
(see Ref. [23]). It has the following asymptotic form:

Arn(LA D)*T(1 —in)

Aas(A) = - X
Ail"(l +in)

(1)

where I'(x) is the Euler I' function, a specific value of L ~ max(A,r, 1) is irrelevant because the factor L% disappears in | T;o|>.
At Ay < max(Ay,rg)), the function A(A) strongly depends on A and the shape of the atomic potential [23].
The matrix elements J, and J of pair production by virtual photon read

mowps
J, = ])EO) + J(l)’ J“ = J‘(O) + J“(l)’ J){O) — (27‘[)38(p3 + ps — k)|:5M3M4(s)H8AM304 + 5)4“03) 8;““_48)\#3 ]
V26384
ay _ i&&s [Cdz oo ki o Busi mmjis
J}\ _ o /(; ?e 2(p3+pa—k+i0) d2Q3 d2Q4 Te ] 'Z);g‘“(s)L . Q34)(838Au3 — 548A;¢4) + 5#%#46)4/«3 fg3g4
i€384 dZ ¢ ) i
I = @75+ pa— W I = =2 [T Lt [[[20,020, 7%,
Tw Jo Z
iX(Qa)—x(03)] 8384
J = !X -1, = Q34 (8303 - 03+ 6404 -04), (12)

where Q34 = Q3 — Q4. The matrix elements J. )fo) and J |(O) correspond to the virtual photon decay into the et e~ pair noninteracting

with the atomic field, while the matrix elements JA( )and J H(l) correspond to production of a pair interacting with the atomic field.
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Then we substitute Eqs. (10) and (12) in Eq. (2) and write the amplitudes 7', and T as
To=1"+71{", T,=1"+T1". (13)

Integrating over k, we obtain for the terms Tio) and TH(O)

8mezes A(Ag) &3, &4/ 4
Ti()) = m{‘%m‘smm |:w_32(sm ) X) (slts '034) (818M1N3 + 828#1#4) - w_i(slu ’ X) (slu '034) (818M1M4 + 828Hlﬂ3)i|

mipy mus
— —ﬁg A RaulﬁzS/izm(le .034)( - SS(SMIM + 845;“/14) + \/ES _8 8;“”28#3”4(5‘:13 . X)(SI(S/J«}V»] + 828#3/11)
182 384
m2w2 0) 8
mmmﬁzamm%m o Ty = ABORS B (14)
Here
L, 1 1 2 2 2
Ay =pr+p3+ps—pi, Aol =805 + 6303 + 4041, Aoy =—z|m ol — + —— ) + 205 + 365, + €46 |,

2 £1&2 E3E4

1 1 1
R=——[Aj, (61 + &)+ 26162012 - Ag1)], X = —(£3023 + £4024) — — (3013 + €4014),
d1d2 dl d2

1 1
d, = m2w81 (— + —> + 8283@223 + 8284@224 + 83849324,

£1&2 E3E4
1 1
dr = mzwsz(— + —> + 82839321 + 8284931 + (g303; + 84041)2. (15)
€182 £38&4

These amplitudes correspond to production of a eTe™ pair noninteracting with the atomic field, so that they have the dependence
on the atomic potential similar to that of the bremsstrahlung amplitude; see, e.g., Refs. [23,26].

To derive the terms Tf) and T”(D, we take the integral over k, by closing the contour of integration in the lower half-plane
of the complex variable k,. Then the main contribution to the integral is given by the pole of the function 1/D, in Eq. (10). We

have
dAy A(Ay) (™ dz iz 4
7O = 18384 / az <_ “p )// 420~ d? iy
i w0 ) et )y exp e 03d°Q4Te

W’z [81(838111#3 - 848#1#4)(‘9;1 ’ Y) (sm : Q34)

x { 5#1#251/-3/14

: mp
+82(‘938M1ﬂ3 - 848M1ﬂ4)(sm : Y)(sm : Q34)] - 8#11125#3/14\/—2—1(835111#3 - 848#1#4)(su1 . Q34)
€12
2.2
m . mew
+5M1H28M3u4ﬁT;(815M1M3 + 828M|ﬁ3)(su3 ' Y) - m Mlﬂ28ﬂ3ﬂ48ﬂlﬂ3 }’

(1) €384 *dz iz 20 12 i
T, = 527 dA | A(A)) | ?GXP _EQD‘) d“Q3d" Q4 Te" ™8, 1,0 150>

S L RV U R
<I>1_ma) + + Y, Y—Al 82021,
£1&2 €384 Erw

E3&4

D, = Q§4+%Qa-(Y—w031)+2—4Q4-(Y—w041). (16)

2wz

Here J is given in Eq. (12), A(A ) is the function A(A) at A =0, and A is a two-dimensional vector perpendicular to the z
axis.

III. COULOMB FIELD

Let us consider the region min(Ag, A) > rs‘crl, where ry; is the screening radius and A; = \/ (£2021)* + (mw/€1)?. In this

case we can neglect the effect of screening and use the Coulomb potential V¢ (r) = —n/r instead of the atomic potential V (r).
Then we have

%
0s

4 n(LA)*"
oA

AZ
ra—inrr@ - in)F<1 - in,in,Z,—L>, a7

2in
) — 1, AcA) = =

x(p) = —2nIn(2L/p), J = <
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where F(a,b,c,x) is the hypergeometric function, I'(x) is the Euler I" function, L ~ rs,, and Ac(A) is A(A) in (10) for the

Coulomb potential. At A| > A the function Ac(A) coincides with A,,(A) [Eq. (11)].

In the Coulomb field, the amplitudes TJ(_O) and TH(O) are given by Eq. (14) with the replacement A(Ag) — Ac(Ay). To derive

the amplitudes Tf) and T(l) from Eq. (16), we integrate over the variables Q3 + Q4 and z in the same way as is done in the
case of the photoproductlon cross section (see, e.g., Ref. [25]). The integration over Q34 = Q3 — Q4 is performed with the use

of the Feynman parametrization. As a result we obtain

Sznl dA | Au(AL) £)"
TV = 2 ra - / ( ) M,
Y =il Q>M? (m2w? + e7Y?) \ &

1) é
M = S e (038, — 48 (5, ¥) (S T1) (st — ead) (8- Y) (5, - )]
mou mu; .
+8M1M78H3M4 «/_ 11 (&Sulm - 848#1#4)(SM1 1 ) + 8#1/425/“#4 «/{ (818M1H3 + 828M1ﬂ3)(su3 ’ Y)IO

@’ h Sineses : dAL Au(AL) ()"
- 2_23‘]8#1/7«23#3#45#1/13]01 TH( = _Tlr(l - ”7)|2/ W(g) 108M1M28M3ﬂ4’ (18)
where the function A,;(A ) is given in Eq. (11) and the following notations are used:
£3& £163€ £3¢€ e
M?* = <1+ s 4>+L;Y2, Y=A, -0y, {=—"0u, Q=A, Ay q=—0Q, —¢
162 &Hrw w w
£ F’ (x)
2= 0148 = —E)FW) +E +& - D1 —x)
F'(x) M2 M? Qﬁlfz
I = + F(x)+ — 1—x = —, =— x=1-
1 = (191 + £242)F(x) + (5191 — £242)( )— 3 W+ g & M2+ g2 2
0
F(x) = F(in,—in,1,x), F'(x)= —F(x) (19)
Note that Q) = —A;. In contrast to the term T©, the Coulomb corrections to the term 7V significantly modify the differential
cross section of electroproduction not only at small A but also at Ay ~ m.
A. Born amplitude
In the leading Born approximation, the terms T(O) and T( | are given by Eq. (14) with the replacement
A(Ag) = Ap(Ag) = —4mn/Aj.
To derive the terms Tl(;ll) and Tg”) from Eq. (18), we use the relation
lim n/dAl AT"TPG(A L) = —inG(0), (20)
T’]—)
where G(A ) is some function. Then we obtain
8mwe1e2Ap(Ap) ! 8mwezesAp(Ap)
T = Mg, T = - T 1 0d Susiiss
BL szIZ? (mzwz + 8128%@221) B Bl a)3M125, BOOu 2 Opsfis
M = 81184 [81(838M1#3 - 848#1/t4)(s21 -021)(sm ’ IB‘)
2
. mo’
+82(‘938M1ﬂ3 - 848M1ﬂ4)(sul : 021)(5‘”1 : 131)] + 8M1ﬂ28M3ﬁ4—(838M1M3 - 848/111/-4)(sm : IBI)
V28
2.3
M3 . m-w
- 5#1#26/43#4 \/5 (813M1M3 + 825#1ﬁ3)(su3 '021)130 - mgmﬁzammgmmlBO’
£3¢& £18263E
M3 = m2<1 + ﬂ) + wo%,, Igo =&p1 — &2, Ip1 =&p1qB1 +E2gpo,
£182 w?
M2 M2 £38&4 &3 &4
fpl=—52—, Epp=—5L— =""0u, qp=——A~Aw—¢ gp=-——A~Au+I. (21)
M%; + qél M% + qéz w w w
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The leading logarithmic contribution to the Born cross section is given by the region

m2 maw
mK oL Eer, ZWKML«m,;—<a%w<m ¢ ~m. (22)
1

In this region

(1) — 327—[2”818#«1#%
BLT 02(m? 4 ¢2)A2 A2

Mg, My = Sus iy [83( 021)(S/L3 XO) - ‘94( 021)(5‘“4 : XO)]

(€ -Ao1) _28(Z - Aoy)

—ng/zmwém,m(s* -051) 2 Xo= Ao 2+ (2

3

, (23)

and the terms Tgﬁ, Tz(;(\]\) and Té” are suppressed as compared with Télﬁ. Substituting the matrix element (23) in (1) and
performing the integration over the region (22) with the logarithmic accuracy, we obtain the well-known result [4,6] for the
leading logarithmic contribution to the total cross section of high-energy electroproduction:

28n°a? 13 &L

op = (24)

27 m? m

B. Asymptotic forms of the amplitudes exact in » in the Coulomb field

In the region (22) we have |T'| = |Tg|, where T is the asymptotic result exact in n and Ty is given by (23). For ,60,; > m,
£3031 > m, £4641 > m, but Ag < m, we obtain

8T Ac(Ag)
0 c(Ag "
TJ(_) = —28111M26Al3ﬂ4[83(s:;3 . Xl)(sm . 034)(815/“#3 + 828#1#4) — 84(SM4 . )(1)(SM4 . 034)(818#]M + 828“]“3)],
818283840)C1934
16w Ac(Ag) 28182
T||(0) = wz—czéumﬁmm (021 - AoL), c1 =203 + 303, + 2407, X1 = Aol — (021 Ap1)8y. (25)
In this region the terms Tf) and T”(I) read
81 Ac(Ag)
1 c (A0 * *
TL() = _—25M1M?8M3M4 [81(838111#3 845#1#4)(‘9;/.1 : 021)(SM1 . XZ) + 82(838M1ﬂ3 - 848M1ﬂ4)(sm . 021)(SM1 . XZ)]7
6‘18283846‘20
167TA(;(A0) 28384
TII(I) - 2 8Osy (034 - Agr), 2= 81529221 + 33549324’ Xy = Aol — (634 - Ag1)834. (26)
2
To derive this formula, we use the relation
(AL —q1)
1 [ a8 A8 G0 = —xg, ac@) @7)
(AL —9q)

which is valid for any three-dimensional vector ¢ = qyv + ¢, wherev-q; =0andv-A; =0.
In the region w <K &1 and 26,1 < min(m, Ao), which provides the applicability of the Weizsacker-Williams approximation [7],
the leading contribution to the amplitude of electroproduction is

8T A (A ) ";:WZ
1 _ clAa] .
T = Az T i) (s - A TS

* * mawil3 *
Tw =8, [ (6350, - Twr) 85, — €48y, - Twi) 85, ] — 8M3M471WO ST
P s &€
qwi =——3Ao¢—§, QW2=——4A0¢+§, ;:ﬂo%
® ® ®
F(XW)
Iwo = w1 — Ew) F(xw) + Ewr + &wa2 — D — xw) .

/(xw)

Iwi = Gwigwi + Ew2qw2) F(xw) + Ewiqwi — Ewaqw2)(1 — xw)

m? m? _ AoJ_%WléfZW

— =—7, xw=1 , 28
" g, n ”

Ewi =

’
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where A = e071, Ay =mw/e;, and the functions F(x)
and F’(x) are defined in (19). Note that the amplitude 7}, of
ete™ photoproduction by a real photon with the polarization
vector e is [24]

8 Ewa
Treal = oA 2|F(1 —in)| (ém) (e-Tw), (29

where the function Ty is the same as in Eq. (28).

In the leading logarithmic approximation, the Coulomb cor-
rections to the cross section in the Coulomb field, proportional
to In?(g; /m), are originated from three regions:

m? mo
1. - ~ Ao, max 8—,A(u L AL L m,
1

mo
— ~ Ay,

m2
2. max {Au,—} L Aol K m,
0] €1

mw
3. Ag ~ m, 8_ LA K m, (30)

1
where in all regions m <« w < ¢ and ¢ ~ m. Using Eq. (18),
we find the amplitude TJ(_I) in the first region in (30):

87T81Ac(A0)5mM2 M

7O _ _
+ w?*(m? + KZ)A

(€29
where M, is given in Eq. (23). In the second region in (30),
the amplitude Tf) has the form

8metAc(A1)dy,,
w*(m? + §2)A(2)¢

T = - Mas. (32)

To derive Egs. (31) and (32), we use the relation (27). The
expression for Tl(l) in the third region in (30) is given by
Eq. (28) with the replacement Ac(A;) — Ay (Ar). In all

regions in (30), the terms T(O), TH(O), and T”(I) are suppressed as

compared with T(l)

Performing calculations with the logarithmic accuracy, we
find that the contributions of the first and second regions
in (30) are equal to each other and two times smaller than
the contribution of the third region, so that the total result
reads

56
oe == 8T oy = O =Rely (1 +im=y (D).
(33)
where ¥ (x) = dI'(x)/dx. However, the origin of these con-

tributions are different. The contribution of the third region
can be easily obtained within the Weizsacker-Williams ap-
proximation. It corresponds to the Coulomb corrections to
the cross section of electroproduction in the Coulomb field
by a relativistic particle noninteracting with this field [27,28].
Therefore, the Coulomb corrections coming from the third
region are given by the momentum transfer Ay ~ m. Using
the language of exchanges by the Coulomb quanta with the
nucleus, we can say that the contributions to the Coulomb
corrections of the first and second regions in (30) correspond
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FIG. 2. The dependence of oy, = 05 + o¢ (solid curve) and op
(dashed curve) on ¢;/m for n = 0.6 (lead); see Eqgs. (24) and (33).
The cross sections are shown in units oy = 28a?n?/27mm?.

to the case when all particles interact with the Coulomb center.
In this case, to derive the Coulomb corrections to the total
cross section from Eqs. (31) and (32), it is necessary to use the
relation [23,28]

/ dA L ATTIAC(A)? — [Ag(A)F] = =327 f(n).  (34)

Therefore, the Coulomb corrections coming from the first and
second regions are given by the small momentum transfer
Ao, A] <L m.

To illustrate the importance of the Coulomb corrections to
the total cross section, we show in Fig. 2 the dependence of
Owt = 0p + o¢ (solid curve) and op (dashed curve) on g;/m,
see Eqgs. (24) and (33), for n = 0.6 (lead).

It is seen from Fig. 2 that the Coulomb corrections are very
important for the total cross section even for a moderate value
of Z.

IV. EFFECT OF SCREENING

The effect of screening is important if Ag < 7! or Ay <

ror - In this case the main contribution to the integrals in (16)
is given by A; ~ min(Ag, A;). The effect of screening in the
amplitude J ,\(1) of photoproduction by a virtual photon (12) can
be taken into account similarly to the case of photoproduction
by a real photon. Namely, one should multiply Jx(l) in the
Coulomb field by the atomic form factor F (Q?), where
0 = p3 + ps — k. This recipe is valid, because at Q < m
screening affect only the term of J,\(]) leading in 5, while
the Coulomb corrections to Jk(l) originate from the region
0O ~ m where F(Q?) = 1. Screening is taken into account
in the matrix element j, of virtual photon bremsstrahlung (10)
via the function A(A) in the atomic field, Eq. (10). Thus,
the terms TJ(_O) and T”(O) in the amplitude of electroproduction
in the atomic field are given directly by Eq. (14). Then,
multiplying the integrands in Eq. (18) for the Coulomb field
by the atomic form factor F(Q?) and making the replacement
Au(AL) — A(A ), we obtain the terms Tf) and T”U) in the
atomic field. This result will be valid for any values of Ag
and A;.
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Let us now discuss the impact of screening on the total
cross section of electroproduction. To obtain the result in the
leading logarithmic approximation, one should consider the
region [cf. (22)]

2
m
m<Low<KLeér, max{ = scr}<<A0J-<<m

maow E3E4

— Ly Km, ——by~m, (35)
€1 w

where the leading term of the cross section coincides with the
Born result. Under the conditions (35), the main contribution
to the amplitude T is given by the terms T(ll) (23), while
the terms ngz, Tgﬂ), and T1§|| are suppressed. Performing
the integration with the logarithmic accuracy, we obtain for
g1 > Mm% ~mZ 13 /a

28n%a
27w m?

op = |: 3(mrscr) + 3ln — 1n(mrbcr) In i ]

2
Mm=Fscr

(36)

This result coincides with that obtained in Ref. [10]. For
m <& &1 < m%ry the total cross section in the leading logarith-
mic approximation is independent of ry; and coincides with
Eq. (24). Note that the asymptotics (36) has good accuracy only
at very high energy. To obtain the result with high accuracy, it
is necessary to perform the integration of our results beyond
the leading logarithmic approximation.

In the leading logarithmic approximation, the Coulomb
corrections to the total cross section of electroproduction in
the atomic field originate from three regions [cf. (30)]:

2

m mo
o scr} Aoy, maX{g—,AOL} KA L m,

1. max{
1

m2 maw
2. max Au,Z <KAo, K m, max . — T ~ AL
1

maw
3. A¢g ~ m, 8_ LA KL m, 37

1

where m < o K €1 and ¢ = €384034/w ~ m in all regions.
To obtain the amplitude TL(I) in the first region in (37), we
use the following transformation:

(gL —AD)
(g — AL

1 :
= _4_/dAldrA(AL)VLV(r)e—“q—AD’
T

n / dALA(A)F(g — A1)

— _in / dr V.oV(r)expl—ix(p) — iq -rl = mq1 A(g),
(38)

where the function A(A) is given in Eq. (10). Then the
amplitude TJ(_I) in the first region in (37) is

8me1 A(A0)Sy, p,

7O _
+ wX(m? + (2)AT |

Mas, (39)
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where M, is given in Eq. (31). Similarly to Eq. (39), we
obtain the amplitude Tf) in the second region in (37):

87T81A1(A|)5Mp_2
w*(m? + ¢HAY|

aso»

TV = -

A =~ / dr expl—iA -r —ix(p)AL -V, Ve(r).
1
(40)

The amplitude Tf) in the third region in (37) is independent
of ryr and coincides with the expression (28) with the
replacement Ac(A;) — Ay(Ay) [Eq. (11)]. In all regions
in (37), the terms TJ(_O), T”(O), and TH(I) are suppressed as

compared with Tf).

For the total cross section, the contributions of the first and
second regions to the Coulomb corrections calculated within
logarithmic accuracy are equal to each other,

o’
(1) 2
SGC = 60C = o f('?) In(mr,) In mzrscr (41)
for ey > m3r2,_ and
14n?
boi) =808 = -7 “ fpin? 2L 42)

form < g1 <m?
relations [23]

.- To derive Egs. (41) and (42) we use the

S

/ Ao, A2, [IA(AP — [A5(A)P] = —327° f(n),

/ dALL A2 [IAADE — |A1s(ADP] = =320 F (.
Aip(Ay) = —4mn/ A7,

(43)

400

ooy

200 400 600 800 1000
£g1/m

FIG. 3. The dependence of o, = op + oc (solid curve for
1n=10.6 and dash-dotted curve for n = 0.34) and o (dashed curve
for n = 0.6 and dotted curve for n = 0.34) on &;/m for the case of
screening; see Eqgs. (36), (24), (45), and (46), ry, = (ma)~'Z71/3,
The cross sections are shown in units oy = 28a?n?/277rm?.
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25 T

FIG. 4. The quantity S [see Eq. (47)] as a function of the azimuth
angle ¢; for e,/6; = 0.28, e3/6; = 0.42, g4/e; = 0.3, pry = 0.3m,
p3L = 0.5m, pyy = 1.2m, and ¢, = 7 /4; the Born result (dashed
curve) and the result exact in 1 for n = 0.6 (solid curve).

valid for any atomic potential V(r). The contribution of the
third region is independent of ry., and equals

87’2 2

80é3) _ f( )1 2

for all & > m. Thus, the total Coulomb corrections
oc= (SUél) + (Saéz) + 5023) are

(44)

281>
oo = — 1Y f( )[1 220 4 Aln(mrey) In } (45)
97'[ m Fesr
for e; > m3r2, and
56
oc =212 f( )In? 2 (46)

for m <« &1 < m3r2; see Eq. (33). Note that the contribu-
tion 808) + 50é~2), coming from small momentum transfers
Ao < m, approximately equals to § ag), coming from Ag ~ m,
up to very high energy €. The values of &, which separate
the asymptotic forms of the Born result and the asymptotic

PHYSICAL REVIEW A 93, 062120 (2016)

forms of the Coulomb corrections (&1 = m?r, for the Born
cross section and &; = m3r2, for the Coulomb corrections),
are different. This is due to the different regions of integration,
which give the main contribution to the Born cross section (35)
and to the Coulomb corrections (37).

For the case of screening, we show in Fig. 3 the dependence
of oyt = op + o¢ (solid curve for n = 0.6 and dash-dotted
curve for n = 0.34) and op (dashed curve for n = 0.6 and
dotted curve for n = 0.34) on &;/m [see Egs. (36), (24), (45),
and (46)], rer = (ma)~'Z71/3 It is seen that Z dependence of
the total cross section is more pronounced for the exact result
(which includes the Coulomb corrections) than for the Born
result.

V. IMPACT OF THE COULOMB CORRECTIONS ON THE
DIFFERENTIAL CROSS SECTION

To compare the differential cross section exact in n with the
Born result, we introduce the dimensionless quantity S,

2
; (47)

4
eym T/tmzmm

n2m)?

>

W12 A3 g

which is the normalized differential cross section summed over
polarizations of all particles. We consider the region Ag >
1/rsr and w/e; > 1/(mry;), where it is not necessary to take
screening into account. Besides, for Aoy >> Ay the function
S depends only on the ratios ¢; /g1, but not on the energy ¢
itself.

We direct the z axis along p; and x axis along p4, . InFig. 4
we show the dependence of S on @3 at some values of ¢;, p; |,
and ¢, where ¢, is the azimuth angle of p,, and ¢; is the
azimuth angle of p3; .

In Fig. 5 the dependence of S on 84 = p4, /m is shown at
some values of ¢; and p;,. In the right panel in Fig. 5 the
point 84 = 0.8, where S = 0, corresponds to the momentum
transfer Ay, = 0.Itis seen from Figs. 4 and 5 that the Coulomb
corrections significantly modify the differential cross section
compared to the Born result.

10

FIG. 5. The quantity S [see Eq. (47)] as a function of 64 = p4, /m for &y = 100m, &,/e; = 0.28, g3/¢; = 0.42, g4/, = 0.3, poy = 0.3m,
p3L = 0.5m, ¢, = @3 = 0 (left picture), and ¢, = ¢3 = 7 (right picture); Born result (dashed curve) and the result exact in n for n = 0.6

(solid curve).
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¥3

FIG. 6. The quantity A [see Eq. (48)] as a function of ¢; for
&y/e1 = 0.28,63/61 =042, 84/e1 = 0.3, po1 = 0.3m, p3, = 0.5m,
par = 1.2m, n =0.6; ¢, =0 (solid curve), and ¢, = 7 (dashed
curve). In the Born approximation .A = 0 (dotted curve).

The differential cross section exact in n for the polarized
incoming particle possesses the azimuth asymmetry A:

4 2
em 7;:#2!43#4

n(2m)? @

Mo [h3 g
In the Born approximation the asymmetry vanishes for any p;
due to the relation

B B *
,T;L|[42;L3u,4 = _M1M2M3M4(7%1ﬁ2ﬁ3ﬁ4) s 49)

following from Eq. (21). However, this relation is not valid for
the Coulomb corrections because the integrand in Eq. (18) is

PHYSICAL REVIEW A 93, 062120 (2016)

not a real quantity. The asymmetry A is shown in Fig. 6 as a
function of @3 at some values of ¢;, p;,, and ¢,. As it should
be, the asymmetry vanishes when all momenta are in the same
plane (¢, = 0, w and @3 = 0, 7 in Fig. 6). It is seen that the
asymmetry can reach tens of a percent.

VI. CONCLUSION

We have derived the differential cross section of high-
energy electroproduction in the atomic field exact in the param-
eter 77. The helicity amplitudes of the process for the Coulomb
field are given in Egs. (14) and (18), and the modification of
these formulas for the atomic field (the effect of screening) is
pointed out in Sec. IV. The Coulomb corrections substantially
modify the differential cross section compared with the Born
result. For the polarized incoming electron, the Coulomb
corrections lead to the azimuth asymmetry in the differential
cross section [Eq. (48)]. The leading logarithmic contribution
to the Coulomb corrections to the total cross section is given
not only by moderate momentum transfers Ay ~ m, but also
by small momentum transfers Ag < m. We emphasize that the
latter contribution appears due to interaction of the incoming
electron with the atomic field.
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