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Quantum non-Gaussianity dynamics of two-mode single-photon squeezed
Bell states based on cumulant theory
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We characterize the non-Gaussianity of continuous-variable quantum states in terms of the cumulant theory and
derive the exact formula of the cumulant of any order for such states. Exploiting the fourth-order cumulant method,
we evaluate the quantum non-Gaussianity of two-mode single-photon squeezed Bell states and investigate their
dynamics under the influence of two different types of decoherence models. It is shown that in a two-reservoir
model, all the fourth-order cumulants of these states are very fragile, while in single-reservoir model, the fourth-
order cumulants of one such state are insensitive to thermal noise, showing the time-invariant non-Gaussianity.
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I. INTRODUCTION

It has been realized that non-Gaussian states play a more
important role in the field of quantum information science
than their Gaussian counterparts. With the help of non-
Gaussian sources, the performance of quantum teleportation
[1,2] and quantum error correction [3] can be significantly
improved. Recent studies have highlighted the feasibility of
using non-Gaussian sources to generate a larger entanglement
[4,5], which is an essential requirement for universal quantum
communication and computation. It was found that this
outstanding role relies closely on the non-Gaussianity (nG) of
a quantum state. One can then ask how to qualify and quantify
the non-Gaussianity of any given state.

Much effort has been devoted to the quantification of the
non-Gaussianity of a quantum state. Genoni et al. [6] first
introduced the Hilbert-Schmidt distance to quantify the non-
Gaussian character of a bosonic quantum state, evaluated the
non-Gaussianity of some relevant states, and studied the evolu-
tion of non-Gaussianity of these states undergoing either Gaus-
sification or de-Gaussification processes. Subsequently, they
proposed the entropic measure of non-Gaussianity based on
the quantum relative entropy [7], by which they evaluated the
performance of conditional Gaussification toward twin-beam
and de-Gaussification processes driven by Kerr interaction. In
2010, Genoni and Paris [8] investigated the relationships of
these two non-Gaussianity measures. They pointed out that
these measures have the same basic properties and share the
same qualitative behavior for several families of non-Gaussian
states. This entropic measure was also extended to the case
of an arbitrary N -mode state [9]. The Bures metric was
introduced as alternative measure of non-Gaussianity and the
three non-Gaussianity measures were compared in Refs. [10]
and [11]. It has been shown that there is a good consistency
of these measures on the sets of damped states. Additionally,
the non-Gaussianity was experimentally measured via relative
entropy for single-photon-added coherent states [12] and
phase-averaged coherent states [13], respectively. However,
the intractable problems we face in their computations are
choosing an appropriate reference Gaussian set of states and
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optimizing over such states. It is therefore worthwhile to
study how to identify non-Gaussianity in a straightforward
fashion.

In classical probability theory and statistics, the cumulants
are widely believed to be a powerful tool in the description
of the non-Gaussianity signatures of a probability distribution
and have been extensively applied in many areas, including
population biology [14], signal processing [15], finance [16],
and classical physics [17,18]. More importantly, the cumulant
method has been recently introduced into quantum optics
and quantum information science. The quantum statistics of
second-harmonic generation [19] and damped optical solitons
[20] was investigated using cumulant-expansion techniques.
The trace norm of the cumulant of the multiparty density ma-
trix [21] and squared Frobenius norm of the cumulant parts of
reduced density matrices [22] were utilized to measure genuine
multiparty correlation. A scheme for a cumulant-based Bell
test for entanglement was proposed in Ref. [23]. Teleportation
of cumulants and principal momenta using squeezed-Bell-
like states as resource was done in Ref. [24]. Additionally,
recent works showed that the cumulants are particularly
useful for testing the non-Gaussianity of a quantum state.
Dubost et al. [25] used the third- and fourth-order cumulants
to show the departure of a continuous-variable state from
Gaussian behavior, in which the cumulant-based estimation
was proven to be efficient, only requiring few preparations and
measurements. Olsen and Corney [26] investigated the non-
Gaussian statistic of the Kerr-squeezed state by calculating
higher-order cumulants of quadrature variables. It was found
that the nonlinear interaction can skew the distribution of the
quadrature variables, giving rise to large third- and fourth-order
cumulants for sufficiently long interaction times. Corney and
Olsen [27] focused on non-Gaussian pure states generated by
the anharmonic oscillator and used cumulants to characterize
non-Gaussian behavior of the anharmonic oscillator. They
showed that the truncated Wigner representation is a useful
tool for calculating third- and fourth-order cumulants in
nonclassical regimes, and such a system is predicted to be
non-Gaussian over a wide range of particle numbers. However,
to our best knowledge, relatively few studies have currently
been made on the characterization of the non-Gaussianity of
multimode non-Gaussian (entangled or separable) states in the
language of cumulants. Hence, in this paper, we will deal with
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this question and derive a more general formula of cumulants
of any order for any multimode bosonic quantum state. As
an example, we compute the fourth-order cumulants, which
are related to the negativity of the Wigner function [28], of
a special class of two-mode non-Gaussian entangled states,
namely, single-photon squeezed Bell states. Furthermore, we
will study the dynamics of these fourth-order cumulants of
such states in the two-reservoir (each mode coupled to its own
thermal reservoir) and single-reservoir (two modes interacting
with the same thermal reservoir) models.

Very recently, a new criterion has been introduced to
detect the non-Gaussianity of a single-mode harmonic os-
cillator on the Wigner function and its effectiveness has
been verified by considering the evolution of non-Gaussian
pure states in a lossy Gaussian channel [29]. It has been
shown that the criterion works well, detecting quantum non-
Gaussianity in the nontrivial region of the noise parameters
where no negativity of Wigner function can be observed.
By following this line, this criteria can be extended to the
case of s-parametrized quasiprobability distributions such as
the Husimi Q function (s = −1). It has been proven that
Husimi Q function–based quantum criterion is often more
effective than a Wigner-function-based criteria in detecting
quantum non-Gaussianity of various kinds of non-Gaussian
states evolving in a lossy channel [30]. Now we briefly
review the differences among these above-mentioned degrees
of non-Gaussianity. An advantage of the Hilbert-Schmidt
distance and the quantum relative entropy is that they are
evaluated directly how different a non-Gaussian state is from
its Gaussian counterpart with the same covariance matrix
and the same vector. Hence they provide a useful avenue
for distinction of Gaussian and non-Gaussian states and then
are said to be measures of the state’s non-Gaussianity, but
unfortunately, these measures could not discriminate between
quantum non-Gaussian states and mixtures of Gaussian states.
For this purpose, another criterion of quantum non-Gaussianity
is introduced, whose main idea is to construct a Gaussian
convex hull: G = {ρ ∈ B(H)|ρ = ∫

dλp(λ)|ψG(λ)〉〈ψG(λ)|},
where B(H) is the set of bounded operators, p(λ) is a proper
probability distribution, and |ψG(λ) are pure Gaussian states.
For a single-mode case, the most general pure Gaussian
state can be written as |ψG(λ)〉 = D(β)S(ξ )|0〉, where D(β)
and S(ξ ) are, respectively, the displacement and squeezing
operators with the standard form presented in [31], |0〉 is the
vacuum state, β and ξ are arbitrary complex numbers, and
λ = {α,ξ}. According to Refs. [29] and [30], a quantum state
ρ is defined quantum non-Gaussian if and only if ρ /∈ G. We
shall stress that it essentially still belongs to a measure of the
state’s non-Gaussianity. However, in this paper our measure is
a completely different one. We characterize the departure of
the shape of a probability distribution of a quantum state from
Gaussian from the viewpoint of the morphological statistics.
It is thus a shape criterion.

The paper is organized as follows. In Sec. II we recall
the definition of the cumulants for quantum states through
the Wigner characteristic function and derive a formula of
the cumulants for multimode non-Gaussian states. Section III
gives the characteristic function of two-mode single-photon
squeezed Bell states and the corresponding nonzero fourth-
order cumulants. The dynamics of these cumulants in two

different noise models is presented in Sec. IV, and a summary
is given in Sec. V.

II. CUMULANTS OF QUANTUM STATES

Let us consider a system of N modes described by
mode annihilation operators âl and creation operators â+

l ,
l = 1,2, . . . ,N , obeying the commutation relation [âl ,â

+
m] =

δlm. For a bosonic CV system, it is convenient to encode
information in ρ by using the s-order characteristic function
defined as [32]

χ [ρ](ξ ) := exp

(
s

2
|ξ |2

)
Tr[ρD̂(ξ )], − 1 � s � 1, (1)

where D̂(ξ ) =
N⊗

l=1
D̂(ξl), with D̂(ξl) = exp(ξl â

+
l − ξ ∗

l âl) be-

ing the single-mode displacement operator and the complex
vector ξT = (ξ1,ξ

∗
1 , . . . ,ξN ,ξ ∗

N ) ∈ Cp. The values s = −1,0,1
correspond, respectively, to the Q function, the Wigner
function, and the P function. Here we make use of the Wigner
characteristic function, i.e., s = 0.

The characteristic function is often said to be the moment-
generating function, by which we can evaluate the normally
ordered moments of the field:〈

â
+m1
1 â

m2
1 · · · â+m2N−1

N â
m2N

N

〉
= ∂m1

∂(iξ ∗
1 )m1

∂m2

∂(iξ1)m2
· · ·

× ∂m2N−1

∂(iξ ∗
N )m2N−1

∂m2N

∂(iξN )m2N
χ [ρ](ξ )|ξ=0. (2)

Another approach to describe probability distribution is
based on the cumulant-generating function, which is defined
as the logarithm of the moment-generation function:


(ξ ) := ln{χ [ρ](ξ )}. (3)

Then the kth cumulant is defined by [33]

Ck = ∂k

∂ξ k

(ξ )|ξ=0. (4)

Lemma 1. The cumulant of a CV quantum state is a sum of
the cumulants of its Gaussian and non-Gaussian components.
For the higher-order cumulant, it is uniquely determined by
non-Gaussian components.

Proof. The characteristic function of any quantum state can
be expressed as in the following form [8,34]:

χ [ρ](ξ ) = f (ξ )χG(ξ )

= f (ξ ) exp

[
−1

2
ξT �T σ�ξ + iXT �ξ

]
, (5)

where the vector of mean values X ≡ X[ρ] and the covariance
matrix (CM) σ of a quantum state are, respectively, defined as
Xj = Tr[ρR̂j ] = 〈R̂j 〉 and σkj = Tr[ρ(R̂kR̂j + R̂j R̂k)]/2 −
XkXj = 1

2 〈{R̂k,R̂j }〉 − 〈R̂k〉〈R̂j 〉 with {A,B} = AB + BA,
where the vector of field quadrature operators R is de-
fined as R = (q̂1,p̂1, . . . ,q̂n,p̂n)T = (R1,R2, . . . ,R2N )T with
q̂k = 1√

2
(âk + â+

k ), p̂k = 1
i
√

2
(âk − â+

k ), and the commutation

relation given by [R̂j ,R̂k] = i�jk with �jk being the elements
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of the symplectic matrix � = i
n⊕

j=1
σ y , σ y being the y Pauli

matrix. We see that Eq. (5) is a more general expression
for continuous-variable states, especially for non-Gaussian
states. For instance, the number state |n〉 has the characteristic
function χ [|n〉〈n|](ξ ) = Ln(|ξ |2) exp(− 1

2 |ξ |2), with Ln being
the Laguerre polynomial of order n [31].

Then we can obtain the corresponding cumulant-generating
function as


(ξ ) = ln f (ξ ) + ln χG(ξ ). (6)

By the definition, the kth-order cumulant can be generated by
evaluating the kth derivative of 
(ξ ) at the origin,

Ck
l1l2...,l2N

= ∂k
(Z)

∂Z
l1
1 ∂Z

l2
2 · · · ∂Z

l2N

2N

∣∣∣∣
Z=0

= ∂k ln f (Z)

∂Z
l1
1 ∂Z

l2
2 · · · ∂Z

l2N

2N

∣∣∣∣
Z=0

+ ∂k ln χG(Z)

∂Z
l1
1 ∂Z

l2
2 · · · ∂Z

l2N

2N

∣∣∣∣
Z=0

= (
Ck

l1l2...,l2N

)
NG

+ (
Ck

l1l2...,l2N

)
G
, (7)

where to keep the exposition simple, we have written the
phase-space arguments in a compact vector form: Z =
(Z1,Z2, . . . ,Z2N−1,Z2N ) = (ξ1,ξ

∗
1 , . . . ,ξN ,ξ ∗

N ), k = l1 + l2 +
· · ·+l2N , l = (l1,l2, . . . ,l2N ), and m = (m1,m2, . . . ,m2N ).

Since all cumulants of order greater than two are zero for
the Gaussian function, the second term, (Ck

l1l2...,l2N
)G, in Eq. (7)

automatically vanishes. This ends the proof.
Lemma 2. To evaluate the cumulant of a CV quantum state,

we can expand the function f (Z) into a Taylor series about the
origin:

f (Z) = a0 +
∑

l

alZl +
∑
l,m

almZlZm +
∑
l,m,n

almnZlZmZn

+
∑

l,m,n,h

almnhZlZmZnZh + · · · , (8)

where almnh... are the coefficients in the Taylor series.
We perform the kth-order derivative of f (Z) with respect

to Z and obtain the cumulant of k order as

Ck =
∑

p

(−1)|p|−1(|p| − 1)!
∏
B∈p

G

⎛⎝∏
j∈B

Zj

⎞⎠, (9)

where the coefficients appearing in the function f (Z) are
denoted by G(

∏
j∈B

Zj ), e.g., al = G(Zl), alm = G(ZlZm),

almn = G(ZlZmZn), etc., and where p runs through the list
of all partitions of {1,2, . . . ,2N − 1,2N}, B runs through the
list of all blocks of the partition p, and |p| is the number of
parts in the partition.

More precisely, we can write the kth-order cumulant in an
explicit form,

Ck = (−1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

al 1 0 0 · · · 0

alm

(1
0

)
al 1 0 · · · 0

almn

(2
0

)
alm

(2
1

)
al 1 · · · 0

...
...

...
...

. . . 1

almn...k

(k−1
0

)
almn...k−1

(k−1
1

)
almn...k−2 · · · · · · (k−1

k−2

)
al

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (10)

where (nr ) = n!
(n−r)!r! is Newton’s binomial. �

Lemma 2 provides a good way to calculate the cumulant of a
CV quantum state, especially for the cumulant of higher order.
Once the function f (Z) is given, the high-order cumulants are
easily derived according to formulas (9) and (10). For example,
the third- and fourth-order cumulants of a CV quantum state
can be readily obtained as

C3
lmn = almn − alamn[3] + 2alaman, (11a)

C4
lmnh = almnh − alamnh[4] − almanh[3] + 2alamanh[6]

− x6alamanah, (11b)

where the number in the square bracket represents the number
of terms in the combination as the indices rotate, e.g., l → m,
m → n, etc. In a single-mode non-Gaussian state, we obtain
the third- and fourth-order cumulants by letting (l,m,n,h) ∈
(1,2) and the fourth-order cumulants by (l,m,n,h) ∈ (1,2,3,4),
respectively.

Lemma 3. The cumulant is additive for a multipartite
factorized product state.

Proof. We consider a multipartite factorized state in the

product form of ρ =
M⊗

j=1
ρj , whose characteristic function is

thus given by

χ [ρ](Z) = Tr

⎡⎣ M⊗
j=1

ρj D̂(Zj )

⎤⎦ =
M∏

j=1

χj [ρj ](Zj ). (12)

From Eq. (3), we can obtain the generating function of the
cumulant as


(Z) = ln

⎧⎨⎩
M∏

j=1

χj [ρj ](Zj )

⎫⎬⎭ =
M∑

j=1

ln {χj [ρj ](Zj )}. (13)

According to Lemma 1, we thus have

Ck
l1l2...,l2N

[ρ] =
M∑

j=1

Ck
l1l2...,l2N

[ρj ], (14)

which completed our proof. �
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It is well known that the cumulant satisfies homogeneity;
this scaling property is also shared by the cumulant we define.

Lemma 4 (Homogeneity). Let Z be a 2l-dimensional
complex vector with the kth-order cumulant. Then for any
constant λ, λZ has an the kth-order cumulant, which is given by

Ck(λZ) = λkCk(Z). (15)

Proof. To prove Lemma 4, we only need to modify the l-mode
displacement operator as

D̂(λZ) = exp

[
λ
∑

l

(Zlâ
+
l − Z∗

l âl)

]
. (16)

Its action on the annihilation and creation operators pro-
duces

D̂(λZ)âlD̂
+(λZ) = âl − λZl, (17a)

D̂(λZ)â+
l D̂+(λZ) = â+

l − λZ∗
l . (17b)

Thus, we have

χ [ρ](λZ) = f (λZ) exp

[
−1

2
λ2 ZT �T σ�Z + iλXT �Z

]
,

(18)

with

f (λZ) = a0 +
∑

l

λalZl +
∑
l,m

λ2almZlZm

+
∑
l,m,n

λ3almnZlZmZn

+
∑

l,m,n,h

λ4almnhZlRmZnZh + · · · . (19)

Repeating the same procedures as in Lemmas 1 and 2, we
arrive at the kth-order cumulant as

Ck
l1l2...,l2N

(λZ) = λkCk
l1l2...,l2N

(Z). (20)

One can see that it recovers Lemma 1 for the case of λ = 1.
Thus, the lemma is proven. �

It has been shown that the few lowest-order cumulants
have certain geometric meanings and characterize the peak
position, the width, the asymmetry, and the sharpness of a
probability distribution, respectively. On the other hand, they
can be used to judge whether a distribution is Gaussian or not.
As stated above, a Gaussian distribution exists for only the first-
and second-order cumulants, while the third-order cumulant
vanishes for any symmetric distribution. Therefore, the fourth-
order cumulant is a lowest-order indicator of characterizing
non-Gaussianity. By means of the cumulant language, we may
safely say that if a quantum state has a nonzero fourth-order
cumulant, then it is non-Gaussian. More specifically, with the
positive kurtosis it is called a super-Gaussian or platykurtotic,
and that with negative kurtosis it is called sub-Gaussian or
leptokurtotic.

III. CUMULANTS OF TWO-MODE SINGLE-PHOTON
SQUEEZED BELL STATES

In this section, we will use the fourth-order cumulant to
characterize the non-Gaussianity of a class of two-mode non-

Gaussian entangled states whose density matrix can be written
as

ρSBS = Ŝ12(r)|ψ〉BSBS〈ψ |Ŝ+
12(r), (21)

where Ŝ12(r) = exp{−râ+
1 â+

2 + râ1â2}, r ∈ C is the two-

mode squeezed operator, and |ψ〉BS = 1√
2
(|01〉 + eiϕ|10〉) are

the known Bell states. Such states are called two-mode
single-photon squeezed Bell states, which have been used
to implement continuous-variable quantum teleportation as a
non-Gaussian resource [1].

Using some simple algebra, we can obtain the resulting
characteristic function as

χSBS(ξ1,ξ2) = f (ξ1,ξ2) exp

[
−1

2
ξT �T σ SBS�ξ

]
, (22)

where ξT = (ξ1,ξ
∗
1 ,ξ2,ξ

∗
2 ) and the covariance matrix σ SBS is

given by

σ SBS = 1

2

⎛⎜⎝cosh(2r) 0 0 sinh(2r)
0 cosh(2r) sinh(2r) 0
0 sinh(2r) cosh(2r) 0

sinh(2r) 0 0 cosh(2r)

⎞⎟⎠,

(23)

and the function f (ξ1,ξ2) reads

f (ξ1,ξ2) = 1 − 1
2 cosh(2r)|ξ1|2 − 1

2 cosh(2r)|ξ2|2

− 1
4 sinh(2r)e−iϕξ 2

1 − 1
4 sinh(2r)eiϕξ ∗2

1

− 1
4 sinh(2r)eiϕξ 2

2 − 1
4 sinh(2r)e−iϕξ ∗2

2

− 1
2 sinh(2r)ξ1ξ2 − 1

2 sinh(2r)ξ ∗
1 ξ ∗

2

− 1
2 cosh(2r)e−iϕξ1ξ

∗
2 − 1

2 cosh(2r)eiϕξ ∗
1 ξ2. (24)

It is obvious to see that the function f (ξ1,ξ2) is quadratic,
and as a result, its moments of order greater than 2 vanish
and all odd cumulants are nullified. But it has nonvanishing
fourth-order cumulants, which are listed in Table I.

Let us now carefully analyze the non-Gaussianity of two-
mode single-photon squeezed Bell states from Table I. In the
limit of vanishing squeezing, r = 0, the two-mode single-
photon squeezed Bell state reduces to the known Bell state.
Thus the non-Gaussianity of the state is exactly equal to that
of the Bell state, whose nonzero fourth-order cumulants are
given by C4

111 = − 3
4 , C4

2200 = C4
0022 = C4

2002 = C4
0220 = − 1

2 ,
and C4

2101 = C4
1012 = C4

1210 = C4
0121 = − 1

2e−iϕ . For the case
of ϕ = 0, all the fourth-order cumulants of two-mode single-
photon squeezed Bell states are negative, showing that the
statistical distribution of measuring any physical observable
is sub-Gaussian, while for a case of ϕ = π , the fourth-order
cumulants may be positive or negative, depending on the
linear combination of â+

j and âj and thus, x̂+
j and p̂j . In

the limit of very large squeezing, the fourth-order cumulants
are proportional to e4r , implying that squeezing the Bell state
can result in a rapid increase of the non-Gaussianity, or the
cumulant-based non-Gaussianity of the state can be enhanced
by a squeezing operation. It should be stressed that this result is
completely inconsistent with previous investigations [6–8,29]
where the non-Gaussianity has been shown to be invariant
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TABLE I. Fourth-order cumulants of two-mode one-photon
squeezed Bell states. A = cosh2(2r), B = sinh2(2r), D = sinh(4r).
The number m is the order of the derivative and the {4} denotes the
fourth order of the derivative with respective to one of four variables.

ξ1 ξ ∗
1 ξ2 ξ ∗

2 C4
lmnh ξ1 ξ ∗

1 ξ2 ξ ∗
2 C4

lmnh

1 1 1 1 − 3
4 A {4} − 3

16 B

3 1 0 0 − 3
16 De−iϕ 2 1 1 0 − 5

16 D

3 0 1 0 − 3
8 Be−iϕ 2 1 0 1 − 4A+B

8 e−iϕ

3 0 0 1 − 3
16 De−2iϕ 2 0 1 1 − 5

16 De−iϕ

1 3 0 0 − 3
16 Deiϕ 1 2 1 0 − 4A+B

8 eiϕ

0 3 1 0 − 3
16 De2iϕ 1 2 0 1 − 5

16 D

0 3 0 1 − 3
8 Beiϕ 1 1 2 0 − 5

16 Deiϕ

1 0 3 0 − 3
8 Beiϕ 1 0 2 1 − 5

16 D

0 1 3 0 − 3
16 De2iϕ 1 1 0 2 − 5

16 De−iϕ

0 0 3 1 − 3
16 Deiϕ 1 0 1 2 − 4A+B

8 e−iϕ

1 0 0 3 − 3
16 De−2iϕ 0 2 1 1 − 5

16 Deiϕ

0 1 0 3 − 3
8 Be−iϕ 0 1 1 2 − 5

16 D

0 0 1 3 − 3
16 De−iϕ 0 1 2 1 − 4A+B

8 eiϕ

2 2 0 0 − 8A+B

16 2 0 2 0 − 9
16 B

2 0 0 2 − 8A+B

16 e−2iϕ 0 2 2 0 − 8A+B

16 e2iϕ

0 2 0 2 − 9
16 B 0 0 2 2 − 8A+B

16

under unitary Gaussian operations. It can be explained by
the fact that their measures are closely related with the sym-
plectic eigenvalues, which are invariant under the symplectic
transformation associated with the Gaussian operations on
the covariance matrix. So the squeezing operation acts as a
Gaussian unitary operation that does not change the Gaussian
character of a quantum state. However, in our case, we
dealt with the non-Gaussianity of a quantum state in light
of the statistical nature of its probability density function. In
particular, we apply the fourth-order cumulant to characterize
the departure of the shape of the probability distribution
from Gaussian and then the squeezing operation modifies
the shape of the probability distribution of the quantum
states. Now we give discussions qualitatively on this topic.
Let UG be a Gaussian map. Then the density operation is
transformed as ρ 	→ ρ̃ = UGρU+

G. The characteristic function
of the new state ρ̃ is given by χ [ρ̃](ξ ) = Tr[UGρU+

GD̂(ξ )] =
Tr[ρD̂(Sξ )] = χ (Sξ ), where the symplectic transformation
S ∈ Sp(2n,R) = {S|S�ST = �}. It is obvious from Lemma 4
that the squeezing operations have an effect on the cumulants
and then can alter the shape of the distribution. In addition,
some schemes for detecting such types of moments have been
proposed by balanced homodyne [35] or homodyne correlation
techniques [36–38]. Since the cumulants are related closely to
the moments, this renders it possible to experimentally check
the cumulant-based non-Gaussianity of two-mode single-
photon squeezed Bell states.

IV. DYNAMICS OF FOURTH-ORDER CUMULANTS
UNDER NOISY ENVIRONMENTS

It is clear that the environment-induced decoherence is
one of the main obstacles to any practical implementation of

quantum information processing since it can destroy the quan-
tum nature of a physical system and leads to an irreversible
loss of information. Therefore, we will analyze the dynamics of
fourth-order cumulants of two-mode single-photon squeezed
Bell states under the influence of environment. Without loss of
generality, we consider the two types of decoherence models.
One is that each of the two modes is coupled to its own
thermal environment, i.e., a two-reservoir model, and another
is composed of the two modes interacting with a common
thermal reservoir (model B), i.e., a common-reservoir model.

A. Two-reservoir model

In the first model, we consider a system of two nonin-
teracting quantum bosonic fields (e.g., two cavities or two
harmonic oscillators), each of them coupled to its own thermal
environment. For simplicity, we assume that the energy decay
rates γ of the two modes into their own environments are the
same and that each environment is taken to be initially in a
thermal state with the thermal mean-occupation number n̄ =
[exp(βω0) − 1]−1. Under the Born-Markov approximation and
tracing over the bath variables, we obtain the master equation
describing the evolution of the reduced density matrix operator
of the system, in the interaction picture, as [39,40]

d

dt
ρ =

∑
j=1,2

γ

2
{n̄L[â+

j ]ρ + (n̄ + 1)L[âj ]ρ}, (25)

where the Lindblad superoperator is defined as L[Ô]ρ =
2ÔρÔ+ − Ô+Ôρ − ρÔ+Ô.

It is much more convenient to solve the master equation (25)
by using the characteristic function method. With the help
of the standard operator correspondence, we can transform
the master equation (25) into a Fokker-Planck equation for a
characteristic function, which is given by

∂

∂t
χ (ξ1,ξ2; t) = − γ

2

∑
j=1,2

[
(1 + 2n̄)|ξj |2

+ ξj

∂

∂ξj

+ ξ ∗
j

∂

∂ξ ∗
j

]
χ (ξ1,ξ2; t), (26)

whose solution is given by [41]

χ (ξ1,ξ2; t) = χ (ξ1e
− γ

2 t ,ξ2e
− γ

2 t ; 0)

× exp

⎡⎣−
∑
j=1,2

(
n̄ + 1

2

)
(1 − e−γ t )|ξj |2

⎤⎦, (27)

where χ (ξ1,ξ2; 0) is the characteristic function at time t = 0.
Assuming the initial state of the system to be Eq. (21) and

using Eqs. (6), (10), and (27), we can derive the input-output
relationship of the fourth-order cumulants as

C4
lmnk(t) = e−2γ tC4

lmnk(0), (28)

where C4
lmnk(0) denotes the fourth-order cumulant at time

t = 0. We see clearly from Eq. (28) that in this two-reservoir
model, the fourth-order cumulant decreases exponentially
and completely disappears in the long-time limit, implying
that the corresponding non-Gaussianity is very fragile and
difficult to maintain. The evolution dynamics of non-Gaussian
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cumulants under consideration is consistent with the Gaussian
nature of such a noisy model, which leads in general to
losses and decoherence of a quantum state. This is because
in the independent noisy model, the local environments are
uncorrelated and then do not induce the mutual interaction
among the subsystems, thereby making a physical systems
transition from quantum to classical behavior. For example,
when transmitting through the Gaussian channel, the negativity
of a Wigner function of the non-Gaussian states gradually
reduces and even completely vanishes [42], while the entangle-
ment [43] and the Gaussian quantum discord [44] of bipartite
Gaussian states monotonically decrease. On the other hand,
such a noisy Gaussian channel could be regarded as a bosonic
Gaussian map that transforms Gaussian input states into
Gaussian output ones. Namely, the Gaussian character of the
initial states remains unchanged under the Gaussian channels.
Nevertheless, our result shows that the local Gaussian map
can transform the initial non-Gaussian states into Gaussian
ones in the long-time limit. It is not difficult to understand
from Eq. (27) together with Eq. (24) that in the long-
time limit, the two-mode single-photon squeezed Bell state
becomes a product of two single-mode thermal states [45],

i.e., χ (ξ1,ξ2; ∞) = exp[− ∑
j=1,2

(n̄ + 1
2 )|ξj |2], which belongs to

a typical kind of Gaussian state, and thus its non-Gaussianity
completely vanishes.

Our approach can be easily generalized to the case of
an n-mode system coupled to n identical local thermal
environments. According to Lemma 4 and repeating the
same procedure as earlier, we can obtain the input-output
relationship of the kth-order cumulants for any quantum state
as

Ck
l1l2...,l2N

(t) = e− kγ t

2 Ck
l1l2...,l2N

(0). (29)

Obviously, in the long-time limit, we have Ck
l1l2...,l2N

(t) → 0,
namely, driving any continuous-variable quantum state into a

Gaussian one with the help of a local thermal environment.
Therefore, the decoherence induced by the local thermal
environment plays the role of a destructive mechanism that
washes out quantum non-Gaussianity of a quantum state.

B. Common-reservoir model

We consider the dissipative evolution of two noninteracting
single-mode bosonic fields coupled to a common finite-
temperature reservoir modeled by a continuum of oscillators.
Under the Born-Markov approximation and in the interaction
picture, the master equation governing the dynamical process
is given by

d

dt
ρ =

∑
l,m=1,2

[
γ

2
(1 + n̄)(2âlρâ+

m − â+
l âmρ − ρâ+

l âm)

+ γ

2
n̄(2â+

l ρâm − âl â
+
mρ − ρâl â

+
m)

]
, (30)

where γ is the energy decay of the boson system and n̄ =
[exp(�ω/kBT )] is the mean thermal photon numbers of the
thermal environment at temperature T . kB is the Boltzmann’s
constant. We should note that the terms l = m in Eq. (30)
describe the individual dissipations of each mode due to
the environment, while the other terms denote the couplings
between the modes induced by the common bath.

By using the same strategy as above, we can obtain
the corresponding Fokker-Planck equation for characteristic
function as

∂

∂t
χ (ξ1,ξ2; t) = −γ

2

∑
l,m=1,2

[
(1 + 2n̄)ξlξ

∗
m + ξl

∂

∂ξm

+ ξ ∗
l

∂

∂ξ ∗
m

]
χ (ξ1,ξ2; t). (31)

To solve Eq. (30), we write the initial state of the physical
system in the form of the following:

χ (ξ1,ξ2; 0) = Z
[
F0 + F1|ξ1|2 + F2|ξ2|2 + F3ξ

2
1 + F ∗

3 ξ ∗2
1 + F4ξ

2
2 + F ∗

4 ξ ∗2
2 + F5ξ1ξ2 + F ∗

5 ξ ∗
1 ξ ∗

2 + F6ξ1ξ
∗
2 + F ∗

6 ξ ∗
1 ξ2

]
× exp

[−(A1|ξ1|2 + A2|ξ2|2 + A3ξ
2
1 + A∗

3ξ
∗2
1 + A4ξ

2
2 + A∗

4ξ
∗2
2 + A5ξ1ξ2 + A∗

5ξ
∗
1 ξ ∗

2 + A6ξ1ξ
∗
2 + A∗

6ξ
∗
1 ξ2

)]
, (32)

where Z is a normalization constant and the coefficients Fj (or Aj ) (j = 0,1,2, · · · ,6) are determined by the initial state.
Following the same line in Ref. [46] and using the identity

exp

(
γ tx

∂

∂x

)
(xneαx) =

∞∑
l=0

∞∑
m=0

(γ t)lαm

l!m!

(
x

∂

∂x

)l

xm+n =
∞∑
l=0

∞∑
m=0

(γ t)lαm

l!m!
(m + n)lxm+n

=
∞∑

m=0

αm

m!
xm+n exp [(m + n)γ t] = (xeγ t )n exp(αxeγ t ), (33)

we can calculate the characteristic function for the evolved state to be

χ (ξ1,ξ2; t) =Zf (ξ1,ξ2; t) exp
[− 1

2ξT �T σ SBS(t)�ξ
]
, (34)

where the time-dependent covariance matrix is given by

σ SBS(t) = 1

2

⎛⎜⎜⎜⎝
4A1(t) + n̄(t) 8A3(t) 4A6(t) + n̄(t) 4A5(t)

8A∗
3(t) 4A1(t) + n̄(t) 4A∗

5(t) 4A∗
6(t) + n̄(t)

4A∗
6(t) + n̄(t) 4A5(t) 4A2(t) + n̄(t) 8A4(t)
4A∗

5(t) 4A6(t) + n̄(t) 8A∗
4(t) 4A2(t) + n̄(t)

⎞⎟⎟⎟⎠, (35)
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with n̄(t) = (1 + 2n̄)(1 − e−2γ t ) and the function f (ξ1,ξ2; t) is given by

f (ξ1,ξ2; t) = F0 + F1(t)|ξ1|2 + F2(t)|ξ2|2 + F3(t)ξ 2
1 + F ∗

3 (t)ξ ∗2
1 + F4(t)ξ 2

2 + F ∗
4 (t)ξ ∗2

2

+F5(t)ξ1ξ2 + F ∗
5 (t)ξ ∗

1 ξ ∗
2 + F6(t)ξ1ξ

∗
2 + F ∗

6 (t)ξ ∗
1 ξ2, (36)

with the time-dependent coefficients Fj (t) given by

F1(t) = 1
4 [F1(1 + e−γ t/2)2 + F2(1 − e−γ t/2)2 + 2Re(F6)(e−γ t − 1)], (37a)

F2(t) = 1
4 [F1(1 − e−γ t/2)2 + F2(1 + e−γ t/2)2 + 2Re(F6)(e−γ t − 1)], (37b)

F3(t) = 1
4 [F3(1 + e−γ t/2)2 + F4(1 − e−γ t/2)2 + F5(e−γ t − 1)], (37c)

F4(t) = 1
4 [F3(1 − e−γ t/2)2 + F4(1 + e−γ t/2)2 + F5(e−γ t − 1)], (37d)

F5(t) = 1
2 [(F3 + F4)(e−γ t − 1) + F5(e−γ t + 1)], (37e)

F6(t) = 1
4 [(F1 + F2)(e−γ t − 1) + F6(1 + e−γ t/2)2 + F ∗

6 (e−γ t/2 − 1)2], (37f)

where the coefficients F ∗
j (t) can be obtained by conjugation of

Fj (t) and the other types of time-dependent coefficients Aj (t)
can be obtained from the coefficients Fj (t) by substituting Fn

with An,(n = 1,2,3, . . . ,6).
Now we analyze the time evolution the fourth-order

cumulants of two-mode single-photon squeezed Bell states
in the common thermal environment. First, considering the
case of ϕ = 0, i.e., |ψ〉SBS = Ŝ12(r) 1√

2
(|01〉 + |10〉), we have

F1(t) = F2(t) = − 1
2 cosh(2r)e−γ t , (38a)

F3(t) = F4(t) = − 1
4 sinh(2r)e−γ t , (38b)

F5(t) = − 1
2 sinh(2r)e−γ t , (38c)

F6(t) = 1
2 cosh(2r)e−γ t . (38d)

After some calculation, we can obtain the same dynamic
evolution of the fourth-order cumulants as in the previous
case:

C4
lmnk(t) = e−2γ tC4

lmnk(0), (39)

which shows that interacting with the common thermal envi-
ronment, the fourth-order cumulants of such states decrease
exponentially and are close to zero in the long-time limit;
moreover, the cumulant-based non-Gaussianity vanishes.

Next, we study the case of ϕ = π , i.e., |ψ〉SBS =
Ŝ12(r) 1√

2
(|01〉 − |10〉), and call it a two-mode squeezed singlet

Bell state. In this case, the coefficients in Eq. (37) become

F1(t) = F2(t) = −F6(t) = − 1
2 cosh(2r), (40a)

F3(t) = F4(t) = − 1
2F5(t) = 1

4 sinh(2r). (40b)

From Eqs. (10) and (11), we can obtain a simple and important
input-output relationship of the cumulants for such states as

C4
lmnk(t) = C4

lmnk(0). (41)

It implies that the non-Gaussianity of such states, characterized
by the fourth-order cumulant, is insensitive to the common
thermal noise and is forever frozen at its initial value, showing
the robustness of quantum non-Gaussianity. This fact can

be understood from two aspects. One is that the interaction
with the common environment will cause the cooperative
decoherence for the noninteracting subsystems [47], thus
allowing the existence of decoherence-free states [48] in which
no decoherence occurs at all, even when these subsystems
interact with the environment, while the independent reservoir
is not, just as studied in Ref. [49]. Another is that as can
be seen from Eq. (40) that the invariance of a two-mode
squeezed singlet Bell state under a thermal channel takes root
in its singlet Bell state, regardless of squeezing. It has been
shown that such a singlet Bell state is invariant to any type
of N -lateral unitary operation [50] and a common Markovian
environment [51]. Therefore, in our case the non-Gaussianity
of a two-mode squeezed singlet Bell state remains intact, in
spite of the interaction with the environment.

As is well known, it is impossible to completely isolate
a quantum signal from its surrounding environment during
transmission, processing, and storage processes. So a lot of
effort has been devoted to studying the input-output problems
of an open quantum system, especially for the explicit input-
output formalisms for some interesting physical quantities
during the past decade years. For example, the input-output
theories for lossy multilayer dielectric plates [52], optical
cavity [53], and optomechanical systems [54] have been
developed. The input-output formula of the covariance matrix
of single-mode Gaussian state was proposed in the squeezed
thermal environment with time-independent damping rate
[45,55] and time-dependent damping rate [56]. The invariant
quantum input-output transformations in phase space and in
Hilbert space were introduced by Luis [57]. The approach
can be applicable in some quantum processes such as ampli-
fication and losses. The dynamical equation of entanglement,
quantified by the concurrence, was developed in a system of
two two-level atoms located inside two spatially separated
cavities caused by vacuum fluctuations [58] and of arbitrary
bipartite systems with one part exposed to the generalized
amplitude damping channel [59]. Therefore, the theory here
developed should contribute to the future development of
quantum computation and quantum communication using
non-Gaussian continuous-variable entanglement.
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V. CONCLUSIONS

In summary, we have exploited the cumulant theory to char-
acterize the quantum non-Gaussian character of multipartite
continuous-variable bosonic states and have presented analyt-
ical formula for the cumulant-based non-Gaussianity. We have
investigated the non-Gaussianity of a special family of non-
Gaussian two-mode entangled states: two-mode single-photon
squeezed Bell states, based on the fourth-order cumulant, the
lowest-order indicator of non-Gaussianity. It has been shown
that the fourth-order cumulant, and thus the non-Gaussianity,
is solely dominated by the squeezing parameter. Furthermore,
we have examined the dynamics of fourth-order cumulants of
such states in two different classes of decoherence models. Our
analysis shows that the non-Gaussianity rapidly vanishes for
two-mode single-photon squeezed Bell states considered here
evolving in a local thermal bath, whereas in a common thermal
bath, non-Gaussianity of some states remains invariant. We
emphasize that unlike other measures of non-Gaussianity, the

cumulant-based non-Gaussianity can be directly calculated
from the non-Gaussian parts of Wigner characteristic function
of a quantum state, thus greatly reducing the computation. We
therefore anticipate that it provides an exciting possibility for
investigating the dynamics of the non-Gaussianity of other
continuous-variable n-mode nonclassical states in general
Markov and non-Markov noisy channels using our approach.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China under Grants No. 11174100, No.
11474120, and No. 11374264, the Key Project Foundation
of Hunan Provincial Education Department, China, under
Grant No. 14A114, the Science Research Fund of Education
Department of Hunan Province under Grant No. 14C0896, and
the Innovation Plan for Graduate Students at the University of
Jiangsu Province under Grant No. CXLX13_80(133).

[1] F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys.
Rev. A 76, 022301 (2007).

[2] P. T. Cochrane, T. C. Ralph, and G. J. Milburn, Phys. Rev. A 65,
062306 (2002); S. Olivares, M. G. A. Paris, and R. Bonifacio,
ibid. 67, 032314 (2003).

[3] J. Niset, Phys. Rev. Lett. 102, 120501 (2009).
[4] E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y.

Yamamoto, Phys. Rev. Lett. 92, 113602 (2004).
[5] J. Heersink, C. Marquardt, R. Dong, R. Filip, S. Lorenz, G.

Leuchs, and U. L. Andersen, Phys. Rev. Lett. 96, 253601 (2006).
[6] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A

76, 042327 (2007).
[7] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A

78, 060303(R) (2008).
[8] M. G. Genoni and M. G. A. Paris, Phys. Rev. A 82, 052341

(2010).
[9] P. Marian and T. A. Marian, Phys. Rev. A 88, 012322 (2013).

[10] I. Ghiu, P. Marian, and T. A. Marian, Phys. Scr. T153, 014028
(2013).

[11] P. Marian, I. Ghiu, and T. A. Marian, Phys. Rev. A 88, 012316
(2013).

[12] M. Barbieri, N. Spagnolo, M. G. Genoni, F. Ferreyrol, R.
Blandino, M. G. A. Paris, P. Grangier, and R. Tualle-Brouri,
Phys. Rev. A 82, 063833 (2010).

[13] A. Allevi, S. Olivares, and M. Bondani, Opt. Express 20, 24850
(2012).

[14] T. C. Reluga, Can. Appl. Math. Q. 17, 387 (2009).
[15] J. F. Cardoso and A. Souloumiac, IEE Proc. F. 140, 362 (1993);

J. F. Cardoso, Neural Comput. 11, 157 (1999).
[16] R. S. Tsay, Analysis of Financial Time Series (John Wiley

and Sons, Inc., New York, 2010); S. Dudukovic, J. Finance
Accountancy 17, 80 (2014).

[17] H. D. Ursell, Proc. Cambridge Philos. Soc. 23, 685 (1927);
P. Hanggi and P. Talkner, J. Stat. Phys. 22, 65 (1980); W. Cai,
M. Xu, and R. R. Alfano, Phys. Rev. E 71, 041202 (2005).

[18] D. E. Koppel, J. Chem. Phys. 57, 4814 (1972).
[19] R. Schack and A. Schenzle, Phys. Rev. A 41, 3847 (1990).

[20] E. Schmidt, L. Knoll, and D. G. Welsch, Phys. Rev. A 59, 2442
(1999).

[21] D. L. Zhou, B. Zeng, Z. Xu, and L. You, Phys. Rev. A 74, 052110
(2006).

[22] T. Juhász and D. A. Mazziotti, J. Chem. Phys. 125, 174105
(2006); J. T. Skolnik and D. A. Mazziotti, Phys. Rev. A 88,
032517 (2013).

[23] A. Bednorz and W. Belzig, Phys. Rev. B 83, 125304 (2011).
[24] L. Albano Farias and J. Stephany, Phys. Rev. A 82, 062322

(2010).
[25] B. Dubost, M. Koschorreck, M. Napolitano, N. Behbood,

R. J. Sewell, and M. W. Mitchell, Phys. Rev. Lett. 108, 183602
(2012).

[26] M. K. Olsen and J. F. Corney, Phys. Rev. A 87, 033839 (2013).
[27] J. F. Corney and M. K. Olsen, Phys. Rev. A 91, 023824 (2015).
[28] J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett.

92, 153601 (2004).
[29] M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim,

and M. G. A. Paris, Phys. Rev. A 87, 062104 (2013).
[30] C. Hughes, M. G. Genoni, T. Tufarelli, M. G. A. Paris, and

M. S. Kim, Phys. Rev. A 90, 013810 (2014).
[31] S. M. Barnett and P. M. Radmore, Methods in Theoretical

Quantum Optics (Oxford University Press, Oxford, 1997).
[32] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).
[33] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics

(Griffin, London, 1969).
[34] G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A 73,

032345 (2006).
[35] A. J. Ferris, M. K. Olsen, E. G. Cavalcanti, and M. J. Davis,

Phys. Rev. A 78, 060104(R) (2008).
[36] W. Vogel, Phys. Rev. A 51, 4160 (1995).
[37] T. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002).
[38] E. V. Shchukin and W. Vogel, Phys. Rev. A 72, 043808

(2005).
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