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Out-of-equilibrium open quantum systems: A comparison of approximate quantum master
equation approaches with exact results
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We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an
open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension
and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME
can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying
the N = 2 case, we show that RQME gives results which agree with exact analytical results for steady-state
properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison,
the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed
justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in
out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics
of two-point correlation functions. These results explicitly show the approach to steady state and thermalization.
These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot
experiments.
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I. INTRODUCTION

Understanding out-of-equilibrium quantum systems, both
bosonic and fermionic, has been of great experimental and
theoretical interest recently. Such open quantum systems
have been realized both in the bosonic case (experiments
on cavity-QED arrays [1–4], cold atoms [5,6], cavity op-
tomechanics [7,8]) and in the fermionic case (nonequilibrium
transport in coupled quantum dots [1,9–12], cold atoms [13]).
A typical setup of interest (see Fig. 1) is a system of a small
number of bosonic (fermionic) degrees of freedom coupled to a
bosonic (fermionic) bath or environment composed of a large
number of degrees of freedom. The general case can be defined
as a scenario in which each degree of freedom of the subsystem
is coupled to a bath characterized by a temperature T = 1/β

and a chemical potential μ. New cutting-edge technologies
available recently for measuring physical quantities such as
occupation number, currents, and correlations in such systems
make it of paramount importance to develop an approach that
produces accurate results. Additionally, these open quantum
systems are widely tunable, thereby providing a large window
of parameters to test the validity of different approaches.

One of the most commonly used frameworks in the study
of open quantum systems in the limit of weak system-bath
coupling is the quantum master equation (QME) method,
where one writes a time-evolution equation for the reduced
density matrix ρ of the system. Two QMEs that are popular
in the literature are the Redfield [14] and the Lindblad equa-
tions [15,16]. The Redfield equations (RQME) are obtained
under the so-called Born-Markov approximation (see below).
After further approximations and depending on the nature
of these, we get either the local coordinate basis (site-basis)
Lindblad QME (LLQME) or the eigenfunction basis Lindblad
QME (ELQME). An advantage of the Lindblad equations is
that they have been proven to preserve positivity of ρ. Hence,

they are widely used in the literature [17–29]. However, both
Lindblad equations are known to have limitations. The local-
basis Lindblad does not give the correct thermalization [27,28]
for noninteracting bosons or fermions, while the eigenbasis
Lindblad gives zero particle current inside the system even in
the nonequilibrium steady state (NESS) [27,29].

The RQME provides an alternative. It has been previously
used to find NESS properties in open quantum harmonic
chains, spin chains, and fermionic lattices [30–38]. RQME
is known to give thermalization but is more difficult to solve
both numerically and analytically. Also, it does not guarantee
the complete positivity of the system density matrix at all
times. This may lead to various subtle pathologies depending
on initial conditions, as shown in some recent works [39,40].
The Lindblad equations, on the other hand, are free from these
pathologies.

Because of such inherent pathologies and limitations
stemming from the approximations, it is important to check
the performance of the approximate QMEs against exact
results. Results from RQME, Lindblad QMEs, and exact
calculations have recently been compared for a single oscil-
lator in NESS [41] and for a two-site bosonic problem in
equilibrium [42]. To our knowledge, rigorous checks have not
been performed for multiple sites in nonequilibrium.

In this paper, we ask the question whether adopting RQME
to go beyond the limitations of the Lindblad methods in
nonequilibrium systems is justified. To this end, first, for
an out-of-equilibrium system of noninteracting bosons or
fermions in an arbitrary lattice of N sites in any dimension, we
derive a closed set of linear differential equations for two-point
correlation functions from RQME. Such a closed set of linear
differential equations can be easily solved numerically. This
therefore gives a numerical way to compute physical results
for such out-of-equilibrium systems from RQME. Next, to
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FIG. 1. A schematic of the setup we consider. We have a system of
N lattice sites with noninteracting particles on them. Each site of the
system is coupled to its respective bath of a chosen temperature and
chemical potential. Baths out of equilibrium can facilitate transport.
The top diagram is general for the bosonic or fermionic case, and
such situations have been realized experimentally in setups such as
those given in the middle and bottom diagrams.

check the validity of such solutions, we compute the physical
quantities of interest from RQME for a system of two bosonic
or fermionic modes connected to two baths at different
temperatures and chemical potentials (i.e., out of equilibrium)
and compare them against exact results obtained from other
open-system approaches, such as the quantum Langevin
method (QLE), where exact equations for system degrees of
freedom admit the form of an effective generalized Langevin
equation, and the equation-of-motion (EOM) method [43–46].
We find that RQME indeed reproduces the exact results quite
accurately. We also provide closed-form analytical results for
out-of-equilibrium time dynamics of two-point correlation
functions for the two-site problem. Throughout the paper, � is
taken to be unity.

The plan of the paper is as follows. In Sec. II we define the
general model and give a derivation of the Redfield QME. In
Sec. III we consider a two-site example and compare results
obtained from different QMEs with exact results. Finally, we
summarize our results in Sec. IV.

II. THE MODEL AND THE REDFIELD QME (RQME)

A. Definition of the model

We consider noninteracting bosonic (fermionic) particles
on a lattice of N sites in arbitrary dimension and of arbitrary
geometry where each site is coupled to bosonic (fermionic)
baths. The bath Hamiltonian ĤB and the coupling between
system and baths ĤSB are taken to be bilinear. The full

Hamiltonian thus takes the form

Ĥ = ĤS + ĤB + ĤSB,

ĤS =
N∑

�=1

H
(S)
�m â

†
�âm, ĤB =

N∑
�=1

∞∑
r=1

��
rB̂

�†
r B̂�

r , (1)

ĤSB = ε

N∑
�=1

∑
r

(
κ�r B̂

�†
r â� + κ∗

�r â
†
�B̂

�
r

)
,

where H (S) is a Hermitian matrix and â� corresponds to
bosonic (fermionic) annihilation operators defined on the �th
lattice point of the system and B̂�

r corresponds to those of baths
attached to the �th point. The baths have infinite degrees of
freedom. ε is a parameter that controls system-bath coupling
and has dimensions of energy, so that {κ�r} are dimensionless
and O(1). We assume that, initially, each of the � baths is
at thermal equilibrium at its own inverse temperature β� and
chemical potential μ�, and there is no coupling between system
and baths. Thus, the initial bath correlation functions satisfy
the thermal properties:〈

B̂�
r

〉 = 0,
〈
B̂�†

r B̂�
s

〉
B

= n�

(
��

r

)
δrs, (2)

where n�(ω) = [eβ�(ω−μ�) ± 1]−1 is the fermionic or bosonic
distribution function. We also introduce the bath spectral
functions:

J�(ω) = 2π
∑

r

| κ�r |2 δ
(
ω − ��

r

)
. (3)

B. Redfield QME

In the Redfield approach, one assumes a weak-system-bath-
coupling limit. Performing the Born-Markov approximation
leads to the standard Redfield equation [47,48]. For bilinear
system-bath coupling ĤSB = ∑

� Ŝ�B̂�, where Ŝ� operates on
the system and B̂� operates on the bath, with system-bath
coupling being turned on at time t = 0, we have the master
equation

∂ρI

∂t
= −

∑
�,m

∫ t

0
dt ′

{[
ŜI

� (t),ŜI
m(t ′)ρI (t)

]〈
B̂I

� (t)B̂I
m(t ′)

〉
B

+ [
ρI (t)ŜI

m(t ′),ŜI
� (t)

]〈
B̂I

m(t ′)B̂I
� (t)

〉
B

}
, (4)

where we use the interaction representation ÔI (t) =
ei(ĤS+ĤB )t Ôe−i(ĤS+ĤB )t and 〈· · · 〉B refers to the average taken
only with respect to the bath. In order to obtain the explicit
QME for our model, it is convenient to go to the eigenbasis
of the system Hamiltonian. Let c be the unitary matrix which
diagonalizes H (S), i.e.,

c†H (S)c = ω(D), (5)

where c†c = I and ω(D) is a diagonal matrix with elements
ων . Then we also define new operators {Aα} through the
transformation

â� =
N∑

α=1

c�αÂα. (6)

Thus, Âα is the annihilation operator for the αth eigenmode
with energy ωα . For RQME to be valid, we choose ε � {ωα}.
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After some tedious algebra (see the Appendix), we obtain our QME for the reduced density matrix ρ of the system:

∂ρ

∂t
= i[ρ,HS] − ε2

N∑
α,ν=1

∫
dω

π

[∫ ∞

0
dτei(ω−ων )τL(Â†

α,Âν ; ω)ρ + H.c.

]
,

L(Â†
α,Âν ; ω)ρ = [fαν(ω) ∓ Fαν(ω)][Â†

α,Âνρ] + Fαν(ω)[ρÂν,Â
†
α],

fαν(ω) =
N∑

�=1

c∗
�αc�ν

J�(ω)

2
, Fαν(ω) =

N∑
�=1

c∗
�αc�ν

J�(ω)n�(ω)

2
. (7)

Here the integration over ω is over all bath energy levels.
Also we have taken observation times t 	 τB , where τB is
the characteristic relaxation time scale of the bath. For baths
with wide bandwidth and at low temperature, τB ∼ β (see the
Appendix). A similar RQME was derived in Refs. [30,31] for
slightly different systems.

C. Equations for correlation functions

We note that it is possible to obtain closed time-dependent
equations for the full set of two-point correlations Cαν(t) =
Tr[ρ(t)Â†

αÂν]. The evolution equation for Cαν(t) as obtained
from the QME is

dCαν

dt
= iωαCαν(t) + ε2

[
Fνα(ωα) + iF�

να(ωα)

−
N∑

σ=1

Cασ (t)vνσ

]
+ (α ↔ ν)†,

vαν = fαν(ων) + if �
αν(ων), (8)

with f �
αν(ω) = P

∫
dω′fαν (ω′)
π(ω−ω′) , F�

αν(ω) = P
∫

dω′Fαν (ω′)
π(ω−ω′) , where

P denotes principal value.
The Redfield equation is, in general, quite difficult to solve.

That is one of the main reasons for reduction of the Redfield
equation to Lindblad forms, for which various numerical
techniques are available. However, note that Eq. (8) forms
a closed set of linear differential equations which can be easily
solved numerically. Various physical quantities of interest such
as occupation density and particle current can be obtained from
these correlation functions. The main prerequisite for solving
Eq. (8) is diagonalization of the system Hamiltonian to go
to the eigenbasis. For a noninteracting bosonic or fermionic
system of N sites in arbitrary lattices, this only requires
diagonalization of the N × N matrix H (S). If there are no
further symmetries in the system, one needs all the N2 two-
point correlation functions to close the set of linear differential
equations and hence needs to deal with N2 × N2 matrices.
Thus, Eq. (8) gives a numerical way to directly calculate
time dynamics of out-of-equilibrium two-point correlation
functions in an arbitrary system of noninteracting particles
in a lattice. In the rest of the paper we will test the validity of
solutions of Eq. (8).

III. N = 2 CASE: COMPARISON BETWEEN QME
AND EXACT RESULTS

The solution of Eq. (8) gives two-point correlation functions
for the N -site noninteracting bosons or fermions in nonequlib-
rium in any dimension. We propose checking the validity of
such solutions. To do so, we now go to a specific simple
problem with N = 2 sites and check how well Eq. (8) does
when compared to exact results.

We consider the following specific two-site system coupled
to baths which are one-dimensional chains:

ĤS = ω0(â†
1â1 + â

†
2â2) + g(â†

1â2 + â
†
2â1),

Ĥ(�)
B = tB

( ∞∑
s=1

b̂�†
s b̂�

s+1 + H.c.

)
, ĤB = Ĥ(1)

B + Ĥ(2)
B , (9)

ĤSB = εγ1
(
â
†
1b̂

1
1 + H.c.

) + εγ2
(
â
†
2b̂

2
1 + H.c.

)
,

where the operators are either all bosonic or all fermionic
and b̂�

s is the annihilation operator of the sth bath site of
the �th bath. The eigenmodes of the system are given by
Â1 = (â1 − â2)/

√
2, Â2 = (â1 + â2)/

√
2, with eigenvalues

ω1 = ω0 − g, ω2 = ω0 + g. We assume ω0 	 ε, so that QME
can be applied, while the parameter g can be varied freely.
The bath spectral functions, defined in Eq. (3), can be obtained
explicitly by going to eigenmodes of the baths and are given
by [46] (see the Appendix)

J�(ω) = 2γ 2
�

tB

√
1 −

(
ω

2tB

)2

. (10)

In the following sections we first give some details of the
exact approaches to obtain the steady state (Sec. III A) and time
dynamics (Sec. III B) and then present some analytic results
from RQME (Sec. III C), discuss the reduction to the Lindblad
form (Sec. III D), and, finally, present the comparisons between
the various methods (Sec. III E).

A. Exact results: Steady state via the quantum
Langevin Equation (QLE)

Exact steady-state properties of the system can be found
using QLE, as done in Refs. [44–46]. We briefly outline the
procedure for computing physical quantities from the QLE
method for the two-site case with the Hamiltonian given by
Eq. (9). We first go to the eigenmodes of the bath by doing a
unitary transformation. So Ĥ(�)

B = tB(
∑∞

s=1 b̂
�†
s b̂�

s+1 + H.c.) =∑∞
r=1 ��

rB̂
�†
r B̂�

r , where b̂�
s = ∑

r U�∗
rs B̂�

r and U is a unitary
matrix that diagonalizes Ĥ(�)

B . B̂�
r is the annihilation operator
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of the eigenmode with eigenvalue ��
r . The bath eigenmodes

satisfy the initial bath correlation functions: 〈B̂�
r 〉 = 0 and

〈B̂�†
r B̂�

s 〉 = n�(��
r )δrs . We then have κ�r = γ�U

�∗
r1 . The EOMs

for the system and the bath are

dB̂�
r

dt
= −i

[
B̂�

r ,Ĥ
] = −i

(
��

rB̂
�
r + εκ∗

�r â�

)
, (11)

dâ1

dt
= −i

(
ω0â1 + gâ2 +

∑
r

εκ1r B̂
(1)
r

)
, (1 ↔ 2). (12)

The equation for the bath [Eq. (11)] can be formally solved to
obtain

B̂�
r (t) = B̂�

r (0)e−i��
r t − iεκ∗

�r

∫ t

0
dt ′â�(t ′)e−i��

r (t−t ′). (13)

Using this in Eq. (12), we obtain the QLE,

dâ1

dt
= −i(ω0â1 + gâ2) − iεξ̂1 − ε2

∫ t

0
dt ′â1(t ′)α1(t − t ′)

(1 ↔ 2), (14)

where

ξ̂�(t) =
∑

r

κ�r B̂
�
r (0)e−i��

r t , (15)

α�(t − t ′) =
∫

dω

2π
J�(ω)e−iω(t−t ′) (16)

represent “noise” and “dissipation,” respectively and J�(ω) are
the bath spectral functions as defined in Eq. (3). Using the bath
correlations, we obtain

〈ξ̂ †
� (t ′)ξ̂�(t)〉 =

∫
dω

2π
J�(ω)n�(ω)e−iω(t−t ′). (17)

Note that even though Eq. (14) has the form of a generalized
Langevin equation, it is completely exact. The noise and
dissipation that appear in the QLE arise from exact treatment
of the bath. The steady-state results can be easily found from
Eq. (14) by taking t → ∞ and doing Fourier transforms. The
NESS current and occupation obtained are given by

I =g2ε2
∫

dω

2π

J1(ω)J2(ω)[n1(ω) − n2(ω)]

|M(ω)|2 , (18)

〈â†
1â1〉 =ε

∫
dω

2π

[K(ω)J1(ω)n1(ω)

| M(ω) |2 + g2J2(ω)n2(ω)

| M(ω) |2
]
,

(19)

where

��(ω) = P
∫

dω′

2π

J�(ω′)
ω − ω′ ,

M(ω) =
[(

ω0 − ω − iε2 J1(ω)

2
+ ε2�1(ω)

)

×
(

ω0 − ω − iε2 J2(ω)

2
+ ε2�2(ω)

)
− g2

]
,

K(ω) =
∣∣∣∣ω0 − ω − iε2 J2(ω)

2
+ ε2�2(ω)

∣∣∣∣
2

. (20)

The occupation of the second site is just 〈a†
2a2〉 = 1 ↔ 2 in

Eq. (19). All integrals over ω go over all possible values

of ω. Note that Eqs. (18) and (19) are exact results without
any approximation. However, they are not closed-form results
and involve some complicated integrals. Also, obtaining exact
transient behavior using this method is difficult. But transient
behavior can be easily obtained by exact numerics.

B. Exact results: Time dynamics via system-bath numerics

To check the time dynamics we do numerical simulations.
For this purpose, we choose a bath of finite size and evolve the
full system-bath Hamiltonian Ĥ using unitary Hamiltonian
dynamics. Let us collectively denote by d a column vector
with all annihilation operators of both system and baths. The

full Hamiltonian can be written as ˆ̂H = ∑
i,j Hij d

†
i dj , where

i now refers to either system or bath sites. If D = 〈dd†〉
denotes the full correlation matrix of system and baths, its time
evolution is given by D(t) = eiHtDe−iH t . In our simulations
we considered the system described by Eq. (9) of two sites
connected to baths each with 511 sites, which are large enough
to show negligible finite-size effects.

C. Correlation functions from RQME

1. Symmetric coupling to baths: γ1 = γ2, full solution

In Eq. (8), this corresponds to the special case of all
system-bath couplings being equal, i.e., when J�(ω) = J (ω).
Under this condition Eq. (8) can be solved exactly using the
fact that fνσ (ω) = [J (ω)/2]

∑N
r=1 c∗

�νc�σ = [J (ω)/2]δνσ due
to orthonormality of the eigenfunctions. Thus, vνσ = 0 ∀ ν �=
σ . Then Eq. (8) admits the exact solution:

Cαν(t) = Cαν(0)e−wαν t + ε2 u∗
αν + uνα

wαν

(1 − e−wαν t ), (21)

where wαν = −iωα + ε2[if �
αα(ωα) + fαα(ωα)] + (α → ν)∗

and uνα = Fνα(ωα) + iF�
να(ωα). Note that the baths can still

be at different temperatures and chemical potentials. So in
this case, we have full time-dependent analytical closed-form
results for out-of-equilibrium correlation functions that hold
for all values of g.

2. Asymmetric couplings to baths: γ1 �= γ2, g � ε2

tB

Closed-form analytical results are difficult to obtain for all
g when γ1 �= γ2. But for g 	 ε2

tB
, the analytical closed form for

time dynamics can be found by solving Eq. (8) perturbatively
up to leading order in ε. The results are

Nα(t) � Nα(0)e−2ε2fαα (ωα)t + Fαα(ωα)

fαα(ωα)

(
1 − e−2ε2fαα (ωα)t

)
,

(22a)

C12(t) � C12(0)e−w12t + iε2

g

{[
F12(ω2) − iF�

12(ω2)
]

× (1 − e−w12t ) + v21[N1(0)e−w12t − N1(t)]

+ (1 ↔ 2)∗
}
, (22b)

where Nα(t) = Cαα(t) and w12 = −iω1 + ε2[if �
11(ω1) +

f11(ω1)] + (1 → 2)∗.
Note that since we have already assumed t 	 τB , the

transient dynamics given by the above equations can only

062114-4



OUT-OF-EQUILIBRIUM OPEN QUANTUM SYSTEMS: A . . . PHYSICAL REVIEW A 93, 062114 (2016)

be trusted if the relaxation time of the system is much larger
than τB , viz., τB � 1/[ε2fαα(ωα)] ∼ tB

ε2 , since fαα(ωα) ∼ tB ,
from Eqs. (10) and (7). Since fαα(ωα) > 0, it can be seen
from Eqs. (21), (22a), and (22b) that the correlation functions
approach steady-state values at time t 	 1/[ε2fαα(ωα)] ∼ tB

ε2 ,
and the steady-state values are independent of the initial state.
So we can easily get steady-state values of mode occupation
Nss

α and current between the first and second sites, I1→2 =
−g i〈â†

1â2 − â
†
2â1〉 = g i〈Â†

1Â2 − Â
†
2Â1〉 = 2g Im(C12):

Nss
α � J1(ωα)n1(ωα) + J2(ωα)n2(ωα)

J1(ωα) + J2(ωα)
, (23a)

I1→2 � ε2

2

2∑
α=1

J1(ωα)J2(ωα)[n1(ωα) − n2(ωα)]

J1(ωα) + J2(ωα)
. (23b)

It is seen from the steady-state equations that in equilibrium,
i.e., when n1(ω) = n2(ω) = n(ω), Nα = n(ω) and current is
zero, which are the expected thermal values. Thus, RQME
shows proper thermalization and approaches to steady state.

D. Reduction to the Lindblad form

The RQME is not in the Lindblad form. But it can be
reduced to the Lindblad form by making certain further
approximations. There are two popular forms of the Lindblad
equations using either the local operators a� or the eigenbasis
operators Aν [Eq. (6)]. We briefly discuss how they are
obtained and their expected regimes of validity.

1. Local Lindblad QME (LLQME) (g < ε)

The local Lindblad equation for this system has the form
∂ρ/∂t = i[ρ,ĤS] + ε2(LLL

1 ρ + LLL
2 ρ), where

LLL
� ρ =J (ω0)eβ�(ω0−μ�)n(ω0)

(
â�ρâ

†
� − 1

2 {â†
�â�,ρ}

)
+ J (ω0)n(ω0)

(
â
†
�ρâ� − 1

2 {â�â
†
�,ρ}

)
. (24)

For g < ε, RQME [Eq. (7)] can be reduced to LLQME
by expanding the nonunitary dissipative part about g = 0
and keeping the first term. This is because the dissipative
part is already O(ε2), and since g < ε, higher-order terms
in g will give higher-order terms in ε, which we neglect
in the RQME treatment. This amounts to putting ων = ω0

in the dissipative part of Eq. (7). The same result is more
conventionally obtained by considering the intersite hopping
term in the system Hamiltonian to be small and treating it
as a part of the system-bath Hamiltonian while deriving the
QME. This directly leads to the LLQME. Thus, LLQME is
valid when g < ε. LLQME results for current and occupation
for this problem have been derived in previous papers [24,25].
The equilibrium condition Nα = n(ω) is not obtained from
LLQME since, for g < ε, each site interacts with its bath more
strongly than with the other site, thereby thermalizing with its
own bath. It clearly follows that if there were only one site,
it would show thermalization. Thus, the regime of validity of
LLQME is too restrictive to show thermalization for a system
with more than one noninteracting degree of freedom.

However, in interacting systems, it has recently been shown
that even LLQME is capable of showing thermalization [49].

2. Eigenbasis Lindblad QME (ELQME) (g � ε2

tB
,Css

12 = 0)

The eigenbasis Lindblad equation for this system has the
form ∂ρ

∂t
= i[ρ,ĤS] + ε2(LEL

1 ρ + LEL
2 ρ), where

LEL
α ρ =[fαα(ωα) ∓ Fαα(ωα)](2ÂαρÂ†

α − {Â†
αÂα,ρ})

+ Fαα(ωα)(2Â†
αρÂα − {ÂαÂ†

α,ρ}). (25)

Equation (7) is reduced to ELQME under rotating-wave or
secular approximation [50,51], which amounts to neglecting
α �= ν terms in the sum in Eq. (7). The rotating-wave
approximation assumes that the observation time t 	 1

g
. On

the other hand, to give the correct steady state, the QME must
be valid for times shorter than the time needed to reach steady
state. This means that we need the QME to be valid at times
t � tB

ε2 since we have already seen that the time required to
reach steady state ∼ tB

ε2 . The two conditions are valid together

if g 	 ε2

tB
. This seems like a rather weak condition.

However, we note that, while these are the necessary
conditions for obtaining ELQME, there is no guarantee that
the resulting ELQME will reproduce all physical observables
accurately. In particular, neglecting α �= ν terms in the sum in
Eq. (7) means ELQME has no terms connecting Â1 and Â2.
Therefore, it gives Css

12 = 0, where Css
12 is the steady-state value

of C12. This condition is, of course, valid only in equilibrium,
where there is no current. Thus, although the rotating-wave or
secular approximation is a good approximation for equilibrium
properties, it is a bad approximation in nonequilibrium. This
point has also been succinctly discussed in a recent work [29].

However, ELQME still can be used to correctly obtain
some noneqilibrium results. For example, for g	 ε2

tB
ELQME

gives the same equation for Nα as Eqs. (22a) and (23a). This
result then can be used to obtain the correct current between the
left bath and the system [18,28]. Thus, ELQME suffers from
a drawback that one is only able to compute the net current
flowing between the two reservoirs in the NESS but not the
current distributions in the system (e.g., current flowing along
two arms in a ring geometry). This also indicates a physical
inconsistency of the ELQME formalism in nonequilibrium
(see the Appendix).

E. Comparison of results from various methods and discussions

Finally, we now present a detailed comparison of results
obtained using the various approaches for both steady-state
and time-dependent properties. For the two-site problem we
consider the bosonic and fermionic versions and compute
quantities such as the occupation number and particle current
from site 1 to site 2. We again summarize the various
approaches that we use:

(i) For steady-state properties, these are exactly computed
using Eqs. (18) and (19) following the QLE approach.

(ii) Exact time-dependent properties are obtained from the
numerical approach discussed in Sec. III B.

(iii) The equations for correlation functions, Eqs. (8), are
solved to obtain the predictions of RQME. We also evaluate
the perturbative solution of these equations given in Eqs. (22a)
and (22b).

062114-5



ARCHAK PURKAYASTHA, ABHISHEK DHAR, AND MANAS KULKARNI PHYSICAL REVIEW A 93, 062114 (2016)

0

2

4

I
×10−4 (a)

0.0 0.1 0.2 0.3 0.4 0.5

g

0.01

0.05

<
â
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ω0 = 1, ε = 0.1, μ1 = μ2 = −2.5,

β1 = 0.8, β2 = 1.8,Γ1 = 1, Γ2 = 4, tB = 1

FIG. 2. Bosonic model: steady-state properties. (a) Particle cur-
rent and (b) the occupation number in the left site as a function of
intersite hopping g for the two-site boson problem. RQME shows
near perfect agreement with exact results from QLE for all values of
g, while LLQME and perturbation results [Eqs. (23a) and (23b)] are
valid in their respective limits. The vertical line marks the position of
g = ε, below which LLQME is valid. The parameter �1,2 = 2γ 2

1,2/tB
is related to the system-bath coupling [see Eq. (10)]. Current is
measured in units of ω0, and all energy variables are measured in
units of �ω0.

(iv) One can also write the equations for two-point
correlations obtained from the Lindblad approach, and these
are solved to obtain the predictions from LLQME.

(v) The ELQME approach cannot directly give the current
inside the system. The predictions for the occupation number
are the same as those from the perturbative solution of
Eq. (22a).

We emphasize that all the approaches that we discuss are
based on the same starting microscopic model of a system
and baths, given by Eqs. (9), which leads to the bath spectral
function, Eq. (10).

For the bosonic case, the steady-state results for current and
occupation number are shown in Fig. 2, and results for time
dynamics are shown in Figs. 3 and 4. For the time dynamics,
for the results presented here, the initial condition corresponds
to no particles inside the system and baths in equilibrium at
different μ and T . But we have tested other initial conditions
like a finite number of particles in the system and random initial
values of the correlation functions. The following observations
are true for such generic initial conditions for the system. For
the fermionic case, the results for the steady-state current as a
function of voltage difference and of the intrasystem coupling
g are shown in Fig. 5. In all cases, the system-bath coupling is
chosen to be asymmetric, i.e., γ1 �= γ2.

Our most important observation is that RQME results
obtained from the solution of Eq. (8) agree very well with
exact results from QLE and numerics for all values of g

for steady state, as well as for long-time dynamics. LLQME
agrees well for g < ε, as expected. In Fig. 3, we show that the
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Numerics

LLQME
Perturbation

Steady state

g = 0.45

β1 = β2 = 0.8

FIG. 3. Bosonic model: thermalization. We show the time evo-
lution of occupation of the lower-energy mode Â1, corresponding to
energy ω1 = ω0 − g, in equilibrium for the two-site boson problem,
starting from an empty system, for g = 0.45. The steady state
(horizontal line) corresponds to the value of Bose distribution n(ω1) =
[eβ(ω1−μ) − 1]−1 with the equilibrium bath temperatures and chemical
potentials. LLQME does not show thermalization because it is not
valid for g > ε, while exact numerical results, RQME results, and the
perturbation result [Eqs. (22a)] match and show thermalization. All
parameters not explicitly specified are the same as in Fig. (2). Current
is measured in units of ω0, and all energy variables are measured in
units of �ω0. Time is measured in units of ω−1

0 .
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(b)

RQME
Numerics

LLQME
Perturbation

Steady state

g = 0.45

FIG. 4. Bosonic model: nonequilibrium time dynamics. We show
the time evolution of (a) particle current and (b) occupation number
of the left site for the two-site boson problem, starting from an
empty system, for g = 0.45. RQME results show good agreement
with exact numerics. Since g > ε, LLQME does not match, while
the perturbation result [Eqs. (22a) and (22b)] matches with RQME.
The horizontal line shows the exact steady-state result obtained from
QLE. All parameters not explicitly specified are the same as in Fig.
(2). Current is measured in units of ω0, and all energy variables are
measured in units of �ω0. Time is measured in units of ω−1

0 .
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FIG. 5. Fermionic model: steady-state properties. (a) Particle
current vs voltage and (b) particle current vs intersite hopping
in the two-site fermion problem. The vertical lines correspond to
positions where potential difference V = μ1 − μ2 = ωα , where ωα

are the system energy levels. RQME shows nearly perfect agreement
with exact results from QLE for all values of g, while LLQME
and perturbation results [Eqs. (23a) and (23b)] are valid in their
respective limits. The graphs demonstrate the effect of conductance
quantization at low temperatures. The parameter �1,2 = 2γ 2

1,2/tB .
Current is measured in units of ω0, and all energy variables are
measured in units of �ω0.

system indeed thermalizes in equilibrium, and this is perfectly
captured by RQME and not by LLQME since it is invalid for
g > ε. For g 	 ε2

tB
, our analytical closed-form perturbation

results match quite well with the exact results, showing the
correct approach to steady state and thermalization. Therefore,
we conclude that RQME gives the correct physics under the
Born-Markov approximation.

Apart from validating the RQME description, we also
observe interesting physical trends. The boson problem may
be realized in bosonic cold-atom experiments or in optical
cavity experiments with a suitable choice of parameters and
spectral functions. We see in Fig. 2 that steady-state properties
have a markedly different behavior depending on whether
g < ε or g > ε. For g < ε, the current increases rapidly,
but after that there is a slow increase in current. Also, for
g < ε the occupation of the left cavity becomes minimum
when g � ε. However, beyond this point, the occupation of
the left cavity increases slowly with an increase in tunneling
probability g. These trends may be experimentally observed.
However, these trends depend on the choice of the bath spectral
function J�(ω). For example, for optical cavity experiments,
the commonly used Ohmic dissipation J�(ω) ∝ ω will give
a slow decrease of current with g for g > ε, still showing a
markedly different behavior from the g < ε case. Here we
microscopically derived J�(ω) assuming a microscopic model
of the bath.

The fermionic system of two sites may be experimentally
realized in noninteracting quantum dots or in fermionic cold-

atom experiments. The current versus voltage plot of the
fermionic system shows the effect of conductance quanti-
zation, which is observed experimentally [13]. The current
versus hopping g plot shows suppression of current after a
value of g. These observations can be explained as follows.
The two-site system has two eigenenergy levels of energy
ω0 − g and ω0 + g. In Fig. 5, the right bath is held at zero
chemical potential while the chemical potential of the left
bath, μ1, is varied. When μ1 � ω0 − g, no fermion from the
left bath has the energy to enter the system. So there is no
flow of current. When ω0 − g � μ1 � ω0 + g, the fermions
can hop through the system via the lower-energy level. So a
finite current flows through the system. When μ1 	 ω0 + g,
fermion transport through the system can occur through both
energy levels. Since all system levels are now participating
in transport, increasing μ1 beyond this point does not affect
current any more. For a similar reason, suppression of current
occurs when g 	 μ1 − ω0 in the current versus g plot. These
observations can also be easily obtained for larger systems.

The NESS for the fermionic problem was solved earlier
by a RQME method but in the limit of negligible Fock space
coherences [36], which gives results identical to the g 	 ε2

tB
results [Eqs. (23a) and (23b)]. However, their method of
solution [36] cannot easily be generalized to treat the bosonic
version of the problem.

One important issue with the Redfield operator is that it
is not completely positive. In a recent work [40], it was
shown to lead to negative entropy production in a specific
system. In this paper we find RQME to give the correct
Born-Markov approximated results for correlation functions
(closely related to physical observables), both equilibrium and
time dynamics. But the situation regarding nonpositivity of the
Redfield operator is not completely clear and requires further
investigation.

IV. CONCLUSIONS

Quantum master equations derived under the Born-Markov
approximation are widely used to describe open quantum
systems. But the validity of such approximate QMEs has
not been, to our knowledge, rigorously checked before. In
this work, by studying a simple system of noninteracting
bosons or fermions and comparing results from the micro-
scopically derived Redfield QME under the Born-Markov
approximation with exact results, we showed that the Redfield
QME indeed gives very accurate results in a wide parameter
range. Moreover, we observe that, rotating-wave or secular
approximations that are often done to reduce the Redfield
QME to the eigenbasis Lindblad form are inappropriate
in a nonequilibrium setting. On the other hand, the small
hopping approximation that is often employed to reduce the
Redfield QME to the local Lindblad form is very restrictive
for noninteracting particles. These observations are consistent
with previous results [27–29]. So one is required to work
with the full Redfield QME to obtain the correct physics in a
nonequilibrium system of noninteracting bosons or fermions.

One of the reasons a Redfield equation is often reduced to
the Lindblad form is easy numerical treatment. The Redfield
equation is, in general, much more difficult to solve than the
Lindblad equations. However, for the case of noninteracting
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bosons or fermions in an arbitrary lattice in any dimension,
here we presented a complete set of linear differential
equations [Eq. (8)] for two-point correlation functions which
can be easily solved numerically. Equation (8) therefore gives
a numerical way to directly calculate the time dynamics
of out-of-equilibrium two-point correlation functions in an
arbitrary system of noninteracting particles in a lattice. Various
physical observables can be directly calculated from such
correlation functions.

For a two-site system we derived closed-form analytical
expressions for out-of-equilibrium time dynamics of two-point
correlation functions [Eqs. (21), (22a), and (22b)]. These
analytical results explicitly show that the correlation functions
approach a steady-state value independent of initial conditions,
and these steady-state values give the expected thermalization
in equilibrium. They also match the numerically obtained exact
results from other methods independent of any approximate
master equation, thereby validating the Redfield approach.
Various physical quantities like site occupation and current
calculated from the correlation functions show interesting
experimentally observable trends which are seen in parameter
regimes beyond the regime of validity of Lindblad methods.
These trends may be seen in experiments with cavity QED,
cold atoms, quantum dots, etc. Needless to say, recent cutting-
edge technologies can be exploited to engineer Hamiltonians
and reservoirs such that the discrepancy between Lindblad
methods and exact results can be made visible.

The nonpositivity of the Redfield operator remains an
important issue and needs further work. However, this does
not seem to be a problem in reproducing correct physical
steady-state properties and correct long-time dynamics in our
system.

We reemphasize that the main conclusion of our present
work is that it is, indeed, justified to adopt RQME in order to go
beyond the limitations of the Lindblad methods. Future work
involves RQME with similar rigorous treatment of reservoirs
for open quantum non-linear (interacting) systems where exact
methods are not available, for e.g., Jaynes–Cummings, spin
boson, open XY spin chains, Dicke type models [6,9,52–61].
Such a RQME approach could unravel interesting out-of-
equilibrium many-body phenomena that may be missed by
conventional Lindblad-type approaches.
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APPENDIX

1. Derivation of Redfield QME

Here, we briefly outline the steps involved in obtaining our
QME [Eq. (7)] from Eq. (4). We first go to the eigenbasis
of the system through the transformation: â� = ∑N

α=1 c�αÂα .
Then to use Eq. (4), we need to go to the interaction picture
representation, âI

� = ∑N
p=1 c�αÂpe−iωαt , B̂�I

r (t) = B̂�
r e

−i��
r t .

Next, substituting into Eq. (4) and using the bath correlations
[Eq. (2)] and bath spectral functions [Eq. (3)] and going back
to Schrödinger picture, we obtain

ρ̇(t) = i[ρ,ĤS] − ε2
N∑

α,ν,�=1

c∗
�αc�ν

∫ ��
max

��
min

dω

2π
[{[ρ(t)Âν,Â

†
α]

+ [Â†
α,Âνρ(t)]eβ�(ω−μ�)}J�(ω)n�(ω)

∫ t

0
dτei(ω−ων )τ ]

+ H.c., (A1)

where ��
min,�

�
max are the minimum and the maximum energy

levels of the bath coupled to the �th site. Now, assuming
t 	 τB , where τB is the relaxation time scale of the bath,
we replace the upper limit of the time integral in the above
equation by t → ∞ to obtain our QME [Eq. (7)]. Even though
this assumption is guaranteed to give the correct steady state,
an estimate of τB is required to ensure validity of the transient
dynamics from our QME. τB , of course, depends on the model
of bath.

2. A bath model in the wideband limit

The model of the bath enters the calculation through
the bath spectral function J�(ω) = 2π

∑
r | κ�r |2 δ(ω − ��

r ).
Note that since in our derivation of RQME the system couples
to the eigenmodes of the baths, κ�r are proportional to the
eigenfunctions of the bath Hamiltonian. Because of infinite
degrees of freedom, the energy spectrum of the bath can
be considered continuous. For our case of the Hamiltonian
in Eq. (9), bath eigenenergies are �(q�) = −2tB cos q� and

κ(q�) = γ�

√
2
π

sin q�, with 0 � q� � π . Thus,

J�(ω) = 4γ�

∫ π

0
dq� sin2 q� δ(ω + 2tB cos q�)

= 2γ 2
�

tB

√
1 − ω2

4t2
B

. (A2)

We also need the result P
∫

dω′J�(ω′)
2π(ω′−ω) = − γ 2

� ω

2t2
B

to calculate

f �
αν(ω) [in Eq. (8)]. F�

αν(ω) cannot be written in a simple
closed form and is calculated numerically. The functions
fαν(ω),Fαν(ω) can be written down in matrix form as

f (ω) = 1

4

[
J1(ω) + J2(ω) J1(ω) − J2(ω)
J1(ω) − J2(ω) J1(ω) + J2(ω)

]
, (A3)
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F (ω) = 1

4

[
J1(ω)n1(ω) + J2(ω)n2(ω) J1(ω)n1(ω) − J2(ω)n2(ω)
J1(ω)n1(ω) − J2(ω)n2(ω) J1(ω)n1(ω) + J2(ω)n2(ω)

]
, (A4)

3. Estimate of τB

Now, for this bath model we estimate τB . Looking
at Eq. (A1), we find integrals of the type I1(ων,t) =∫ t

0 dτe−iωντI2(τ ) with I2(τ ) given by

I2(τ ) =
∫ ��

max

��
min

dω

2π
J�(ω)n�(ω)eiωτ . (A5)

The time τ
(�)
B at which I2(τ ) decays is the relaxation time of

the �th bath. If the bandwidth of the bath is large enough,
I2(τ ) is like a Fourier transform of J�(ω)n�(ω), and hence, τ (�)

B

depends on the spread of J�(ω)n�(ω). At low temperatures the
spread will be ∼1/β�. Hence, τ

(�)
B ∼ β�.

As mentioned in the main text, the transient dynamics from
our QME is valid only if the system relaxation time is much
greater than τB . From Eqs. (22a) and (22b), we see that system
relaxation time is ∼ 1

ε2fαα (ωα ) . Thus, for the validity of our
transient dynamics,

τB � 1

ε2fαα(ωα)
∀ α ∈ 1,2, . . . ,N. (A6)

For our two-site case, fαα(ωα) ∼ t−1
B . Thus, the condition for

validity of transient dynamics for the two-site case becomes

β� � tB

ε2
∀ � = 1,2. (A7)

This condition is clearly satisfied by our choice of parameters.

4. Problem with ELQME

In the ELQME, problems arise in the definitions of NESS
current. For our Hamiltonian (9), current can be derived from
the following equations:

d〈â†
1â1〉

dt
= IB(1)→1 − I1→2, (A8)

d〈â†
1â1 + â

†
2â2〉

dt
= IB(1)→1 − I2→B(2) , (A9)

where IB(1)→1 is the current between the left bath and the left
system site, I1→2 is the current between the left and right
system sites, and I2→B(2) is the current between the right site
and the right bath. Note that the expression for I1→2 is the same
for all three approaches (RQME, LLQME, ELQME) because
it comes from the nondissipative part of the QME. On the

other hand, depending on whether the approach is RQME or
LLQME or ELQME, the expressions for IB(1)→1 and I2→B(2)

are different as they come from the dissipative part. In NESS all
three currents defined above are equal. This is true for RQME
and LLQME. But ELQME gives I1→2 = 0 even in NESS while
giving a nonzero current for IB(1)→1. In fact, Eq. (A8), from

ELQME, becomes of the form d〈â†
1 â1〉
dt

= IB(1)→1 − I1→B(2) ,
where a fictitious I1→B(2) current from the left site to the
right bath appears which is completely unphysical as there
is no direct connection between the left site and the right
bath. However, if Eq. (A9) is used, then ELQME gives
the same result as that obtained from RQME in the limit
g 	 (ε2/tB). This is because IB(1)→1 obtained from Eq. (A9)
depends only on N1,N2, which are correctly given by ELQME
when g 	 (ε2/tB). Thus, although ELQME is not physically
self-consistent, this trick can be used to obtain the correct
current in our setup, as done in previous studies [18,28].
However, this trick will not work in cases with different
geometries. For example, if two sites of a ring are connected
to two different baths, ELQME will not be able to give current
flowing in the two arms.

5. The Gibbs state

In equilibrium, the Gibbs state is defined as ρGibbs =
e−β(ĤS−μN̂S )

T r(e−β(ĤS−μN̂S ))
, where N̂S = ∑N

α=1 Â†
αÂα . Note that, in contrast

to what is often reported in the literature, the Gibbs state is
not a stationary state of RQME [Eq. (7)] in equilibrium. This
is because we do not neglect the principal-value terms f �

αν(ω)
and F�

αν(ω) as is often done (for example, [34,36]). We find
no reason to neglect them as the terms are not small and
do not contribute to only shifting the system energy levels
by a constant amount. For our two site Hamiltonian (9),
for g 	 (ε2/tB), the equilibrium steady state, which can be
computed from the two point correlation functions, has O(ε2)
corrections over the Gibbs state. So, in this case, RQME gives
the correct thermalization in the following sense:

lim
ε→0

lim
t→∞ ρ(t) = ρGibbs ∀ β1 = β2 = β, μ1 = μ2 = μ,

(A10)
where the order of limits is important. ELQME, on the other
hand, has the Gibbs state as its stationary state in equilibrium.
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