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Parity-time symmetry under magnetic flux
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We study a parity-time–(PT -) symmetric ring lattice, with one pair of balanced gain and loss located at
opposite positions. The system remains PT -symmetric when threaded by a magnetic flux; however, the PT
symmetry is sensitive to the magnetic flux in the presence of a large balanced gain and loss, or in a large system.
We find a threshold gain or loss above which any nontrivial magnetic flux breaks the PT symmetry. We obtain the
maximally tolerable magnetic flux for the exact PT -symmetric phase, which is approximately linearly dependent
on a weak gain or loss.
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I. INTRODUCTION

A magnetic flux enclosed in electron trajectories induces
electron wave-function interference; this is the well-known
magnetic Aharonov-Bohm (AB) effect [1,2]. The AB effect
describes a quantum phenomenon in which a charged particle
is affected by the vector potential of an electromagnetic
field. The AB effect has inspired breakthroughs in modern
physics. Photons are known to be neutral particles that do not
directly interact with magnetic fields. However, the magnetic
AB effect for photons has been proposed and realized by
magnetic-optical effects [3], dynamical modulation [4], and
photon-phonon interaction [5]. This is attributed to an effective
magnetic field originating from the fictitious gauge field
felt by photons, where photons behave as electrons in a
magnetic field. The concept of an effective magnetic field
for photons provides new opportunities in optics; it stimulates
interest in the exploration of fundamental physics and in the
creation of applications [3–8]. In particular, parity-time–(PT -)
symmetric optical systems proposed with effective magnetic
flux allow nonreciprocal light transport [9,10].

PT symmetry has attracted tremendous interest over the
last decade. A PT -symmetric system may possess an entirely
real spectrum even though it is non-Hermitian [11–14]. The
PT -symmetric system is invariant under the combined parity
(P) and time-reversal (T ) operators, and its potential fulfills
V ∗(x) = V (−x). In 2007, a coupled optical waveguide system
with an engineered refractive index and gain or loss profile
was proposed to realize a PT -symmetric structure [15]. The
proposal was based on a classical analogy, namely, that
Maxwell’s equations describing light propagation under a
paraxial approximation are formally equal to a Schrödinger
equation [16]. Thereafter, a number of intriguing phenomena
could be predicted and experimentally verified, either in
a passive or in an active PT -symmetric optical structure,
includingPT -symmetry breaking [17], power oscillation [18],
coherent perfect absorbers [19,20], spectral singularities [21],
unidirectional invisibility [22], and nonreciprocal wave propa-
gation [23]. Recently, an active PT -symmetric optical system
was realized using two coupled microcavities [24], and
optical gain played a key role. Optical isolators [24–26]
and PT -symmetric lasers [27–30] were demonstrated; the
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gain induced a large optical nonlinearity. Both the coupled
optical waveguides and microcavities were described by a
tight-binding model. The tight-binding model demonstrated
analytical and numerical tractability for study of the PT
symmetry [31–36]. The PT -symmetric phase diagram as well
as the wave-packet dynamics in PT -symmetric systems with
open boundary conditions have been investigated [37–40].
Although the properties of a lattice with open boundary
conditions and the properties of a lattice with periodical
boundary conditions are similar as large systems approach
a size limit, the differences are notable when the system
size is small [41]. Currently, most experimentally accessible
PT -symmetric systems are small in size [18,24,26]; hence,
studying PT -symmetric systems under periodical boundary
conditions is worthwhile, and some pioneering works have
already focused on this [41–44].

In this paper, we study the influence of magnetic flux on
thePT symmetry in coupled resonators in a ring configuration
[Fig. 1(a)]. The system is modeled by a magnetic tight-binding
lattice, with a Peierls phase factor in the hopping between
adjacent sites. The one-dimensional ring system has a single
pair of balanced gain and loss located at opposite positions;
when threaded by magnetic flux, the ring system remains PT
symmetric. We reveal that the PT symmetry is sensitive to
the enclosed magnetic flux, especially when the gain or loss
or the system size is large. We find a threshold for the gain
or loss above which any nontrivial magnetic flux breaks the
PT symmetry. We also enumerate the eigenvalues that have
broken PT symmetry. The threshold gain or loss as well as
the PT -symmetry breaking levels are tunable by the magnetic
flux. We present a PT -symmetric phase diagram in the gain
and loss and magnetic-flux parameter spaces. The maximally
tolerable magnetic flux for the exact PT -symmetric phase is
found for a 2N -site ring system. Our findings offer insights
into magnetic flux in PT -symmetric systems and might
provide useful applications of PT symmetry in quantum
metrology.

This paper is organized as follows. We formulate a PT -
symmetric Hamiltonian threaded by a magnetic flux in Sec. II.
We show the energy spectrum and phase diagram of a four-site
ring system in Sec. III. We elucidate in detail that the PT
symmetry is significantly affected by the enclosed magnetic
flux by studying a 2N -site ring system in Sec. IV. Our
conclusions are drawn in Sec. V.
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FIG. 1. (a) Schematic illustration of a PT -symmetric lattice
model using coupled resonators threaded by a magnetic flux �. (b)
Effective magnetic flux � is introduced between resonator 1 and
2N through an antiresonant auxiliary resonator (grey). The forward-
(green arrow) and backward-going (red arrow) path-length difference
�x induces a nonreciprocal hopping phase e±i2π�x/λ.

II. MODEL AND FORMALISM

We consider a discretePT -symmetric ring system threaded
by a magnetic flux. The system is schematically illustrated
in Fig. 1(a) using coupled resonators, which constitute a
2N -site lattice system described by a tight-binding model.
The enclosed magnetic flux in the ring system is denoted as �.
The magnetic flux acts globally: circling photons or charged
particles accumulate a phase factor e±i� in each round because
of the AB effect. The plus (minus) sign represents a clockwise
(counterclockwise) direction of motion. The magnetic flux
affects the system periodically; the period is 2π , which
corresponds to one quantum of the effective magnetic flux.
A balanced pair of gain and loss is symmetrically located
at opposite positions on sites 1 and N + 1, respectively. The
Hamiltonian for this 2N -site ring system is given by

Hflux = −
2N∑
j=1

(eiφa
†
j aj+1 + H.c.) + iγ (a†

1a1 − a
†
N+1aN+1),

(1)
where a

†
j (aj ) is the creation (annihilation) operator for site

j , the periodic boundary condition requires a
†
2N+j = a

†
j . The

hopping strength between adjacent sites is set to unity without
loss of generality. The balanced gain and loss are conjugate
imaginary potentials on sites 1 and N + 1, the rate is γ

(γ > 0). The enclosed magnetic field effectively induces an
additional phase factor e±iφ in the hoppings [Fig. 1(b)], where
φ = �/(2N ) is an averaged additional phase between adjacent
sites.

The parity operator P is defined as PjP−1 → N + 2 − j ,
the time-reversal operator T is defined as T iT −1 → −i. We
note that in the presence of a nontrivial phase factor (ei� �= 1),
the system Hamiltonian Hflux remains invariant under the
combined PT operator, i.e., (PT )Hflux(PT )−1 = Hflux. The
ring system is PT symmetric with respect to its central axis
[dashed blue line shown in Fig. 1(a)]. When Hflux is in its
exact PT -symmetric phase, its spectrum is entirely real and
all eigenstates are PT symmetric. When Hflux is in its broken

PT -symmetric phase, complex-conjugate pairs emerge and
corresponding eigenstates are no longer PT symmetric. In the
following, we discuss how the exact PT -symmetric phase is
affected by the parameters of the ring system, in particular, the
enclosed magnetic flux and gain or loss.

III. ENERGY SPECTRUM AND PHASE DIAGRAM
OF A FOUR-SITE RING SYSTEM

We first consider the simplest case: A four-site PT -
symmetric ring system with N = 2. The Hamiltonian for a
four-site ring system is written in the form

H
[4]
flux = −

4∑
i=1

(eiφa
†
i ai+1 + H.c.) + iγ (a†

1a1 − a
†
3a3), (2)

where the periodical boundary condition requires a
†
j+4 = a

†
j .

The phase factor e±iφ in front of the hoppings between
adjacent sites indicates that the enclosed magnetic flux in
the ring system is equal to � = 4φ. We can diagonalize the
4 × 4 matrix to acquire the spectrum of the ring system.
The eigenvalue E satisfies E2(4 − E2 − γ 2) = 4 sin2(�/2).
Solving the equation, we obtain four eigenvalues

E = ±
√

2

√√√√(
1 − γ 2

4

)
±

√(
1 − γ 2

4

)2

− sin2

(
�

2

)
. (3)

For nontrivial magnetic flux � �= 2mπ (m ∈ Z) changes,
the system spectrum changes as the magnetic flux �. At γ = 0,
the energy levels shift and form two pairs of doubly degenerate
states with energy E = ±√

2 when � = 2mπ + π (m ∈ Z),
where the PT symmetry of the eigenstates is extremely
sensitive to the balanced gain and loss, i.e., any nonzero gainor
loss (γ �= 0) breaks the PT symmetry.

In the general case, a magnetic flux � breaks the PT
symmetry of the eigenstates in the situation that cos � <

1 − 2(1 − γ 2/4)2. The PT -symmetric phase diagram of a
four-site ring system is shown in Fig. 2. Region I represents
the exact PT -symmetric phase, regions II and III comprise
the broken PT -symmetric phase.

The magnetic flux � plays different roles as the system
gain or loss γ varies in regions of different parameters. For
γ = 0, the dispersion relation is E = −2 cos(k + �/4) with
eigenvector k = 0, π/2, π , 3π/2. In this case, the magnetic
flux � shifts the energy spectrum with eigenstates unchanged.

Region I: As γ increases, the ring system is in its exact PT -
symmetric phase when cos � � 1 − 2(1 − γ 2/4)2 in 0 < γ <

2. Region II: The PT symmetry is broken when cos � < 1 −
2(1 − γ 2/4)2, eigenvalues that are complex-conjugate pairs
appear, and the magnetic flux � changes both the energy (real
part of eigenvalues) and the amplification or decay (imaginary
part of the eigenvalues) of the eigenstates. In this case, the
region with eigenvalues that are complex-conjugate pairs
expands in 0 < γ < 2 but shrinks in γ > 2 as γ increases.
Region III: The magnetic flux � changes only the amplification
or decay of the eigenstates when cos � � 1 − 2(1 − γ 2/4)2 in
γ � 2. This is because the eigenvalues are purely imaginary
conjugate pairs in this situation.
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FIG. 2. Phase diagram of a four-site ring system in the parameter
spaces γ and �. Eigenvalues in region I: Real; region II: Complex
conjugate pairs; and region III: Pure imaginary conjugate pairs. Re-
gion I is the exactPT -symmetric phase. Region II and III compose the
broken PT -symmetric phase. The boundaries (blue curves) indicate
the exceptional points where two eigenstates coalescence occurs.
The red dots represent the coalescence of three eigenstates, and the
green circle represents a Hermitian system without coalescence of
eigenstates.

In the trivial magnetic flux � = 2mπ (m ∈ Z) case, one
complex-conjugate pair becomes a two-fold degenerate state
with an eigenvalue of zero in γ > 2; three energy levels
coalesce at γ = 2 (red dots) with an eigenvalue of zero, and
the PT -symmetric ring system becomes a nondiagonalizable
Hamiltonian including a 3 × 3 Jordan block. Figure 2 shows
the situation in which nontrivial magnetic flux satisfies
cos � = 1 − 2(1 − γ 2/4)2 (excluding the green circle and red
dots, e.g., γ = 2

√
2, � = π ); this is shown in Fig. 2 by the

blue curves that serve as the boundaries of different phases. In
this case, two energy levels coalesce, and the PT -symmetric
ring system is a nondiagonalizable Hamiltonian composed of
two 2 × 2 Jordan blocks.

IV. EFFECTS OF MAGNETIC FLUX IN THE
PT -SYMMETRIC 2N-SITE RING SYSTEM

The magnetic flux is gauge invariant and acts globally in the
ring system. Taking the local transformation a

†
j → eiφj a

†
j , the

magnetic flux is unchanged and the Hamiltonian Hflux changes
into Hsc with a nonreciprocal coupling between sites 1 and 2N .
The Hamiltonian Hsc is given by

Hsc = −
2N−1∑
i=1

(a†
i ai+1 + H.c.) − e−i�a

†
1a2N − ei�a

†
2Na1

+ iγ (a†
1a1 − a

†
N+1aN+1), (4)

which can be realized in coupled optical resonators by
introducing synthetic magnetic flux, and a balanced gain and
loss in the resonators. The synthetic magnetic flux is introduced
through an optical path imbalance method in the coupling
process [45]. Consider a system with 2N coupled resonators

in a ring configuration. The coupling between resonators 1
and 2N is an effective coupling induced by another auxiliary
resonator [Fig. 1(b)]. The nonreciprocal phase factor e±i�

in the hopping between resonators 1 and 2N is caused by
the optical-path-length difference �x, which is the difference
between the forward-going and backward-going optical paths
of the auxiliary resonator in the coupling process. The effective
magnetic flux introduced is equal to � = 2π�x/λ where λ is
the optical wavelength [45]. Therefore, � is proportional to
the path-length difference �x, and is tunable by changing the
position of the auxiliary resonator.

The eigenvalues of the PT -symmetric ring system Hsc

is calculated as follows. We denote the wave function for
eigenvalue Ek as fk(j ). The wave function fk(j ) is assumed
as a superposition of forward- and backward-going waves,

fk(j ) =
{

Ake
ikj + Bke

−ikj (1 � j � N + 1),
Cke

ikj + Dke
−ikj (N + 1 � j � 2N )

. (5)

The Schrödinger equation for site j in the ring system
(excluding sites 1, N + 1, and 2N ) is given as

fk(j − 1) + fk(j + 1) + Ekfk(j ) = 0, (6)

and substituting the wave functions of Eq. (5) into Eq. (6), we
obtain the eigenvalue Ek = −2 cos k.

The Schrödinger equations for sites 1, N + 1, and 2N are

fk(2) + e−i�fk(2N ) − (iγ − Ek)fk(1) = 0, (7)

ei�fk(1) + fk(2N − 1) + Ekfk(2N ) = 0, (8)

fk(N + 2) + fk(N ) + (iγ + Ek)fk(N + 1) = 0. (9)

From the continuity of the wave function on site N + 1, the
wave function fk(N + 1) should satisfy

Ake
i(N+1)k + Bke

−i(N+1)k = Cke
i(N+1)k + Dke

−i(N+1)k, (10)

After simplification of the Schrödinger equations and the
continuity equation shown in Eqs. (7)–(10), we derive a critical
equation for eigenvector k as an implicit function of the gain/ or
loss γ and the enclosed magnetic flux �. The critical equation
for eigenvector k has the form(

1 − γ 2

4 sin2 k

)
sin2(Nk) − sin2

(
�

2

)
= 0. (11)

In the situation of a trivial magnetic flux � = 2mπ

(m ∈ Z ), the gain or loss affects only one pair of energy levels;
it leaves the others unchanged. The spectrum of a 2N -site ring
system includes N − 1 pairs of two-fold degenerate energy
levels, i.e., −2 cos(nπ/N ) with n ∈ [1,N − 1] (indicated by
blue lines in Fig. 3); and one pair of gain- or loss-dependent
energy levels, i.e., ±

√
4 − γ 2 (indicated by dashed red lines

in Fig. 3). When the gain or loss γ > 2, the ring system is in
its broken PT -symmetric phase, and the system spectrum has
one conjugate pair.

To analyze the influence of magnetic flux on the system
spectrum, we denote the left side of the critical equation
Eq. (11) as F(γ,�,k), which is a function of parameters γ , �

for eigenvector k �= 0 (note that k = 0 is not the eigenvector
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(a) (b)

E E
FIG. 3. Energy levels for a ring system under trivial magnetic

flux � = 2mπ (m ∈ Z) with (a) N = 5, γ = 0.5 and (b) N = 20,
γ = √

3. The spectrum includes N − 1 pairs of two-fold degenerate
energy levels −2 cos(nπ/N ) where n ∈ [1,N − 1] (solid blue lines),
and also two γ -dependent energy levels ±√

4 − γ 2 (dashed red lines).

when γ �= 0),

F(γ,�,k) =
(

1 − γ 2

4 sin2 k

)
sin2(Nk) − sin2

(
�

2

)
. (12)

The real eigenvector k with F(γ,�,k) = 0 corresponds to
the real eigenvalue Ek of the PT -symmetric 2N -site ring
system. For a situation with gain or loss γ > 2, we have
F(γ,�,k) < 0 for any nontrivial magnetic flux � �= 2mπ

(m ∈ Z); this indicates that the spectrum of the ring system
is entirely constituted by conjugate pairs without any real
eigenenergy. For magnetic flux � = 2mπ + π (m ∈ Z), we
haveF(γ,�,k) = − cos2 (Nk) − γ 2 sin2 (Nk)/(4 sin2 k) < 0,
and the real eigenvector k is absent, i.e., the system spectrum
is entirely constituted by conjugate pairs at γ �= 0.

The PT -symmetric 2N -site ring system has at most one
conjugate pair in its spectrum when the magnetic flux is
� = 2mπ (m ∈ Z ), but it has at most N conjugate pairs when
� = 2mπ + π (m ∈ Z). This implies the system spectrum is
sensitive to magnetic flux, and the number of conjugate pairs
appreciably varies with the magnetic flux. In the following, we
systemically investigate how PT symmetry of the eigenstates
is affected by the magnetic flux and gain or loss. We first
consider a trivial case of effective magnetic flux with � =
2mπ (m ∈ Z): the function F(γ,�,k) reduces to F(γ,�,k) =
[1 − γ 2/(4 sin2 k)] sin2 (Nk). F(γ,�,k) = 0 is the critical
equation for the eigenvector k. We find the eigenvalues are
−2 cos(nπ/N ) with n ∈ [1,N − 1] and ±

√
4 − γ 2. The gain

or loss γ only changes two energy levels, ε± = ∓
√

4 − γ 2,
the eigenvector for ε+ is

k+ = arccos
√

1 − γ 2/4. (13)

Hence, when k+ < π/N , the system spectrum may be entirely
real even if � �= 2mπ (m ∈ Z). This indicates a threshold
gain or loss value, γc = 2 sin (π/N ). When the gain/or loss is
below the threshold (γ < γc), the ring system can be in an exact
PT -symmetric phase. As magnetic flux increases from 0 to π ,
the energy levels with broken PT symmetry simultaneously
emerge from 1 to N pairs. If γ > γc, the PT symmetry
is extremely sensitive to the magnetic flux; any nontrivial
magnetic flux � �= 2mπ (m ∈ Z) breaks the PT symmetry
and causes conjugate pairs to emerge simultaneously. Above
the threshold gain or loss (γ > γc), the ring system remains in
an exact PT -symmetric phase only when � = 2mπ (m ∈ Z).

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

k/π

 

 

γ=0
γ=0.1
γ=0.5
γ=1.732
γ=2
γ=2.5

FIG. 4. F(γ,0,k) for a ring system with N = 5 at various gains or
losses: γ = 0 (solid blue), 0.1 (dashed red), 0.5 (dash-dotted green),√

3 (solid magenta), 2 (dash-dotted black), and 2.5 (dashed cyan).
The black circles show k+ = arccos(

√
1 − γ 2/4) for γ = 0.1, 0.5,√

3, 2. In the region γ > 2 (e.g., γ = 2.5), no real k+ exists, any � �=
2mπ (m ∈ Z) brings all 2N eigenvalues into conjugate pairs. The
horizontal black lines are guides to the eye, which indicate sin2 (�/2)
for a trivial magnetic flux and the maximal magnetic flux that allows
exact PT symmetry at γ = 0.5.

Moreover, the minimal number of complex eigenvalue pairs
in the presence of nontrivial magnetic flux is

D = 2[k+N/π ], (14)

where [x] stands for the integer part of x.
As shown in Fig. 3(a), when γ = 0.5 < γc = 2 sin(π/5),

the ring system keeps in the exact PT -symmetric phase in
the presence of nontrivial magnetic flux. In Fig. 3(b), γ =√

3 > γc = 2 sin(π/20) and k+ = π/3; the minimal number
of energy levels with broken PT symmetry is D = 12 for
nontrivial magnetic flux; the nontrivial magnetic flux breaks
the PT symmetry of the energy levels with |Ek| >

√
4 − γ 2.

We plot function F(γ,0,k) for a ring system with N = 5
in Fig. 4. We can see how the eigenvector is changed into
a complex number by the variations of γ and �. In Fig. 4,
F(γ,0,k) for the ring system at γ = 0, 0.1, 0.5,

√
3, 2, 2.5

are plotted. The black circles stand for the eigenvector k+ =
arccos(

√
1 − γ 2/4) for γ = 0.1, 0.5,

√
3, 2. Note that all 2N

eigenvalues become conjugate pairs for nontrivial magnetic
flux when γ � 2, and for nonzero gain or loss when � =
2mπ + π (m ∈ Z).

Figure 5 shows the energy bands found by numerical diag-
onalization of Hsc in Eq. (4) with N = 5; the corresponding
eigenvector k is in accord with the eigenvector from the critical
equation Eq. (11). For trivial magnetic flux, thePT -symmetric
ring system has only one complex pair when γ > 2. For
nontrivial flux, the energy level degeneracy (Fig. 3 ) disappears.
This is because the nonreciprocal hopping between the coupled
resonators breaks the time-reversal symmetry in the tunneling.
The number of conjugate pairs changes from 1 (D) to N as
magnetic flux � increases from 0 to π for gain or loss below
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FIG. 5. Energy band of a ring system with N = 5 at various gain
and loss values. (a),(b) γ = 0.5, (c),(d) γ = 1.5, and (e),(f) γ = 2.5.
The real parts (in blue) and imaginary parts (in red) are in the left and
right panels, respectively.

(above) the threshold. Figure 5 shows the magnetic flux acting
globally, and the spectrum structure substantially varies with
the magnetic flux at different values of gain or loss.

Now we focus on the influence of magnetic flux on the
PT -symmetric phase diagram. To get the PT -symmetric
phase diagram, we define �c as the maximal magnetic flux
that keeps a ring system in its exact PT -symmetric phase.
The maximal magnetic flux �c depends on the non-Hermitian
γ and indicates the boundary of the PT -symmetric phase
diagram in the � and γ parameter spaces. For a gain or
loss above the threshold, γ > γc = 2 sin (π/5) ≈ 1.1756, any
nontrivial magnetic flux � �= 2mπ (m ∈ Z) breaks the PT
symmetry. In this situation, �c is zero. The PT symmetry is
extremely sensitive to magnetic flux for large values of γ or
N (the gain or loss threshold γc depends on N ).

For a gain or loss below the threshold, γ < γc =
2 sin(π/5) ≈ 1.1756, e.g., γ = 0.5 (Fig. 4, indicated by the
dash-dotted green line), the PT symmetry is robust to the
magnetic flux � when sin2(�/2) is in the region between
the two horizontal black lines shown in Fig. 4. In this situation,
the magnetic flux does not break PT symmetry, and the
system spectrum is entirely real. If γ or � increases from

0 0.5 1 1.50.5

0.6

0.7

0.8

0.9

1

γ

N
k c/π

(a)

FIG. 6. (a) Numerically determined kc where F(γ,0,k) is at
its maximum in region [π/2N,π/N ]. (b) Numerically determined
maximum magnetic flux �c as a function of γ . The lower left (upper
right) region is the exact (broken) PT -symmetric phase. The ring
system is with N = 5.

0, the system goes through a PT -symmetric breaking phase
transmission when F(γ,0,k) < sin2 (�/2) for k ∈ [0,π/N ].
Then the entirely real spectrum disappears and conjugate
pairs emerge. For each γ , the ring system is in its exact
PT -symmetric phase when the magnetic flux is below the
maximal value �c.

To gain insight into PT symmetry under magnetic flux,
we set the function F(γ,0,k) to reach its maximum at
kc in the region k ∈ [0,π/N ], where kc can be calculated
from dF(γ,0,k)/dk = 0. We plot kc and �c in Fig. 6; the
blue lines are obtained by numerically solving the equation
dF(γ,0,k)/dk = 0. The red circles are obtained by numeri-
cally diagonalizing the ring system Hamiltonian; the results
from these two methods are in accord with each other. In
Fig. 6(a), we plot Nkc as a function of γ for the ring system
with N = 5. As γ increases from 0 to γc, kc increases from
π/(2N ) to π/N , the maximal value of F(γ,0,kc) decreases
from 1 to 0, and the maximum magnetic flux �c decreases
from π to 0 [Fig. 6(b)]. Figure 6(b) shows the PT -symmetry
phase diagram of the ring system. We can see the sharp
changes at Nkc = π in Fig. 6(a), and �c = 0 at γc ≈ 1.1756 in
Fig. 6(b).

The maximal magnetic flux �c keeps the ring system in the
exact PT -symmetric phase; it satisfies F(γ,�c,kc) = 0. We
numerically calculate the maximum magnetic flux �c, which
increases as the gain or loss γ decreases. The maximal mag-
netic flux �c as a function of γ is shown in Fig. 7; the colored
lines and markers are numerical results from the theoretical
analysis and exact diagonalization of Hsc, respectively. For
weak γ (γ � π/N ), we approximately have kc ≈ π/(2N ).
Correspondingly, the maximal magnetic flux is approximately
linearly dependent on γ as �c/π ≈ 1 − (2N/π2)γ (indicated
by dashed black lines in Fig. 7). The maximum magnetic flux
�c decreases as ring system size N increases.

The PT -symmetric phase transition is closely related
to the magnetic flux in the coupled resonators enclosed
magnetic flux. By tuning the coupling position of the auxiliary
resonator between resonators 1 and 2N [Fig. 1(b)], the path
lengths of forward- and backward-going directions change,
which linearly affects the magnetic flux. The PT -symmetry
breaking point varies with the magnetic flux; the gain or loss
threshold for PT -symmetry breaking can be greatly reduced
by increasing the enclosed magnetic flux from zero to half a
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FIG. 7. Maximum magnetic flux �c as a function of γ for
a ring system with N = 5 to 10. The colored lines (markers)
are the numerically obtained theoretical analysis (exact diagonal-
ization) of the Hamiltonian Hsc. The dashed black lines indicate
�c/π ≈ 1 − (2N/π 2)γ .

quantum. The PT -symmetry breaking energy levels change
from one pair to N pairs when the enclosed magnetic flux
is so tuned. The PT -symmetry breaking can be observed at
low balanced gain and loss values in coupled resonators with
enclosed magnetic flux.

V. CONCLUSIONS

We investigate PT -symmetric non-Hermitian coupled
resonators in ring configurations threaded by an effective
magnetic flux. The ring system is described by a 2N -site
tight-binding model; the ring system has a balanced pair of
gain and loss located at two opposite sites. We demonstrate
that the system’s PT symmetry is extremely sensitive to
the enclosed magnetic flux when the gain or loss is above
a threshold γc = 2 sin(π/N ). We find the minimal number of
conjugate pairs emerging in the system spectrum when thePT
symmetry is breaking in the presence of nontrivial magnetic
flux. The system eigenvalues all become conjugate pairs at a
magnetic flux � = 2mπ + π (m ∈ Z) for any nonzero γ ; or at
a gain or loss twice as large as the hopping strength (γ > 2) for
any nontrivial magnetic flux �. We show the PT -symmetric
phase diagram in the parameter spaces of γ and �. The results
indicate that the maximal magnetic flux approximately linearly
depends on γ as �c/π ≈ 1 − (2N/π2)γ in the weak γ region
(γ � π/N ). The maximal magnetic flux decreases as the gain
or loss or the system size increases. Our findings indicate that
PT symmetry is very sensitive to the nonlocal vector potential
in this PT -symmetric non-Hermitian system. These results
could be useful in quantum metrology in the future.
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