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The basic question is addressed of how the space dimension d is encoded in the Hilbert space of N identical
fermions. There appears a finite number N !d−1 of many-body wave functions, called shapes, which cannot
be generated by trivial combinatorial extension of the one-dimensional ones. A general algorithm is given to
list them all in terms of standard Slater determinants. Conversely, excitations which can be induced from the
one-dimensional case are bosonized into a system of distinguishable bosons, called Euler bosons, much like
the electromagnetic field is quantized in terms of photons distinguishable by their wave numbers. Their wave
functions are given explicitly in terms of elementary symmetric functions, reflecting the fact that the fermion
sign problem is trivial in one dimension. The shapes act as vacua for the Euler bosons. They are the natural
generalization of the single-Slater-determinant form for the ground state to more than one dimension. In terms of
algebraic invariant theory, the shapes are antisymmetric invariants which finitely generate the N -fermion Hilbert
space as a graded algebra over the ring of symmetric polynomials. Analogous results hold for identical bosons.
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I. INTRODUCTION

Quantum effects are sometimes counterintuitive because
physics happens in the space of wave functions, not in
the geometrical “laboratory” space of Newtonian mechanics.
Conversely, molecular isomerism, the phenomenon that a
given set of identical atoms can arrange itself in molecules of
different shapes, is quite intuitive geometrically. The question
arises of how it is manifested in wave-function space. The
discreteness of wave functions must somehow limit the relative
positions in laboratory space. In particular one would like to
have a qualitative understanding which arrangements in space
are allowed at all, without a full calculation.

The choice of ground-state wave function—i.e., particular
shape among possible isomers—is evidently related to the
choice of a wave function with pronounced correlations, or
collectivity. The notion of collectivity is usually taken to mean
that the energy cannot be expressed as the sum of energies
of single-particle wave functions. That intuition cannot be
literally true, because the Kohn-Sham theorem [1] shows that it
is possible to construct artificial single-particle states precisely
by the requirement that the exact ground-state energy can be
expressed in this way.

Since Dirac introduced them [2], Slater determinants [3]
have been the only fundamental antisymmetric forms available
to construct optimized wave functions. Being a complete basis
for the N -body Hilbert space, they encourage a functional-
analytic, essentially structureless, view of that space, as a
vector space in which the ground state is just one particular
linear combination of Slater determinants among many.

In particular, the Kohn-Sham method [1] is a special
search in coefficient space, constrained by the requirement
that the final linear combination can be written as a single
Slater determinant in some new single-particle wave functions.
However, the restriction to a Slater-determinant form is
arbitrary, basically due to a lack of a priori alternatives.
The price paid for it is that the new single-particle wave
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functions are artificial, even if the ground-state energy is
correct. If the restriction is relaxed, the lack of structure in
the functional-analytic approach (one set of c numbers is in
principle as good as another) leads to the impression that there
is an infinity of possibilities to choose from.

Motivated by the above considerations, the present work
explores a related but more qualitative idea of collectivity,
based on wave-function properties rather than energies. If the
single-particle wave functions are separable in the Cartesian
coordinates of laboratory space, good candidates for many-
body collective states should not inherit this separability. Such
states are multidimensional in some nontrivial way, which is
given a rigorous meaning here.

The main result is that there exist precisely N !d−1 anti-
symmetric forms, called shapes, which are the basic building
blocks of any antisymmetric N -body wave function in d

dimensions. This result is rooted in the algebraic theory of
invariants [4]; indeed it is expected in that context (known
as “Hilbert’s 14th problem”). However, it is unexpected to
physicists and chemists, who are trained in the functional-
analytic rather than algebraic approach to Hilbert spaces. In
the former case, Hilbert space is viewed as a vector space
spanned by an infinity of Slater determinants �i , in which any
wave function may be written as

� =
∑

i

ci�i, (1)

where the ci are c numbers. When a vector space is endowed
with an additional vector multiplication operation, it becomes
an algebra. When the vectors are complex functions, the natural
vector multiplication is just ordinary multiplication of func-
tions. The switch to the algebraic approach is thus technically
manifested as a generalization of the ci to symmetric functions
of the space coordinates. Then it turns out that the sum becomes
finite: many-body Hilbert space is a finite-dimensional algebra.
Only a finite number of antisymmetric forms �i is needed to
generate the whole Hilbert space, now viewed as a graded
algebra over the ring of symmetric polynomials (for N finite).
These forms �i are just the generators of the Hilbert-space
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algebra, called shapes here. In one dimension, there is only
one shape, which is the ground-state Slater determinant. Thus
shapes are generalizations of this particular Slater determinant
to more than one dimension. They can always be expressed
as superpositions of Slater determinants, because the latter are
a complete basis. The connections between the algebraic and
functional-analytic points of view for the physical N -body
problem have only begun to be explored in the present work.

The shapes extend the notion of a vacuum state in an
explicit and formally rigorous sense: the usual ground-state
energy shift exp (−βEgs) ≡ qEgs in the partition function
is replaced by a shape polynomial P (q), which counts all
possible antisymmetric forms which can play the role of
a vacuum. It is the generating function of the shapes. An
algorithm is provided which generates the Hilbert-space span
of all shapes in terms of Slater determinants. It may be
interpreted as a machine-assisted way to generate ansätze for
correlated ground states when d > 1.

Excitations of any one of these vacuum states are described
by the symmetric-function coefficients; in other words, they
are bosonic. In contrast to the shapes, they can be extended
from d = 1 as if the space directions were color labels,
combined in all possible ways. These symmetric states are
called Euler bosons, because their partition function was first
obtained by Euler [5]. Euler bosons cannot exist by themselves.
Each wave function in the scheme is based on some single
shape, with or without an arbitrary number of excitations
(Euler bosons) on top of it. In brief, the shapes represent all
possible many-body vacua for the Euler bosons.

The classification in the present form does not include spin,
and refers to only one kind of particle. Neither is an essential
limitation. Including spin and different kinds of particles
amounts to combining several generating algorithms of the
type introduced here multiplicatively, which is unnecessary
for an initial description. It is possible to think of the states
here as referring to a concrete system, such as entangled
atoms [6], or electrons in a quantum dot [7,8], or in the
vacancy of an electride [9], but an important aspect of
the results is their abstraction and generality, based on a
topological (node-counting) classification of wave functions,
which is universal. In fact the basic algorithm operates at
the level where single-particle wave functions are represented
by formal powers, so that a term like tk refers to Hermite
polynomials Hk(x) in one realization and to standing waves
sin(k + 1)x in another. No result depends on the particular
realization.

The article consists of two parts. The first is a self-contained
derivation of all the results in an abstract setting. The basic
counting result is established, with a recursion for the shape
polynomial. The one-dimensional case is solved in terms
of the Euler bosons. A polynomial deflation algorithm is
introduced to express the Euler-boson wave functions in terms
of standard Slater determinants. This algorithm is used in
d > 1 to represent all trivial (separable) states in an ordered
succession of subspaces, finding the shapes as the remainder
(orthogonal complement) at each level. The second part
consists of examples and illustrations. For N = 3 particles
in d = 2 dimensions, all the six shapes are constructed step
by step. Some numerical experiments are performed with the
Coulomb interaction, to check that the scheme is not unstable

with respect to it. Variational functions and simulations are
discussed, with a minimal example.

While all the main formulas refer to fermions, in general
the results for identical bosons are very similar. This may
have direct repercussions for systems of entangled atoms.
The bosonic case is compared to the fermionic one at the
end, before the discussion and conclusions. Some textbook
mathematics is collected in the Appendixes to make the article
better self-contained.

II. BASIC COUNTING RESULT

A. Partition function

In physics, the partition function, or sum over states, is
typically used in the context of thermodynamics, with the idea
that each “state” being counted is thermodynamically possible,
in the sense that it is an energy level of the actual system
under consideration. In the present work, a more general
approach is taken, where a state is simply any wave function,
irrespective of whether there exists a Hamiltonian of which
it is an eigenfunction. The only requirement on the partition
function is that it count the states faithfully, i.e., each distinct
wave function should appear exactly once.

If the single-particle wave functions are separable in
Cartesian coordinates, there is a natural organizing principle
for counting all states. Each many-body Slater determinant
built out of such single-particle wave functions has some
number of single-particle nodes in each direction in space, say
nx , ny , nz, for d = 3. The list of all Slater determinants with
a given total number of nodes E ≡ nx + ny + nz is evidently
finite. Increasing the total number of nodes one by one, all
possible wave functions appear exactly once, so they can be
counted faithfully.

The above scheme introduces the important notion of
grading, which is just counting the total number of nodes E.
All N -body wave functions spanned by Slater determinants of
the same grade E form a closed subspace of the Hilbert space,
because a linear combination of such functions is itself a wave
function of the same grade.

Clearly, one realization of this scheme is the familiar
harmonic-oscillator well, for which the grade E is also the
energy, so that the graded states are simultaneously energy
eigenstates, and the sum over states, organized by grade,
also has the usual thermodynamic meaning. Although the
harmonic-oscillator picture is very useful for the visualization
of various results, it should not be construed that they are
valid only for the oscillator. Even the limitation to separable
single-particle wave functions is not strictly necessary. It is
retained throughout this article to fix ideas, because it easily
produces explicit formulas. The main result is an intrinsic
property of N -body Hilbert space, because the dimension of
an algebra (the number of its generators) does not depend on
any particular realization.

In order to implement the main idea from the Introduction,
one should see how many N -body wave functions in d

dimensions one can obtain which are separable across the
space dimensions. If the N -body functions in one dimension
are counted by some partition function, call it ZE , then all
separable states are counted by (ZE)d . These are explicitly

062109-2



NATURAL GENERALIZATION OF THE GROUND-STATE . . . PHYSICAL REVIEW A 93, 062109 (2016)

constructed by labeling the space directions with different
colors, and combining the corresponding 1D wave functions in
all possible ways. It follows from this interpretation that these
states are not all that can be found when d > 1. The reason
is that the Pauli principle operates only upon the exchange of
the full (vector) coordinates of a pair of particles, while the
iterated d = 1 states impose the antisymmetrization for each
axis (coordinate projection) individually, so that they are too
restrictive when d > 1.

Therefore, the essential idea of the present classification is
to write the partition function of the d-dimensional system of
N identical fermions as

Zd = (ZE)dPd (N,q). (2)

For d = 1 the ansatz reduces to

Z1 = ZEP1(N,q) ≡ ZEqEgs (N), q = e−βε, (3)

where Egs(N ) is the ground-state energy in units of ε. The
“extra” states allowed by the Pauli principle for d > 1 are
counted by the factor Pd , which reduces in one dimension
to a single monomial, the “energy shift” which counts the
nodes of the ground state wave function. These extra states
are called shapes, and the term Pd which counts them turns
out to be a polynomial for d > 1, called the shape polynomial.
For a graded counting scheme (harmonic well), ZE was first
obtained by Euler [5], hence the index E. (ZE is the same for
bosons and fermions, only Egs is different [5,10].) It will be
shown now that the total number of shapes is finite, Pd (N,q =
1) = N !d−1, independent of any particular counting scheme,
which proves that Pd as defined above is always a polynomial.

B. High-temperature limit

The noninteracting partition function for N fermions in d

dimensions obeys the well-known recursion relation [11,12]

Zd (N,β) = 1

N

N∑
m=1

(−1)m+1zd (mβ)Zd (N − m,β). (4)

Here zd (β) ≡ Zd (1,β) is the one-particle partition function,
while Zd (0,β) ≡ 1. In the infinite-temperature limit β → 0,
or q → 1, the term m = 1 dominates the sum on the right,
because the factor zd (mβ) is then the same for all values of m,
while the factor Zd (N − m,β) for m = 1 strongly dominates
those with N − 2 and less particles, when the temperature is
high. Inserting the ansatz (2), one gets (ZE = Z1 at q = 1)

NZ1(N,0)dPd (N,1) = zd (0)Z1(N − 1,0)dPd (N − 1,1).

(5)

At β = 0, Z1(N,0) = z1(0)N/N! (classical limit with Boltz-
mann counting), so that

Nz1(0)NdPd (N,1)/N!d

= zd (0)z1(0)d(N−1)Pd (N − 1,1)/(N − 1)!d . (6)

Because the kinetic energy is additive in the space dimensions,
we have zd (0) = z1(0)d , so that finally

Pd (N,1) = Pd (N − 1,1)Nd−1, (7)

which gives

Pd (N,1) = N !d−1, (8)

as advertised in the Introduction. This result is general and
exact, because any system is a gas at sufficiently high
temperature. Taking logarithms, it means that the nontrivial
states (shapes) have an extensive but finite contribution to the
free energy, which saturates at sufficiently high temperature.
Because the number of shapes is finite, Pd is a polynomial.

C. Shape polynomial

The above asymptotic result has been obtained without
reference to any particular counting scheme, or even one-body
separability: there are always N !d−1 many-body wave func-
tions which cannot be induced from the one-dimensional ones.
Among all general counting schemes, the grading scheme
is distinguished by the partition function being explicitly
solvable. In one dimension, the sum over fermion states as
counted by nodes is [10]

Z1 =
∑

0�n1<···<nN <∞
qn1+···+nN

= qN(N−1)/2 1

1 − q

1

1 − q2
· · · 1

1 − qN
, (9)

a result due to Euler [5]. (In the harmonic oscillator inter-
pretation, this result counts the states of N fermions in a 1D
oscillator well, with εn = n�ω and q = e−β�ω.)

Comparing Eqs. (3) and (9) identifies the 1D partition
function ZE [5]. Hence the ansatz (2) for the d-dimensional
partition function reads

Zd (N,β) = Pd (N,q)

(
N∏

k=1

1

1 − qk

)d

. (10)

The dth power gives the trivial extension of the 1D case to d

dimensions. The extra term Pd (N,q) can now be calculated
explicitly, proving that the ansatz is solvable when ZE counts
wave functions by grade.

Inserting the ansatz (10) into the recursion (4) gives (this
formula was first derived by D. Svrtan)

NPd (N,q) =
N∑

k=1

(−1)k+1[CN
k (q)

]d
Pd (N − k,q), (11)

where Pd (0,q) = Pd (1,q) = 1, and

CN
k (q) = (1 − qN ) · · · (1 − qN−k+1)

(1 − qk)
(12)

is a polynomial, because k always divides one of the k

successive powers of q in the numerator. Therefore, Pd (N,q)
is also a polynomial, as expected for a generating function
of a finite number of states. For the oscillator, the degree of
this polynomial is the energy cutoff above which the shapes
saturate.

Significantly, the recursion (11) includes the ground-state
shift E0 into the degree of the polynomial Pd (N,q), which
provides formal reason to claim that the ground state is a
shape. This carries over even to d = 1, where Pd consists of
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a single term. The recursion finds the ground-state number of
nodes (energy) as the lowest power of the polynomial Pd (q).

III. BOSONIZATION OF THE 1D FERMI GAS

A. Euler bosons

Apart from the finite shift (“ground-state energy”) N (N −
1)/2, the remaining terms in Eq. (9) may be interpreted as
the appearance of N harmonic oscillators, mutually distin-
guishable, each having a different energy spacing, �ωk = k�ω,
k = 1, . . . ,N , but without a zero-point energy of their own.
The principal purpose of this section is to obtain the wave
functions of these Euler bosons.

The factored form of Eq. (9) suggests that an arbitrary
excited state consists of two independent parts, so that its
wave function may be factored as well,

� ≡ ��0, (13)

where �0 is the ground-state Slater determinant, and � an
arbitrary one, describing an excitation in terms of some single-
particle functions φk(x). Here �0 accounts for the ground-state
shift, while � is a symmetric function in the N variables,
defined above as the ratio of the two Slater determinants. The
principal observation now is that any 1D Slater determinant
� is divisible by the ground-state determinant �0; therefore,
� is a concrete symmetric polynomial, so that Eq. (13) is not
just a notational trick. Namely, the 1D single-particle wave
functions consist of three parts,

φk(x) = Nkpk(x)g(x), (14)

a norm Nk which depends only on the quantum number, but
not on the variable, an orthogonal polynomial pk(x) which
depends on both, and possibly a localization (e.g., exponential)
term g(x) which depends on the variable but not on the
quantum numbers. The norm and localization terms can be
factored out from the Slater determinants, because these have
the same quantum numbers in each row, and the same variable
in each column. These terms cross out in the numerator and
denominator, up to a trivial overall factor. Therefore, the
only parts remaining in the determinants themselves are the
orthogonal polynomials.

A Slater determinant of polynomials is itself a polynomial.
It vanishes whenever any two variables are equal, xi = xj for
i �= j . By the fundamental theorem of algebra, it must contain
a term (xi − xj ) in its root factorization for all pairs i �= j .
The denominator �0 contains all these terms to lowest order,
because the ground state has the smallest number of nodes.
Hence it divides the numerator �. [The same conclusion
applies when pk(x) are trigonometric functions, which are
algebraically just shifted polynomials, cos kx ↔ uk + u−k .]

The above reasoning is reduced to its essence if each
single-particle wave function is replaced by a symbolic power
counting the number of nodes,

φk(xi) → t ki , i = 1, . . . ,N. (15)

In this form it appears in mathematics textbooks, which
leave the “general” polynomial case as an exercise for the
reader to be convinced that it brings nothing new [13]. The
denominator �0 then becomes the well-known Vandermonde

determinant [13],

�0 = 	(t1, . . . ,tN ) ≡
∏

1�i<j�N

(ti − tj ). (16)

This symbolic-power representation is the level of abstraction
which we adopt now. One can always specialize to the
single-particle wave functions for a particular problem by
a reverse of the same mapping, the important point being
that it preserves the grading. The scheme works because it
encodes the essential behavior of nodes under multiplication
and addition of functions. If two functions are multiplied, the
number of nodes is added. If the functions are added, the
number of nodes stays the same as that of the function with
the larger number of nodes. Pure powers behave in exactly the
same way. In this abstract representation, the ratio � is called
the Schur function [14] (see the Appendixes). The physical
statement that the Slater determinants span the whole Hilbert
space is mirrored by the statement that the Schur functions are
a complete basis for the symmetric polynomials.

From a physical point of view, the new insight is that there
is “really” only one antisymmetric many-body function in one
dimension, and that is the ground-state Slater determinant:

∑
i

ci�i =
(∑

i

ci�i

)
�0, (17)

where �i are arbitrary Slater determinants, and �i are the
corresponding Schur functions. Clearly the term in parentheses
is a bosonic wave function. The factored form reflects the
factored sum over states (9), where �0 accounts for the
constant term qN(N−1)/2, corresponding to the ground state.
The remaining question is the following: which wave functions
correspond to the geometric series in the other factor of the
partition function? These are the wave functions of the Euler
bosons, which describe all possible excitations.

One can guess the correct abstract form by considering
the harmonic oscillator, because for the latter there exists an
explicit realization of the mapping (15). It is the Bargmann
transform [15,16], which carries Hermite functions ψn(x) of a
real variable x into powers of a complex variable t :

B[ψn](t) = 1

π1/4

∫
R

e− t2+x2

2 +xt
√

2ψn(x) = tn√
n!

. (18)

The Bargmann-transformed oscillator Hamiltonian is then

H =
N∑

i=1

(
ti∂ti + 1/2

)
�ω. (19)

Inserting the decomposition (13) into the Schrödinger equation
H� = E�, the equation for � becomes

N∑
i=1

(
ti∂ti

)
� = E − E0

�ω
�, (20)

which is clearly solved by any homogeneous polynomial in
the ti . Notice how the zero-point term from �ω/2 has been
absorbed into E0, i.e., the left-hand side lacks the usual 1/2.
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This equation is “first quantized,” because the requirement that
� be symmetric in the ti must be added extraneously. To obtain
a primitive realization of the symmetry requirement (“second
quantization”), invoke the change of variables

e1 = t1 + · · · + tN =
∑

i

ti ,

e2 = t1t2 + t1t3 + · · · + tN−1tN =
∑
i<j

ti tj ,

...

eN = t1t2 · · · tN . (21)

The ek are just the elementary symmetric functions, appearing,
e.g., in the Viète formulas for the coefficients of the polynomial
(t − t1) · · · (t − tN ), whose roots are the ti . As is well known,
the transformation from roots to coefficients is regular as long
as all ti �= tj . Its Jacobian in Bargmann space (volume element
dReti dImti) is the square of the Vandermonde determinant
(16), J = |	|2.

All symmetric functions in the ti can be rewritten in the ek .
The ek are eigenfunctions of Eq. (20) with eigenvalue k, so the
Hamiltonian is transformed to the ek basis as

N∑
i=1

(
ti∂ti

) =
N∑

k=1

k
(
ek∂ek

)
, (22)

whose eigenfunctions are all the monomials e
n1
1 · · · enN

N , with
eigenvalue n1 + 2n2 + · · · + NnN , and no symmetry restric-
tions: the ei are therefore distinguishable, as implied by Euler’s
factorization in Eq. (9). Hence functions of the ek are a
second-quantized representation for the original many-body
fermionic excitations, yet the representation is purely bosonic.
The ek are a complete basis for the symmetric functions, and
all their monomials are generated by the formal expression

1

1 − e1

1

1 − e2
· · · 1

1 − eN

. (23)

Because ek has the eigenvalue k, substituting ek = qk in
the above expression will give the corresponding canonical
partition function, recovering Euler’s result. Obviously, the
monomial e

n1
1 e

n2
2 . . . e

nN

N is the wave function of n1 Euler
bosons of type 1, n2 of type 2, etc. This identification is the
main result of the present section. It obviously carries over to
the formal-power representation, again because the energy in
the oscillator case is the grading, or polynomial degree, in the
general case.

Two things have been accomplished by identifying the
Euler bosons. The most important one is finding a generating
function for their wave functions, Eq. (23), which corresponds
precisely to the sum over states which counts them, Eq. (9).
This will enable “lifting” the present result to d dimensions by
way of Eq. (10) and thus identifying the wave functions of the
shapes, counted by Pd (N,q), which is the main purpose of the
present article.

The other is a more qualitative development: Euler boson
excitations have direct physical connotations. Namely, the
transformation (21) is nonlinear, progressing from a pure sum
to a pure product. In physics, product wave functions corre-
spond to (noninteracting) gases, while sum wave functions

are typically used as trial wave functions for liquids. In other
words, the progression from e1 to eN is physically in terms
of decreasing collectivity: the lowest-grade Euler boson e1 is
the most collective (liquidlike), while the highest-grade eN

is least collective (most gaslike). This simplicity of physical
interpretation pleasantly reflects their mathematical simplicity,
because of which they may be readily calculated by Viète’s
interpretation above, deserving the name elementary symmet-
ric functions. By contrast, Schur functions are sophisticated
combinatorial objects. The most efficient prescription for their
calculation is to interpret them as generating functions of
semistandard Young tableaux, which is quite a surprising
insight [14] (see the Appendixes). There is no simple physical
interpretation of this property, accounting perhaps for the
fact that representations of collective states in terms of Slater
determinants are rarely physically transparent.

B. Deflation algorithm

In the previous section, it was found that Euler bosons
are the natural basis of graded one-dimensional N -fermion
wave functions. Slater determinants are in a sense redundant:
only one Slater determinant, the ground state, is sufficient to
generate the whole Hilbert space, with excitations described in
terms of Euler bosons. In order to generalize this result to more
than one dimension, it is necessary to obtain the Euler-boson
wave functions in terms of standard Slater determinants.

First one must deal with a slight complication. Compare
the wave functions e2�0 and e2

1�0, say. Because e2
1 = (t1 +

t2 + · · · )2 contains terms like t1t2, which also appear in e2 =
t1t2 + · · · , the two wave functions will not be orthogonal. It is
much better to interpret the powers ek

i appearing in Eq. (23)
by raising individual monomials in them to the required power
without cross terms, e.g., e2

1 → t2
1 + t2

2 + · · · , or in general

ek
m →

∑
1�i1<···<im�N

(
ti1 · · · tim

)k
, (24)

which clearly keeps the terms orthogonal, because now no
monomial appears twice in the various geometric series.
[Technically Eq. (24) is a composition, or plethysm, of the
em and power sums pk [14].]

The deflation algorithm operates as follows. Take any
monomial wave function containing Euler bosons, e.g.,
e1e

2
2�0. By power counting, this state belongs to the fifth-

excited “oscillator” level above the ground state. Expand it as
a polynomial in the formal variables ti . All Slater determinants
in the fifth level can be similarly expressed as polynomials
in the same ti . Now it is simply a matter of ordering
the polynomial terms in some definite (say lexicographic)
order, to see which Slater determinant contains the leading
order monomial of the given polynomial wave function, and
subtracting it with the appropriate coefficient. Then the leading
power of the remainder is determined, and subtracted in the
same way. Because the Slater determinants are a complete
orthogonal basis for each level, this procedure is guaranteed to
terminate.

In fact the procedure is redundant. The Slater determinants
can themselves be factored as in Eq. (13), so there is
no need to multiply out the term �0. The problem boils
down to expressing a given product of sums like (24) in
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Schur functions, which is just a basis transformation among
symmetric functions. The reason for stating the algorithm in
the less efficient formulation is that it then generalizes directly
to several dimensions, where the analogous generalization of
Schur functions is not available.

It is essential for the deflation algorithm that one deal with
Slater determinants of unnormalized single-particle states. In
practice, this means using formal powers t ki , instead of t ki /

√
k!

as in Bargmann space. All superpositions of Slater determi-
nants are obtained among such unnormalized determinants,
and normalized as superpositions only after being mapped
back to some concrete realization. This will become clear in
the example in the second part of the paper.

The above technical considerations reflect a change of
viewpoint. The deflation algorithm in the algebraic approach
corresponds to taking projections in the standard functional-
analytic approach. The algebraic approach, chosen by the
mapping (15), brings one to consider N -fermion Hilbert space
as a space of antisymmetric polynomials, graded by their
degree. In one dimension, this space maps straightforwardly
on the space of symmetric polynomials, which is one way to
understand why the fermion sign problem [17] is trivial when
d = 1. While this insight is undoubtedly interesting, the true
advantage of the algebraic approach appears in more than one
dimension. There it uncovers a fundamental structure of many-
body Hilbert space which is hidden in the functional-analytic
approach, as will become apparent in Sec. IV B below.

IV. MULTIDIMENSIONAL CASE

A. Slater determinants

A Slater-determinant state is obtained by denoting single-
particle wave functions as formal powers in d-plets of variables
for each particle, say the triplet t,u,v for d = 3. Then a general
(unnormalized) Slater determinant is written, e.g., for N = 2
particles

| �m1, �m2| = ∣∣tm11
1 u

m12
1 v

m13
1 ,t

m21
2 u

m22
2 v

m23
2

∣∣
=

∣∣∣∣∣t
m11
1 u

m12
1 v

m13
1 t

m11
2 u

m12
2 v

m13
2

t
m21
1 u

m22
1 v

m23
1 t

m21
2 u

m22
2 v

m23
2

∣∣∣∣∣. (25)

An absolute ordering (e.g., lexicographic) on the d-
dimensional integer vectors �mi , i = 1, . . . ,N , is required to
fix the phase of the Slater determinants, which need not be
explicit here. An example, to be used later, is the ground state
of N = 3 particles in d = 2 dimensions:

g0 ≡ |(1,0),(0,1),(0,0)| = |t1,u2,1| =
∣∣∣∣∣∣
t1 t2 t3
u1 u2 u3

1 1 1

∣∣∣∣∣∣.
(26)

B. General algorithm for shape wave functions

As noted before, the factorized form of the wave function (17)
follows the factorization (9) of the sum over states. Similarly
the d-dimensional sum over states (10) implies the general

form [4]

Pd (N,q=1)∑
i=1

�i�i (27)

for wave functions, where the �i are d-dimensional Euler
boson states, and the �i are all the Pd (N,q = 1) states counted
by the factor Pd (N,q) in the expression (10). These states
have been called shapes above. Clearly they generalize the
ground-state Slater determinant in Eq. (17) in such a way
that an arbitrary wave function can be expressed in terms
of shapes, which must be antisymmetric wave functions,
because the �i are symmetric. In Sec. II B, it has been proven
completely generally that Pd (N,q = 1) = N !d−1; therefore,
the whole N -fermion Hilbert space can be finitely generated
with the shapes as basic antisymmetric building blocks. They
are generators of the finite-dimensional Hilbert-space algebra
induced by wave-function multiplication. This is the main
result of the present work, announced in the Introduction. The
purpose of this section is to generate the shape basis explicitly,
amounting to a constructive proof of the same result.

One can combine the deflation algorithm with the d-
dimensional extension of Eq. (23) to obtain all the shapes.
All possible Euler boson wave functions in d dimensions are
obtained simply by multiplying d copies of Eq. (23), one for
each set of variables ti ,ui, . . ., representing the directions in
space:[

1

1 − e1(t)
· · · 1

1 − eN (t)

][
1

1 − e1(u)
· · · 1

1 − eN (u)

]
· · · ,

(28)

where, e.g., e1(u) = u1 + · · · + uN , and so on. There is no
similar closed generating formula for the wave functions of
the shapes, which would analogously correspond to the shape-
polynomial factor Pd (N,q) in the counting expression (10).
Instead we resort to the following constructive algorithm.

Start with shapes at zeroth level, which are just the Slater
determinants spanning the (possibly degenerate) ground-state
level, which contains no Euler bosons. Excite them by
multiplying them with Euler bosons, noting that there are
only d Euler bosons which carry one quantum of excitation,
namely the e1 monomials, one for each direction in space.
Multiplying the ground state(s) with them gives all the states
containing Euler bosons (“trivial states” for short) at the first
excited level, so if it contains more than d states, the remainder
(orthogonal complement) are the shapes at first level. After
applying the deflation algorithm to find the span of the trivial
states in terms of Slater determinants, a standard algebraic
algorithm is invoked to find the orthogonal complement of
this vector space. The dimension of the complement space is
given by the corresponding coefficient in the shape polynomial
Pd (N,q), which is a useful check on the implementation.
Now one iterates the procedure, multiplying the first-level
shapes with the Euler bosons e1, and adding the ground
states multiplied by all two-quanta bosons, like e2 and e2

1,
to obtain all the trivial states in the second level. The span
of the so-generated second-level trivial space is again found
by the deflation algorithm. The second-level shapes are the
orthogonal complement to that space, and so on until all shapes

062109-6



NATURAL GENERALIZATION OF THE GROUND-STATE . . . PHYSICAL REVIEW A 93, 062109 (2016)

predicted by the shape polynomial are found. In this way, the
algorithm finds the Hilbert space span of the shapes explicitly,
defining them rigorously up to basis transformations in the
orthogonal-complement space at each level. The constructive
proof of Eq. (27) is thus complete.

The algorithm is not efficient, because it finds all the states,
while the number of trivial states rises quickly even as the
shapes die out. For example, for N = 3 particles in d = 3
dimensions, the total number of shapes is 3!2 = 36. The shape
polynomial reads

P3(3,q) = q9 + 3q7 + 7q6 + 6q5 + 6q4 + 10q3 + 3q2

(29)

(note the triply degenerate ground state), so there is a single
shape in the seventh excited level (coefficient of q9). But the
degeneracy of the seventh level is 3838, so the algorithm
spends most of its time finding the span of the 3837 trivial
states with 9 nodes, in order to extract the last single shape.

The dth power appearing in the factorization (10), as
reflected by Eq. (28) in the above construction, allows a
refinement of the expression (27) in general. Namely, the terms
�i can always be written, e.g., in three dimensions,

�i =
∑
jkl

ci
jkl�

x
ij�

y

ik�
z
il, (30)

where the �x,y,z are Euler-boson monomials, each corre-
sponding to a particular direction in space (Cartesian axis). In
other words, the �i are superpositions of terms independently
symmetric in the N variables (coordinate components) along
each of the d directions in space. This form is far from the
most general one in all Nd coordinates, symmetric upon
exchange of any two particle indices. [For example, terms
like t1u2 + t2u1 cannot appear alone, but only embedded in
factored expressions like (t1 + t2)(u1 + u2).] It is interesting
that such a strong restriction on the coefficients �i still
generates the whole N -fermion Hilbert space. Physically, it
means that the shapes are the only “genuinely” d-dimensional
states; all excitations of the shapes may be reached as if the
directions in space were different colors.

On a lesser note, the trivial states generated by the
algorithm are not always orthogonal, because multiplication
of various shapes with different Euler bosons can produce the
same monomials. Experience with standard quantum chemical
calculations [18] suggests that little would be gained by
orthogonalizing these vectors explicitly, especially because the
overlap matrices among the trivial states are quite sparse. There
is a physical interpretation both of the overlaps, and of the
sparseness. The overlap indicates the possibility that exciting
some shape with an Euler boson, and then shedding a different
Euler boson, will give another shape. Such reconfiguration by
excitation is observed sometimes, but cannot be too easy if the
shapes are robust, hence the sparseness.

V. EXAMPLES

A. Case d = 2 and N = 3

The present example serves as an illustration of the algo-
rithm, and of the inverse mapping which recovers a concrete
realization of the shapes from the abstract representation. It

is the simplest nontrivial multidimensional case. The partition
function (10) is

(q2 + 4q3 + q4)

[(
1

1 − q

)(
1

1 − q2

)(
1

1 − q3

)]2

= q2 + (1 × 2 + 4)q3 + (1 × 5 + 4 × 2 + 1)q4 + · · · ,

(31)

where q2 + 4q3 + q4 = P2(3,q) is the shape polynomial,
predicting six shapes, one of which is the ground state,
Eq. (26). The first-excited manifold is spanned by six Slater
determinants:∣∣t2

1 ,t2,1
∣∣ ≡ g11, |t1u1,t2,1| ≡ g12,∣∣u2

1,t2,1
∣∣ ≡ g13,

∣∣t2
1 ,u2,1

∣∣ ≡ g14, (32)

|t1u1,u2,1| ≡ g15,
∣∣u2

1,u2,1
∣∣ ≡ g16.

The deflation algorithm gives the Euler-boson states at first
level:

e1(t)g0 = (t1 + t2 + t3)g0 = −g12 + g14,
(33)

e1(u)g0 = (u1 + u2 + u3)g0 = −g13 + g15,

where g0 is the ground state (26). The four states orthogonal
to them are the shapes predicted by the term 4q3 in P2(3,q):

S11 = g11, S12 = g12 + g14,
(34)

S13 = g13 + g15, S14 = g16.

At the second level, spanned by 14 Slater determinants,
the partition function breaks down the multiplicity as 14 =
1 × 5 + 4 × 2 + 1, which amounts to the following: (a) the
ground state g0 multiplied by any of e1(t)2, e1(u)2, e1(t)e1(u),
e2(t), or e2(u); (b) any of the four shapes (34) at first level,
multiplied by either e1(t) or e1(u); (c) finally the last shape,
orthogonal to the 13 trivial states just listed. It is

S2 = ∣∣t1u2
1,t2,1

∣∣ − ∣∣t2
1 u1,u2,1

∣∣ + ∣∣t2
1 ,u2

2,1
∣∣ − |t1u1,t2,u3|.

(35)

To visualize these states in real space, one must map
the abstract (node-counting) representation back to some
concrete realization. A standard model for electrons in a
quantum dot is to place them in a harmonic oscillator potential
[7,8]. For the oscillator potential, the required inverse of the
mapping (15) is

t ki → φk(xi) = Hk(xi)e
−x2

i /2, (36)

and similarly for the other directions, with Hk the Her-
mite polynomial. This mapping operates uniquely only on
monomials like t kum, because t ktm = t k+m does not imply
φk(x)φm(x) = φk+m(x). Hence it should be applied to factored
expressions like �� only after expanding them in the abstract
representation first.

The normalized single-particle densities corresponding to
S11, S12, and S2 are shown in Fig. 1. Note that S11 is just the
ground state of the one-dimensional system, appearing as a
first-excited state in two dimensions. S13 and S14 are rotated
by 90◦ with respect to S11 and S12, so there are only four
“essentially” different shapes, not six, including the ground
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FIG. 1. Single-particle densities for S11, S12, and S2 in the
oscillator potential. The scale is the oscillator length a = √

�/mω.

state. Obviously, this redundancy is related to the invariance
under relabeling of the axes.

Notably, the shape S12 = g12 + g14 and the trivial state
e1(t)g0 = −g12 + g14 have the same single-particle density
matrix, because the Slater determinants g12 and g14 differ
in two orbitals, so the cross terms g12 × g14 vanish when
integrated in all but one variable. This means they are part of
the same manifold of wave functions over which the density
functional is determined by minimization in the Hohenberg-
Kohn [19] approach, for a given density n:

F [n] = min
{�:ρ[�]=n}

〈�|Ĥ0 + V̂ee|�〉. (37)

They differ in the correlation (two-particle) density matrix, as
shown in Fig. 2.

The whole discussion above could have been carried out
equally well for electrons in a box, with the mapping

t ki → cos kxi, uk
i → cos kyi (38)

FIG. 2. Two-particle densities for e1(t)g0 and S12 in the oscillator
potential, along the cut �x1 = (x,x) and �x2 = (y,y). The scale is the
same as in Fig. 1.

for open boundary conditions, replacing cos kx,y with sin(k +
1)x,y for closed boundary conditions. In any realization, the
six shapes span the whole space of antisymmetric three-body
states in two dimensions, using only symmetric-function
coefficients.

B. Coulomb interaction

For the repulsive Coulomb interaction between fermions in
a harmonic well, small numerical experiments in d = 2 and
d = 3 invariably favor the shapes as giving a smaller value of
the Coulomb repulsion 〈�|V̂ee|�〉, over the trivial basis states
of the form �T = ��1, where �1 is some shape, excited by
a symmetric term � �= 1, taken nodeless (otherwise anything
can be construed). Plausibly, � seems to act as a coherent
amplification for the final value of the integral, so that � = 1
gives a smaller integral overall, which is preferable when the
force is repulsive.

Typically, one observes in the numerical experiments that
the diagonal Coulomb matrix elements separate a shape clearly
from the multiplet of trivial states, spanned by the same
Slater determinants. For example, the state (35), spanned by
four vectors, is separated from the remaining triplet. The
off-diagonal elements also show the expected pattern, in that
they are much smaller among different shapes, than within
such multiplets. In other words, it is much more difficult for
the Coulomb force to change a shape, than to relax a shape
over its related multiplet of trivial states.

The observed effects of the Coulomb force conform to the
idea that excited states are organized into bands, such that the
lowest state in each band is dominated by a single shape. Such
excitation patterns are ubiquitous in finite systems, including
nuclei, molecules, and quantum dots, where the lowest state
in each band is sometimes called the bandhead. Shapes are
natural candidates for the bandhead states, because, as noted
already, they are the only genuinely d-dimensional states.

C. Trial wave functions

Truncations of the method which builds the whole Hilbert
space give rise to specific families of trial wave functions. For
example, take two particles in three dimensions. The shape
polynomial is 3q + q3, and the four shapes are

�1 = t1 − t2, �2 = u1 − u2,
(39)

�3 = v1 − v2, �4 = �1�2�3.

Contrary to the intuitive idea of shapes in the Introduction, �4

does factor over the space dimensions. Such an “accidentally”
factored term must appear whenever it, too, gives a possible
way to write an antisymmetric function. Here it is the
only higher shape, showing that the number of ways an
antisymmetric wave function can be constructed is quite
restricted for two particles.

A general two-body wave function can be written by
combining the �i with symmetric-polynomial coefficients:

4∑
i=1

�i(t,u,v)�i. (40)
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Trial wave functions are obtained by restricting the polynomi-
als in various ways. For example, �i(t,u,v) = ci0 + ci1e1(t) +
ci2e1(u) + ci3e1(v). The approach provides a qualitative lan-
guage to describe the trial functions. Thus, whether e2 or e2

1
is more important in second order is a question with physical
meaning, because, as noted before, e2 is a gaslike excitation,
while e2

1 is liquidlike.
The trial wave functions use a relatively small number of

Slater determinants, because the shapes themselves are quite
sparing in this sense. For example, S2 in Eq. (35) uses only four
vectors of the available fourteen. Similarly, the highest shape
for N = 3 in d = 3 is spanned by 36 Slater determinants out
of possible 3838. Finding that particular combination is quite
beyond trial and error.

D. Simulations

The critical issue is to locate the nodes of many-body
functions in the Nd-dimensional configuration space [20];
otherwise, the well-known fermion sign problem appears
[17]. These nodes are unknown, so that simulations use
a guiding function whose nodes are supposed to be near
those of the exact solution. The shapes provide a finite and
complete antisymmetric-function basis for guiding functions
in simulations.

The model of spin-polarized electrons confined to a sphere
in d = 3 is of contemporary interest as a testbed for theory and
simulations [21]. Here it means mapping t,u,v to x,y,z and
interpreting the latter (Cartesian) coordinates in terms of polar
and azimuthal angles on the unit sphere. For two particles, the
shapes (39) define the nodal surfaces

x1 = x2, y1 = y2, z1 = z2. (41)

In the space of particle 1, these are three circles which cut off
a cap of the sphere at the coordinates x2,y2,z2, respectively,
of particle 2. If the Hamiltonian is invariant under coordinate
permutations, then 〈�i |H |�j 〉 = 0 for i �= j , i,j = 1,2,3, so
one can choose any one of them for the guiding function
without loss of generality, say �3 = z1 − z2. Then the most
general ground-state wave function (40) up to relabeling the
axes is

[�3 + (x1 − x2)(y1 − y2)�4](z1 − z2) ≡ (z1 − z2)�̃, (42)

including �4. It follows that the interacting ground state has
the same nodes z1 = z2 as the noninteracting ground state �̃ =
const, assuming [20–22] that �̃ �= const does not introduce
new nodes. This result was recently derived as a theorem for
this particular model [21], while the above reasoning is model
independent, based on the limited number of possible shapes,
as listed in Eq. (39).

By the same reasoning, a similar result as (42) can be
obtained for the oscillator potential, with the mapping (36).
Then the interesting question arises of whether simulating
the oscillator in real or complex (Bargmann) space is more
convenient, given that complexification doubles the number of
real variables. A simulation keeping z1 < z2 should converge
to a form like (42) for a nodeless �̃; however, the natural
eigenfunctions of the problem are still the Hermite functions,

which can be recovered only by multiplying out the original
abstract expression:

(v1 − v2)�̃ →
∑

�n
c�n��n( �R), (43)

where ��n( �R) contains Hermite functions. The node v1 = v2

which was explicitly controlled in the Bargmann representa-
tion is now hidden under cancellations of oscillating functions.
Real-space representations generically have the problem that
nodes of the constituent one-body wave functions, required
by orthogonality, interfere with the analysis of nodes of the
N -body function, which are completely different objects [20].

Similar issues arise for standing waves cos kx, which may
be avoided by the traveling-wave complexification eikx . As of
this writing, it seems that the advantages of having φkφm =
φk+m outweigh any disadvantage of complexification. Further
considerations along these lines are beyond the scope of this
article.

VI. SPACE DIMENSION AND BOSON-FERMION
CORRESPONDENCE

The factorization (2) is the same for identical bosons. The
only difference in the recursion for the shape polynomial (11)
is that the alternating sign (−1)k+1 does not appear, and Slater
determinants have to be replaced by permanents (i.e., lose the
alternating sign) in the general algorithm. The Euler bosons
remain formally the same elementary symmetric function
monomials. Indistinguishable (original) bosons are replaced
by distinguishable Euler bosons and shapes, in close parallel
to the fermion case. This correspondence explains where all
the most general symmetric functions have “gone,” alluded to
in Sec. IV B above. They span the space of identical bosons,
which is however also finitely generated, with coefficients
(Euler bosons) as restricted as the ones for fermions. In
other words, just as a finite number of antisymmetric N -body
functions is sufficient to generate them all, so can all symmetric
functions be generated from a finite number of genuinely
d-dimensional bosonic shapes. These symmetric shapes are
the only “real” difference between bosons and fermions.

An interesting distinction appears between spaces of odd
and even dimension. In even dimensions, shape polynomials
are always symmetric. This can be understood by replacing
q → 1/q in the recursion (11), which reverses the polynomial.
Clearly the net effect on the recursion is that the coefficient
CN

k (q) gains an extra sign of (−1)k+1. Because it is raised to the
dth power, this extra sign vanishes in even dimensions, so the
recursion for the polynomial and for the reversed polynomial
is the same. Therefore, the polynomial must be symmetric, in
both bosonic and fermionic cases. Such is q2 + 4q3 + q4 in
Eq. (31).

The odd-dimensional case is more intriguing. Now the
sign change (−1)k+1 cancels the (−1)k+1 in the recursion
for the fermionic case, and introduces it in the bosonic case:
polynomial reversal changes the bosonic recursion into the
fermionic one, and vice versa. This means that the coefficient
lists in the shape polynomials for bosons and for fermions
are “mirror images” of each other. For example, the shape
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polynomial for N = 3 bosons in d = 3 dimensions is

B3(3,q) = 1 + 3q2 + 7q3 + 6q4 + 6q5 + 10q6 + 3q7,

(44)

to be compared with P3(3,q) in Eq. (29).
In odd dimensions, physical inferences can be made

between the bosonic case and the fermionic one. For example,
every bosonic polynomial Bd (N,q) begins with a coefficient of
unity, because the bosonic ground state cannot be degenerate—
but this statement means that the highest shape in the fermionic
polynomial is always nondegenerate. Furthermore, the first
excited state for bosons contains no shapes, because its
degeneracy is always d, and there are also d Euler bosons
e1, as mentioned before. Therefore, there will be no shapes
at the second-highest level for fermions—the absence of the
term q8 in Eq. (29) mirrors the absence of q1 in Eq. (44). As a
simple example, �4 in Eq. (39) is a second-excited state, while
all nine first-excited states are of the form (a1 + a2)(b1 − b2)
with a,b = t,u,v.

VII. DISCUSSION

The main result of this work is a fundamental insight into
the structure of N -fermion Hilbert space: a finite number of
antisymmetric functions generate all antisymmetric functions,
with symmetric-function coefficients. This property of being
finitely generated does not depend on any particular realization
of the Hilbert space [4]. It has been made explicit here with
the convenient choice of one-body functions separable in
Cartesian coordinates. The independence of the main result
on such technicalities was demonstrated in the formula (8),
which needed only the structural formula (4) to count the
shapes directly from the ansatz (2).

Mathematically, Eq. (10) is a Poincaré (also known as
Hilbert) series [23], which counts the dimensions of the
vector (Hilbert) spaces of a given grade, which may be
visualized as the degeneracy of the corresponding oscillator
level. The particular form of the series indicates how these
spaces may be generated algebraically by combining certain
invariant polynomials, called Euler bosons and shapes here.
In the standard language of invariant theory [4], the Euler
bosons are primary, and the shapes secondary invariants. This
identification follows [4] from the most general form of the
wave function, e.g., for d = 3:

N!2∑
i=1

�i�i, �i =
∑
jkl

ci
jkl�

x
ij�

y

ik�
z
il, (45)

where the �x,y,z are monomials of Euler bosons in the three
directions, while the �i are all the N !2 shapes of N particles
in three dimensions. The invariants �i are antisymmetric
polynomials with integer coefficients, which finitely generate
the Hilbert space of N identical fermions as a graded algebra.
The coefficients �i are from the ring of polynomials over C,
independently symmetric in each of d sets of N variables.
The grading is by degree of the polynomials, which is just the
energy in the oscillator case. Remarkably, but not unexpect-
edly, the main result (45) is equally valid for bosons and for
fermions, with symmetry in place of antisymmetry, and perma-
nents replacing determinants in the constitutive expressions.

Antisymmetric polynomials in one dimension can always
be studied by proxy symmetric polynomials: Slater deter-
minants in formal powers and Schur functions differ by a
fixed factor, the Vandermonde determinant [14]. The present
work shows that when d > 1 antisymmetry gives rise to
qualitatively new polynomial invariants, the shapes. They are a
different generalization of the Vandermonde determinant than
the obvious one, which is just an excited one-dimensional
state. This mathematical generalization has a direct physical
meaning as the generalization of the Slater-determinant form
for the ground state to more than one dimension. The appear-
ance of additional antisymmetric invariants—the shapes—is
a consequence of the weakening of the Pauli principle when
d > 1, because it requires antisymmetry only with respect
to interchange of vector coordinates, i.e., simultaneous inter-
change of d-plets of variables referring to different particles,
as opposed to the interchange of any two variables, which is
the case in one dimension.

Particles with different spin projections are distinguishable,
so their wave functions can be obtained by a simple direct
product of the spaces discussed here. Notably, the shape space
is not closed with respect to spin. For 2N spin-up fermions,
there are (2N )!d−1 shapes, while for N fermions of spin up
and N of spin down, there are only N !2(d−1) shapes, a much
smaller number in general. Raising the total spin projection,
which makes more particles indistinguishable, increases the
choice of shapes, i.e., orbital states with enhanced collectivity.
This observation fits well with Hund’s rule [24]: spin-polarized
states are preferred when Coulomb effects are important.

The direct product of up- and down-spin spaces does not
imply that the wave functions have to be in pure product form,
which is known to constrain them unphysically [25]. One can
assume a configuration-interaction (CI) form, which is the
superposition ∑

i

ci�↑i�↓i , (46)

where the �σi are particular cases of (45). A CI form can de-
scribe the topology of the exact nodal surface [25]. By mapping
all wave functions onto symbolic polynomials, the algebraic
approach puts the discussion of nodal-surface topologies
directly into the purview of algebraic geometry, one of whose
traditional concerns are the zeros of multivariate polynomials
[26,27]. On the other hand, there is always an underlying
differentiable manifold, spanned by the original one-body
wave functions. For the harmonic oscillator, the Bargmann
transform even allows a direct reinterpretation of the same
polynomials as analytic functions in complex (Bargmann)
space. Physical intuition suggests that possible nodal-surface
topologies should not depend qualitatively on the confining
potential, as long as one can be adiabatically transformed into
another. Hence the harmonic-oscillator setting is already quite
general, as far as the topology of nodal surfaces is concerned.

Restoration of rotational invariance similarly proceeds by
superposition. As already noted, such basis issues cannot
impinge on the underlying property of Hilbert space, that it is
finitely generated. However, a large part of practical invariant
theory [4] is to find optimal sets of generators for particular
applications, and the flexibility of the algebraic structure in the
choice of generators bodes well for future physics applications.
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In the present work, an explicit realization of generators
organized by grade has been given. They can either be
“post-processed” into rotationally invariant states, or perhaps a
completely different algorithm may be found which produces
rotationally invariant shapes natively. Generally, restoration
of symmetries broken by the shape-generating algorithm is
needed whenever they are not broken by the physical ground
state.

The existence of shapes provides an unexpected perspective
on the fermion sign problem [17]. Given that the Euler-boson
wave functions are symmetric, the fermion sign problem
appears only because there exists more than one shape.
Conversely, if a problem could be described by the excitations
of a single shape, the whole physical space of the system
could be described in the Euler boson language, avoiding the
sign problem. One can envisage imposing such a scenario
in a Kohn-Sham-like approach, choosing a particular shape
by qualitative argument, and making it give the correct
binding energy with a self-consistently derived single-particle
basis. Such a program is conceptually similar to a fixed-
node approach [25,28], except that some movement of the
nodes is still allowed, due to optimization in the Euler-boson
sector.

The finite number of shapes brings variation and simulation
closer together than is usually understood. The fact that e−τH is
a general projector on the exact ground state becomes relative
when generality is a finite range of possibilities, listed in
advance. It is then a matter of expediency rather than principle
to replace the universal projector e−τH with a specific projector
in a given simulation. An explicit choice of ground-state
projector turns a simulation into variational optimization.

From a practical point of view, the factorial rise in
the number of shapes is somewhat unfortunate. However,
problems involving strong correlations are usually local in
nature, i.e., involve only a small number of electrons. Even
in solid-state physics, this case is common, as attested by the
remarkable popularity of locally based approaches, from finite-
system studies to dynamical mean-field theory [29]. Taking
N↑ = N↓ = 4 as a modestly ambitious limit of practicality
for d = 3—meaning that 255 of the 576 shapes for this
case have been generated on the author’s laptop, while the
rest would require additional optimization and/or a bigger
computer—problems with up to eight unpolarized electrons
are within reach, which is competitive as of this writing. In
two dimensions, the situation is naturally better.

The expression (45) collects the two main results of this
work. First, there is a finite number of shapes in which any wave
function can be expanded. In physical terms, there is a finite
number of possible N -body vacua. Second, the polynomial
coefficients in this expansion, or excitations of the vacua, are
1D bosonic, i.e., symmetric in the N space coordinates on each
of the d axes separately.

To conclude, the notion of the N -body vacuum in d space
dimensions has been given a precise and general algebraic
meaning for fixed N and d. An algorithm to construct all
possible vacua was presented, and it was shown that they
finitely generate the full Hilbert space of N identical particles.
It is hoped that these insights will lead to advances in
practical calculation, at least for values of N similar to those
encountered in contemporary work.
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reading and commenting upon the manuscript. This work
was supported by the Croatian Ministry of Science Grant No.
119-1191458-0512 and by the University of Zagreb Grant No.
202759.

APPENDIX A: NOTES ON SCHUR FUNCTIONS [14]

The classic definition of Schur functions is a ratio of
two determinants. The denominator is the Vandermonde
determinant in some indeterminates zi ,

	(z1,z2, . . . ,zN ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

zN−1
1 zN−1

2 · · · zN−1
N

zN−2
1 zN−2

2 · · · zN−2
N

...
...

...

z1 z2 · · · zN

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1�i<j�N

(zi − zj ), (A1)

which physicists would call a ground-state Slater determinant.
The numerator is a similar determinant with some higher
powers of the zi—an excited state in physicists’ terms, while
mathematicians sometimes call it a generalized Vandermonde
determinant. If λ = (λ1, . . . ,λN ) is a nonincreasing sequence
of natural numbers or zeros (a partition of the number
|λ| ≡ λ1 + · · · + λN into at most N parts), then the Schur
function sλ is defined by

sλ ≡ 1

	(z1,z2, . . . ,zN )

∣∣∣∣∣∣∣∣∣∣∣

z
N−1+λ1
1 z

N−1+λ1
2 · · · z

N−1+λ1
N

z
N−2+λ2
1 z

N−2+λ2
2 · · · z

N−2+λ2
N

...
...

...

z
λN

1 z
λN

2 · · · z
λN

N

∣∣∣∣∣∣∣∣∣∣∣
.

(A2)

The divisibility of the numerator by the denominator may
be inferred from the fact that both vanish when any two
zi = zj . The result of the division is given by a combinatorial
interpretation of sλ. Take a Young tableau of shape λ and
fill it with natural numbers not greater than N , increasing
along columns and nondecreasing along rows. Call nk � 0
the number of times the number k appears in the tableau. A
typeT (λ) is just a particular filling so obtained, for a given
shape λ; then

sλ =
∑
T (λ)

z
n1
1 z

n2
2 · · · znN

N , (A3)

where the sum is over all possible types. Thus coefficients in
Schur functions must be natural (counting) numbers. Opera-
tionally, this formula is much simpler than the determinantal
one. For example,

s1 = z1 + z2 + · · · + zN, (A4)
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because a single box can be filled with the numbers 1,2, . . . ,N

only one at a time. On the other hand, if all the λi = 1, this
corresponds to a vertical strip of height N , which can be filled
in only one way,

s1N = z1z2 · · · zN . (A5)

The elementary symmetric functions ek similarly correspond
to vertical strips of height k: they are the Schur functions of
the partition λ = (1 . . . 1)k times = 1k . For example, for k = 2
in N = 3 variables, s11 = s12 = z1z2 + z1z3 + z2z3.

APPENDIX B: MATRIX ELEMENT OF THE
COULOMB FORCE

In quantum chemical calculations, one typically uses matrix
elements between nonorthogonal Hermite Gaussian functions
[30], which are best calculated recursively [31]. I was not able
to locate the corresponding closed expression for orthogonal
Hermite functions in the literature, so I give it here, without
pretense to originality.

Let

[�n�n′|VC | �m �m′] =
∫

d �R d �R′ �∗
�n( �R)�∗

�n′( �R′)

× 1

| �R − �R′|� �m( �R)� �m′( �R′) (B1)

be the two-body matrix element between products of unnor-
malized Hermite functions,

��n( �R) ≡ φn1 (R1) · · ·φnd
(Rd ), φn(x) = Hn(x)e−x2/2,

(B2)

where Hn is the Hermite polynomial. Using the standard trick
[18]

1

|r| = 1√
π

∫ +∞

−∞
e−r2w2

dw, (B3)

one finds, for dimensions d > 1,

[�n�n′|VC | �m �m′] = πd

√
2

π

∫ 1

0
dw (1 − w2)(d−3)/2

×
d∏

i=1

ni+mi∑
ki=0

n′
i+m′

i∑
k′
i=0

a
nimi

ki
a

n′
im

′
i

k′
i

(−1)ki Hki+k′
i
(0)

×
(

w√
2

)ki+k′
i

, (B4)

where

anm
k = 2(n+m−k)/2n!m!(

m+n−k
2

)
!
(

k+n−m
2

)
!
(

k+m−n
2

)
!

(B5)

for n + m + k even and non-negative factorials in the denom-
inator, zero otherwise. The Hermite polynomials Hk+k′(0),
evaluated at zero, are zero for k + k′ odd, and

(−1)kHk+k′(0) = (−1)(k−k′)/2 (k + k′)!(
k+k′

2

)
!

(B6)

for k + k′ even. Finally, when the product in Eq. (B4) is
expanded, the integrals over w give the beta function in place
of Boys’ function [18]:

Id (l) =
∫ 1

0
(1 − w2)(d−3)/2wl dw = B

(
l + 1

2
,
d − 1

2

)
= �

(
l+1

2

)
�

(
d−1

2

)
2�

(
l+d

2

) . (B7)

In particular,

I2(l) = π

2l+1

(
l

l/2

)
≈

√
π

2l
, I3(l) = 1

l + 1
, (B8)

noting that l = ∑
i ki + k′

i is always even.
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