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We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric
bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange
photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are
mediated by spin excitations (magnons) in 1D XX spin chains representing spin waveguides. While Markovian
quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation
to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the
nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to
time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom
of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as
a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group
techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of
quantum dimers, and we present examples for quantum information protocols involving quantum state transfer
with engineered elements as basic building blocks of quantum spintronic circuits.
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I. INTRODUCTION

A quantum network consists of a set of nodes exchanging
quantum information via connecting quantum channels. The
prototypical examples are networks of small scale quantum
computers as a local area network, to scale up quantum
information processors; or wide-area networks, where the
goal is long-distance quantum communication in a quantum
internet, involving transmission of quantum states with high
fidelity [1–4]. To implement long-distance communication,
optical photons as flying qubits propagating in optical fibers,
or free space, are the unchallenged physical realizations of
quantum information carriers [5]. In contrast, to implement
a local “on-chip” network [6], there are several appealing
options for flying qubits in both atomic and solid-state settings,
and corresponding interfaces to stationary qubits [7]. This
includes optical photons combined with the possibilities
offered by engineered nanostructures [8–12], microwave
photons in a superconducting strip line [13–16], and phonon
waveguides [17,18], with a low-temperature environment as a
prerequisite. Another intriguing possibility is to use engineered
spin chains as waveguides for magnons (spin excitations),
which can carry quantum information or mediate interactions
between the nodes of the quantum network [19–22].

Figure 1(a) illustrates a simple example of a photonic
quantum network, where two-level atoms represent the nodes,
which are connected by fibers allowing exchange of photons
between the atoms. The counterpart to this setup, but now
with a spin chain as quantum channel, is outlined in Fig. 1(b),
where magnons as spin excitations in the spin waveguide take
the role of hard core photons. The quantum networks of Fig. 1
represent open quantum systems, where the photonic and spin
channels also provide input and output ports for the quantum
circuits.

*Corresponding author: tomas.ramos@uibk.ac.at
†Corresponding author: benoit.vermersch@uibk.ac.at

(a) (b)

FIG. 1. (a) Photonic quantum network of two-level systems
coupled to waveguides (optical fibers). (b) Quantum network with a
spin chain representing a waveguide for spin excitations. To provide
a systematic treatment of the quantum many-body dynamics beyond
the Born-Markov approximation, we employ tDMRG techniques to
treat the full dynamics of the two-level systems (nodes) and spin
chains (quantum channels) within the region inside the dashed lines,
thus defining an extended Markovian cut.

In this work, we study the dynamics of such quantum
networks from the perspective of an open many-body quantum
system. An effective dynamics of the nodes alone is obtained
by integrating out the degrees of freedom associated with the
quantum channels, resulting in a reduced system dynamics that
is in general non-Markovian [23–25]. In a quantum-optical
context, however, a Born-Markov approximation to trace out
the photonic quantum channel as a structureless reservoir is
often an excellent approximation, based on weak-coupling
perturbation theory and the neglect of time delays in
interactions (retardation) [26–28]. This approximation leads
to a Markovian theory of quantum networks, and an effective
description of the reduced dynamics of the nodes in terms of
a master equation (ME). However, for structured reservoirs
such as a photonic band-gap material [9,29,30], or for a
spin-chain implementation as in Fig. 1(b), the Bloch-band
character with band-edge effects, and the finite propagation
speed of spin excitations can invalidate a weak-coupling
Markovian theory [29–37].

We wish to develop our theory for chiral quantum networks,
and for chiral quantum networks with spin waveguides in
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particular. By chirality we mean a left-right asymmetry, or
directionality in the emission of excitations from the quantum
nodes into the quantum channels. In photonic quantum net-
works, chirality appears as a natural and generic manifestation
of spin-orbit coupling of light [38], as recently demonstrated
in seminal experiments with atoms or quantum dots coupled
to photonic nanostructures [39–47]. We will show below that
chiral couplings can also be engineered for quantum networks
with spin waveguides, as an essential ingredient in spin
network design. Chirality of quantum channels in dynamics
of quantum networks leads to several interesting phenomena,
such as the formation of quantum dimers as pure “dark” steady
states of the driven-dissipative dynamics [48–50]. In addition,
chirality provides interesting opportunities and applications
in a quantum information context, allowing for the design of
“nonreciprocal” circuits [51,52] in a form of chiral quantum
spintronics. We emphasize that quantum dimer formation
and quantum state transfer between nodes [53,54] have been
discussed under Markovian assumptions so far.

Designing and describing a chiral quantum network with
spin waveguides encounters several challenges and questions,
and in particular also differences with respect to chiral photonic
networks. The present work serves to analyze the physics of
chiral spin networks in detail. We discuss how to engineer
a chiral coupling of the nodes into the spin waveguide,
which is accomplished by adding synthetic gauge fields to
the interactions between node and waveguide. The main focus
of the work is then on analyzing the dynamics of chiral
spin networks, with a particular emphasis on non-Markovian
effects and witnesses of non-Markovianity, especially in the
driven-dissipative formation of quantum dimers. Moreover,
we present examples for potential applications of nonlinear
quantum spin circuits in quantum-information protocols, as a
quantum form of spintronics [55–57]. In an accompanying pa-
per [58], we give details for various physical implementations
based on dipolar interactions in arrays of Rydberg atoms or
polar molecules [59–61], and comment on possible solid-state
realizations, also in light of potential advantages of spin setups.
A study of spin networks is also timely in view of the recent
progress and new possibilities in engineering spin chains and
spin quantum channels with atomic and molecular ensembles,
and with solid-state impurities.

To address the question of non-Markovian dynamics, we
treat the chiral quantum network of nodes coupled to the
connecting spin chains as one large quantum many-body
system, keeping the entanglement between the nodes and the
(possibly many) excitations propagating in the quantum chan-
nel, while treating the surrounding of the quantum network as
a Markovian bath for the network dynamics [see Fig. 1(b)].
This treatment is in the spirit of representing non-Markovian
quantum stochastic processes as a projection of a quantum
Markov process for an extended, but still finite number of
degrees of freedom [62–64]. To solve the extended master
equation for the quantum network as a driven-dissipative quan-
tum many-body system, we exploit the fact that our formalism
embodies the network as a quasi-one-dimensional lattice sys-
tem. This allows us to employ efficient tools such as the time-
dependent density-matrix renormalization-group (tDMRG)
techniques [65], adapted to open quantum systems [66–70].
We remark that this approach also provides full access to the

dynamics of excitations propagating in the quantum channels
on the level of a quantum many-body wave function.

While the present work focuses on quantum networks
with spin chains, we emphasize that this treatment of strong-
coupling non-Markovian effects also carries over to photonic
circuits with band-gap materials [9,29,30], or coupled cavity
arrays [71,72]. In this sense, modern quantum many-body tech-
niques based on matrix product states become a significant tool
to solve for dynamics of spin and photonic quantum networks,
beyond the paradigm of the Born-Markov approximation in
quantum optics.

The paper is organized as follows. In Sec. II we define
our model of a chiral quantum network. We explain the chiral
coupling of nodes to spin waveguides, discuss limiting cases
where the model is equivalent to a photonic network, and
introduce the extended Markovian cut allowing us to describe
the non-Markovian dynamics. This is the core part of our
theoretical description. In Sec. III, we illustrate and analyze
various non-Markovian effects, due to a finite Bloch band,
time delays, strong coupling, and spin hard-core effects, in
particular in the formation of quantum dimers in a driven-
dissipative system. Finally, Sec. IV presents examples on how
nonlinear quantum circuits with spins, as a form of quantum
spintronics, may be applied in quantum information protocols.

II. CHIRAL QUANTUM NETWORK MODEL
WITH SPIN WAVEGUIDES

In this section we define our model of a quantum network
with chiral coupling of nodes to spin waveguides as quantum
channels. Below we will first illustrate the mechanism behind
the chiral coupling (Sec. II A). To establish the relation with
previous work, we then show that our model reduces to
the chiral photonic network model [49,50] in the limit of
weak coupling and low spin excitation density (Sec. II B).
Furthermore, applying the Born-Markov approximation al-
lows us to eliminate the spin waveguide as a structureless
reservoir, and thus to derive a master equation for the nodes
(two-level systems) defining a Markovian chiral network
(Sec. II C). Finally, in preparation for our discussion of the
strong-coupling limit and non-Markovian dynamics, we derive
in Sec. II D an extended master equation. This is obtained
by keeping not only the nodes but also the connecting spin
waveguides as part of an “extended system” dynamics on the
level of a many-body wave function. Thus, we effectively move
the Markovian cut in the quantum channel all the way out to
the input and output ports of the network, as indicated by the
dashed lines in Fig. 1(b).

A. Chiral coupling to a spin waveguide

In a photonic context a minimal building block of a chiral
network is illustrated in Fig. 2(a) for two two-level systems,
which represent the nodes of the network. In the spirit of
an open quantum system the waveguide is assumed to be
infinite, providing both the communication channels between
the nodes, and the input-output ports of the network [see also
Fig. 1(a)]. Chirality refers to the possibility of having dif-
ferent coupling strengths, γL �= γR , of the nodes to the left-
and right-propagating modes in the waveguide [39–46,48–50].
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FIG. 2. Two-level systems or “system spins” coupled to a
photonic (a) or spin waveguide (b) as basic building block of a
chiral quantum network. (a) System spins decay by emitting a photon
into the left- and right-moving modes of the photonic waveguide.
(b) System spins decay by emitting a magnon (spin excitation) into
the spin waveguide (bath) in a flip-flop process. Chirality (γL �= γR)
is achieved by introducing a complex hopping between neighboring
system and bath spins. (c) Dispersion relation ωk and asymmetric
momentum coupling gk . For �̃ = 0 and weak coupling (J̃ /J )2 � 1,
the system spins couple only to resonant waveguide modes around
k = ±π/2a (see shaded region), such that for φ = π/4, a pure
unidirectional system-bath coupling is achieved. (d) Demonstration
of unidirectional emission of magnons with a single system spin
coupled to the spin waveguide for φ = π/4, J̃ = 0.3J , and �̃ = 0.
Dashed line corresponds to the exponential decay predicted by the
Markovian theory. The lower panel shows the evolution of the bath
spins occupation 〈S+

j S−
j 〉, evidencing the unidirectional propagation

of the emitted magnons through the spin waveguide.

Instead we consider here spin chains as communication
channels [Fig. 2(b)].

Our model considers NS two-level systems coupled to
a spin waveguide, as illustrated in Fig. 2(b) for NS = 2.
Throughout this work we also refer to the two-level systems as
“system spins,” emphasizing that they correspond to the open
system usually considered in a Markovian network theory.
These system spins have ground and excited states, |g〉α
and |e〉α , respectively (α = 1, . . . ,NS), and are coherently
driven with Rabi frequencies �α and detuning �. As in
standard quantum optics, we assume the validity of the rotating
wave approximation, and we obtain in the rotating frame the
following Hamiltonian for the system spins (� ≡ 1):

HS = −�
∑

α

σ+
α σ−

α + 1

2

∑
α

(�ασ−
α + H.c.), (1)

with σ−
α =|g〉α〈e| = (σ+

α )†. Excitations of system spins can
be transferred to the spin waveguide via dipolar flip-flop
interactions. In its simplest form, the spin waveguide is realized
by a large XX spin chain with Hamiltonian

HB = −J
∑

j

S+
j+1S

−
j + H.c. , (2)

where S−
j = |↓〉j 〈↑| = (S+

j )† is the lowering operator for a
spin at site j in the waveguide. For simplicity we consider here
a model with nearest-neighbor (NN) hopping with amplitude
J [73]. Following the same interpretation to denote the “system
spins,” we refer to the spins forming the waveguide as “bath
spins,” since they can be identified with the bath degrees
of freedom that are adiabatically eliminated in a Markovian
theory. In addition, the vacuum state |0〉 of a photonic
waveguide bath finds its counterpart in the spin chain prepared
in the state with no spin excitations, i.e., |0〉 ≡ ⊗

j |↓〉j .
We achieve a chiral coupling for the decay of the system

spins to the spin waveguide via the coupling Hamiltonian

HSB = J̃
∑

α

σ−
α (e−iφS+

L[α] + eiφS+
R[α]) + H.c. (3)

Here, each system spin α couples with strength J̃ to the two
nearest bath spins at sites j = L[α] and j = R[α] = L[α] +
1, located to its left and right, respectively [see Fig. 2(b)]. In
addition, different system spins are separated by a distance d

such that L[α + 1] = L[α] + d/a, with a the spacing between
bath spins. The relative phase φ is interpreted as a synthetic
gauge field [74] that induces a flux of 2φ through each of the
triangular plaquettes spanned by the system-bath interactions,
as shown in Fig. 2(b). The gauge field allows these interactions
to imprint a momentum kick on magnons moving dominantly
left or right, in close analogy to the photonic case. Complex
hoppings as in Eq. (3) naturally appear in the dipole-dipole
interactions between Rydberg atoms, or polar molecules [59–
61], and we discuss details of implementing the present model
system with Rydberg atoms in an accompanying paper [58].

B. Spins vs photons as mediators of (chiral) interactions

In the limit of small excitation probabilities 〈S+
j S−

j 〉 � 1,
we can use spin-wave theory [75] to bosonize the bath spin
excitations S−

j → bj , with [bj ,b
†
l ] = δjl . For an infinitely long

chain, the Hamiltonian in Eq. (2) then resembles a photonic
band-gap material [30,31],

HB =
∫

dk ωkb
†
kbk. (4)

Here, the delocalized bosonic operators bk =
(1/2π )1/2 ∑

j bj e
−ikaj annihilate a magnon excitation in

the waveguide with quasimomentum k ∈ [−π/a,π/a] and
nonlinear dispersion ωk = −2J cos(ka). As illustrated in
Fig. 2(c) for J > 0, magnons with k > 0 (k < 0) have positive
(negative) group velocity vk = ∂ωk/∂k, and thus propagate to
the right (left) along the spin waveguide [76].

Writing the flip-flop coupling Hamiltonian (3) also in terms
of the delocalized bosonic modes bk , we obtain a standard
quantum-optical system-bath interaction [26–28,77],

HSB =
∑

α

∫
dk gke

−iαkdσ−
α b

†
k + H.c., (5)

but with an engineered momentum-dependent coupling given
by

gk = J̃
√

2a/π cos(ka/2 − φ). (6)

Importantly, the phase φ renders this coupling asymmetric in
k and thus makes it chiral. Figure 2(c) illustrates chirality for
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φ=π/4, where all waveguide excitations moving to the right
couple stronger than the ones to the left. When considering the
modes with k=±π/2a, in particular, perfect unidirectionality
is achieved. Since changing φ↔−φ in Eq. (6) merely reverses
the preferred coupling between k↔−k, we assume without
loss of generality the convention φ ∈ [0,π/4], allowing us
to tune the chirality from bidirectional (φ = 0) to perfectly
unidirectional to the right (φ = π/4).

While in this section we have made a formal identification
of the spin waveguide with a structured reservoir of noninter-
acting photons (provided 〈S+

j S−
j 〉 � 1), we emphasize that our

model in general includes the interactions due to the hard-core
nature of the magnons, which we investigate in Secs. III and IV.

C. Markovian theory of chiral quantum networks: Master
equation for system spins

We can eliminate the spin waveguide as a quantum
bath in the Born-Markov approximation to derive a ME
for the dynamics of the systems spins. This is valid under
the following assumptions: (i) weak system-bath coupling
(J̃ /J )2 � 1, (ii) negligible coupling to modes at the band
edge |�|/2J � 1, and (iii) negligible propagation time of the
magnons compared to the relevant time scales of the system
spin dynamics [28,37,78].

As detailed in Appendix A, the result of this adiabatic
elimination of the spin waveguide is the chiral master equa-
tion [49,50]

ρ̇S = −i[HS + HC,ρS] + γRD[cR]ρS + γLD[cL]ρS, (7)

with ρS the reduced density operator of the system spins
(nodes). As a consequence of the chiral coupling, the decay
rates γL and γR into left (L)- and right (R)-moving magnons,
respectively, are in general asymmetric and read

γν = 2π
g2

νk̄

|vk̄|
= J̃ 2

J

[1 + cos(k̄a − 2νφ)]

sin(k̄a)
, (8)

where we assigned the values ν = {+1, − 1}, corresponding
to ν = {R,L}, and k̄a = arccos(�̃/2J ) > 0 is the resonant
wave vector of the right moving waveguide excitations.
Notice that the detuning is renormalized by a Lamb shift
as �̃ = � − (J̃ 2/J ) cos(2φ) (see Appendix A). Throughout
this work we are mainly interested in the case �̃ = 0,
where the system spins decay resonantly into waveguide
excitations with k = ±π/2a and group velocity v̄ = ±2Ja

[see Fig. 2(c)]. The corresponding decay rates reduce simply
to γν = (γ /2)[1 + ν sin(2φ)], such that for φ = π/4 we obtain
a perfect unidirectional coupling with γL = 0 and γR = γ ,
where γ = γR + γL = 2J̃ 2/J is the total decay rate. In
addition, the chiral Hamiltonian HC describes infinite-range
reservoir-mediated interactions between the system spins

HC = i

2

∑
α<β

(γRe−iϕαβ − γLeiϕαβ )σ+
α σ−

β + H.c., (9)

with ϕαβ = k̄d|α − β|, phases accumulated due to the
magnon propagation. The Lindblad operator D[A]ρ =
AρA† − (A†Aρ + ρA†A)/2 describes the Markovian dissipa-
tive processes with collective left and right jump operators

given by

cν =
∑

α

e−iναk̄dσ−
α . (10)

These collective jump operators are also obtained in the Dicke
model of superradiance for isotropic baths [28,79], but here
we have the additional feature of tuning the directionality of
the emission into the waveguide via the phase φ. For instance,
when φ = π/4 the system spins behave as cascaded quantum
systems [27,80,81], whereas when φ = 0 we recover the one-
dimensional Dicke model for a bidirectional bath [9,77,78].
We remark that the master equation derived here is formally
identical to the one of the Markovian chiral photonic network
model [49,50], and the corresponding results for quantum
many-body dynamics and quantum information protocols
carry over to the chiral quantum network with spin waveguides
in the weak-coupling Markovian limit. For instance, the
Markovian exponential decay of a single system spin and its
unidirectional emission into the spin waveguide is numerically
demonstrated in Fig. 2(d).

D. Beyond the Born-Markov approximation:
Extended master equation

In order to go beyond the Born-Markov approximation, the
dynamics of the spin waveguide has to be included on the same
footing as the system spins (nodes). Since an exact treatment
of the infinite waveguides is computationally intractable, we
make use of the fact that spin excitations leaving the network
do not return. Thus we define an extended Markovian cut
keeping the nodes and the connecting spin waveguides as our
Markovian “extended system,” while treating the part of the
waveguides representing the input and output channels of the
network as Markovian reservoirs [see Fig. 1(b)].

On a technical level, this is realized by representing the
infinite waveguide by a finite chain of NB bath spins, with
absorbing boundary conditions [82]. To this end, we introduce
local losses �n on M bath spins at each end of the chain, and
increase the loss rates smoothly towards the boundary in order
to minimize reflections [see Fig. 3(a)]. The full dynamics of the
relevant part of the network is then described by an extended
Markovian master equation as

ρ̇ = −i[H,ρ] +
M−1∑
n=0

�n

(
D[S−

1+n]ρ + D
[
S−

NB−n

]
ρ
)
, (11)

where ρ(t) is the density matrix of the system spins
plus the finite spin waveguide with sites j = 1, . . . ,NB ,

(a) (b)

FIG. 3. A spin-optical interface converting right propagating spin
excitations into optical photons propagating in a fiber. (a) The
inclusion of such a finite waveguide with local losses at its ends, in the
calculation of the network dynamics, extends the standard Markovian
cut of quantum optics. (b) Possible experimental realization of the
spin chain losses by a spin-photon interface obtained by coupling the
edge bath spins to a cavity, decaying in an optical fiber.
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H = HS + HB + HSB is the corresponding total Hamiltonian,
and �n is the decay rate of bath spins at n sites away from the
ends of the chain. Throughout this work we consider only
one loss per end with an optimized decay of �0 = 2J , which
is sufficient to engineer absorbing boundaries with negligible
reflections. This condition becomes exact in the weak-coupling
limit, as shown in Appendix B [83].

Importantly, by solving the extended ME (11) we model the
non-Markovian dynamics of the quantum network. This is in
the spirit of representing non-Markovian quantum stochastic
processes as projection of a quantum Markov process for an
extended number of degrees of freedom, known in the literature
as Markovian embedding [62–64]. In addition, this extended
ME can be solved efficiently using matrix product states
(MPSs) techniques [65], adapted to describe the evolution of
open quantum systems [66–70]. In this work we use a quantum
trajectories approach [67], and obtain the dynamics in Eq. (11)
by a stochastic average over many independent evolutions
or quantum trajectories. Each trajectory m is represented
by a MPS |�m(t)〉, whose dynamics is governed by a non-
Hermitian Hamiltonian and quantum jumps occurring with a
probability given by the loss rates �n [67]. MPS techniques
have been originally developed in a condensed-matter context
to enable an efficient description of many-body quantum
states in one-dimensional (1D) systems and to integrate the
many-particle Schrödinger equation. In the present open spin
network context, it allows us to access the regime of long spin
chains with multiple excitations propagating in the waveguide
(including system-bath entanglement), constituting a situation
where the exact representation becomes inefficient.

In Ref. [84], an alternative approach to problems with
long time delays was introduced. The method developed there
is tailored to describe situations where the non-Markovian
dynamics stems solely from time delays of photons propagat-
ing between the network nodes while the coupling of each
individual node to the waveguide is treated in a Markovian
approximation. It is based on a linear photon dispersion
relation allowing for a transparent formulation of the problem
in a time bin basis such that the photon propagation is
already accounted for by the formalism, simplifying the MPS
description. For the spin waveguides considered here, all the
interactions are local in a real-space representation, allowing us
to also account for dispersion effects due to a strong system-
bath coupling, in addition to the possibly long time delays
in the propagation of magnons and the collisions between
them. Other works where MPS techniques have been used to
efficiently simulate the dynamics of discretized 1D waveguides
can be found in Refs. [85,86], where the spin-boson model
in the strong-coupling regime is considered. An extension
of the MPS treatment to efficiently describe thermal baths
is developed in Ref. [87].

E. Spin waveguide–optical waveguide interface

In an open quantum network with infinite spin waveguides
the extended Markovian cut [see Fig. 1(b)] introduced above
has a direct physical meaning. A physical spin waveguide
will never be infinite, but will always be terminated. It
therefore seems natural and useful to assume that the spin-wave
excitations will be converted (without reflection) via a spin-

optical interface into, for example, optical photons propagating
in a fiber, as outlined in Fig. 3(b).

III. NON-MARKOVIAN DYNAMICS OF CHIRAL
QUANTUM NETWORKS

In this section we study driven-dissipative dynamics of
chiral quantum networks of system spins coupled to the spin
waveguide beyond the Markovian regime. As discussed in
Sec. III A below, the sources of non-Markovianity are the
nonlinear Bloch band dispersion relation, time delays in the
magnon propagation, and the possibility of a strong system-
bath coupling. The framework to describe the non-Markovian
dynamics is provided by the extended ME introduced in Sec. II,
which keeps the full dynamics of the bath excitations in the
spin waveguides connecting the driven system spins, while
moving the Markovian cut to the input and output ports of the
network.

Section III A below discusses non-Markovian effects in
transient dynamics for decay of driven system spins to the
spin chain, and their characterization using recently introduced
witnesses of non-Markovianity [23,24]. Section III B illus-
trates non-Markovianity in the steady-state regime. We choose
as an example the formation of quantum dimers, recently
discussed for driven-dissipative Markovian chiral quantum
networks [48–50], and we characterize the non-Markovianity
in steady state via two-time correlations, quantum mutual
information and entanglement entropy, demonstrating the
fundamentally different behavior of unidirectional (γL = 0)
vs asymmetric bidirectional systems (γR > γL �= 0) subjected
to time delays.

Although the chiral network model is given in Eqs. (1)–
(3) for a spin waveguide, we stress that the analysis below
also includes the case of a structured photonic waveguide,
obtained by replacing S−

j → bj . In the low occupation limit
〈S+

j S−
j 〉 � 1 both cases are equivalent, as shown in Sec. II B,

so we only consider the spin case explicitly. In contrast, for
〈S+

j S−
j 〉 � 1, as in Sec. III A 3, the behavior of a spin and a

photon waveguide qualitatively deviate from each other, so in
that section we explicitly calculate the dynamics for both cases
and compare them.

A. Transient dynamics in the non-Markovian regime

In the following we identify the mechanism behind non-
Markovian effects in our networks with spin waveguides,
and analyze their consequences in the transient dynamics. In
Sec. III A 1, we consider effects due to the finite width of the
Bloch band in competition with strong coupling of the system
spins to the spin waveguide (γ ∼ 2J ), while in Sec. III A 2
we discuss retardation effects due to a finite propagation
time τ = d/|v̄| of magnons between nodes (γ τ  1). We are
particularly interested in the case of strong driving (|�α| ∼ γ ),
which goes fundamentally beyond the Born-Markov approxi-
mation, and show how the network dynamics can be efficiently
simulated with MPS methods and quantum trajectories. In
Sec. III A 3 we consider the extreme case of very long delay
lines between nodes, where many excitations populating the
spin waveguide collide, and thus evidence their hard-code
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nature in contrast to the more familiar case of (noninteracting)
photons as mediators of interactions.

1. Band-edge effects in the presence of strong driving

The lattice structure inherent to the spin waveguide results
in a Bloch-band dispersion for magnons as depicted in
Fig. 2(c). In the strong-coupling limit (γ ∼ 2J ), system spins
unavoidably couple to the whole band, and in particular to the
modes at the edges (k = 0,±π/a), which do not propagate
due to a vanishing group velocity.

In the absence of driving (� = 0), the corresponding
dynamics can be studied analytically by a Wigner-Weisskopf
(WW) ansatz, describing the dynamics of a single spin excita-
tion in the quantum network (see Appendix C for details). The
main feature of the coupling to the band edge is the presence of
one or two bound states (for details see Refs. [30–34,71,72]),
which are a superposition of a system spin excitation and
a localized contribution of waveguide excitations, |�〉bound =
(c1σ

+
1 + ∑

j c̄j S
+
j )|g〉|0〉, with an eigenenergy ωBS outside the

waveguide dispersion relation (|ωBS | > 2J ).
The existence of the bound states invalidates the Markovian

exponential decay: a system spin does not decay completely
into the waveguide, as a fraction of the excitation, corre-
sponding to the bound-state contribution, remains trapped
for infinitely long times around the position of the emitter.
As an illustration, let us consider an initially excited system
spin, with resonant (� = 0) and unidirectional (φ = π/4)
coupling. For J t  1, we can neglect the nonanalytic part
of the dynamics [see Appendix C 1], such that the excitation
probability of the initially (t = 0) excited system spin evolves
as

〈σ+
1 σ−

1 〉(t) =
∣∣∣∣ (λ + 1)

2λ
e−γ̄ t + (λ − 1)

λ
cos (ωBSt)

∣∣∣∣
2

, (12)

with λ =
√

1 + (J̃ /J )2 determined by an arbitrarily strong
system-bath coupling. In addition to exponential decay with
modified rate γ̄ = √

2(λ − 1)J , familiar from the Markov
approximation, the population of the system spin oscillates
with frequency ωBS = √

2(λ + 1)J > 2J due to the coupling
to two bound states with energies ±ωBS . In the regime of
small couplings, (J̃ /J )2 � 1, the bound-state contribution
can be neglected whereas in the limit of large couplings, the
oscillation of the two-bound states is dominant.

The techniques introduced in Sec. II D allow us to go
beyond the WW description, and include a strong coherent
drive |�1| ∼ γ ∼ J , which populates the waveguide with
many excitations in addition to the bound states. In Fig. 4, we
show the dynamics of the system and waveguide occupations in
the strongly coupled regime, for the driven and undriven case.
After a time t � 1/γ̄ , the system spin population differs signif-
icantly from the Markovian approximation due the bound-state
contribution that permanently exchanges occupation between
system and bath spins [see Figs. 4(a) and 4(c)]. As shown in
Figs. 4(b) and 4(d), the chiral emission into the waveguide, as
well as the localized bound-state oscillation, can be directly
observed in the waveguide dynamics. In the case of strong
driving, the continuous emission of magnons tends to damp
out the system spin oscillations.

(a) (c)

(b) (d)

FIG. 4. Band-edge effects in the dynamics of a single strongly
coupled system spin, in absence (a),(b) and presence (c),(d) of
driving. (a) Occupation 〈σ+

1 σ−
1 〉 of an undriven (�1 = 0) and strongly

coupled (J̃ /J = 1) system spin, showing a fast decay and a permanent
oscillation due to the coupling to two bound states when φ = π/4 and
� = 0 [see Appendix C 1]. The Markovian and WW predictions are
shown as a dashed and dotted line, respectively. The non-Markovian
behavior is detected via nonzero values of the BLP and RHP
witnesses, represented by the blue and cyan regions, respectively.
The BLP witness is calculated by comparing the evolution from
the initial conditions ρ

(1)
S = |e〉〈e| and ρ

(2)
S = |g〉〈g|, while the RHP

witness is obtained by initially preparing the system and ancilla in
the entangled state ρSA(0) = |�0〉SA〈�0|, with |�0〉SA = (|e〉S |e〉A +
|g〉S |g〉A)/

√
2. The WW prediction for the BLP witness is represented

by a dotted line. (b) For the same situation as in (a), we plot the
evolution of the bath spins occupation 〈S+

j S−
j 〉, showing the localized

bound-state oscillation around the system spin position. In addition,
we observe a nearly unidirectional propagation of the magnons during
the decay of the system spin. Despite that φ = π/4, there is also
a small fraction of magnons propagating to the left as the strong
coupling allows the system spin to decay to modes different than
k = ±π/2a [see Fig. 2(c)]. (c),(d) Dynamics of system and bath
spins, under the same conditions as in (a) and (b), but with the
inclusion of driving �1 = γ /4 in the system. The driving tends to
wash out the band-edge oscillations, but they are still identified by
the witnesses as the dominant non-Markovian behavior.

To quantify the degree of non-Markovianity for general
open system dynamics, a set of witnesses and measures have
been proposed in recent literature [23,24]. We complement
our discussion by considering two of these non-Markovian
witnesses, namely the Breuer-Laine-Piilo (BLP) and the
Rivas-Huelga-Plenio (RHP), which provide us with criteria
to exclude a potential Markovian theory that can describe the
reduced evolution of the open system state ρS(t) = TrB{ρ(t)},
when tracing over the bath spins (waveguide).

The BLP witness [88] compares the evolution for various
initial conditions, ρ

(1)
S (0) and ρ

(2)
S (0), and quantifies the

distinguishability of the resulting density matrices through the
trace distance as D(t) = ||ρ(1)

S (t) − ρ
(2)
S (t)||/2, with ||A|| =

Tr(
√

A†A). An increase of this distinguishability in time is
interpreted as an information backflow from the spin waveg-
uide (bath) to the system spins (open system S), as a hallmark
of non-Markovian behavior. Whereas the construction of a
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non-Markovian measure requires a maximization over all
initial conditions, a practical lower bound is obtained by
calculating D(t) for only two well-chosen initial states. Non-
Markovianity is then witnessed when the quantity

NBLP(t) = dD
dt

�

(
dD
dt

)
(13)

is nonzero, with �(t) the Heaviside function.
Plenio and collaborators introduced a complementary

non-Markovian witness, where Markovian dynamics is
identified with completely positive trace-preserving (CPT)
evolutions [89]. The recipe proposed for extracting non-
Markovianity is to consider an ancillary copy A of the open
system S, with A and S prepared initially in a maximally
entangled state ρSA(0). Subsequently, the open system S

evolves due to the coupling to the bath, while the ancilla
is kept isolated. Under CPT evolutions, the entanglement
between system and ancilla can only decrease. Thus, an
increase in time of any entanglement monotone E[ρSA(t)]
(as for instance the negativity used here [90]) witnesses non-
Markovianity. Although with this criterion it is also possible
to construct a non-Markovian measure by using in addition
process tomography, for the present discussion it is sufficient
to consider only the experimentally more accessible witness
defined as

NRHP(t) = dE[ρSA(t)]

dt
�

(
dE[ρSA(t)]

dt

)
, (14)

where ρSA(0) is a well-chosen entangled state, but not
necessarily maximally entangled.

In Figs. 4(a) and 4(c), we display NBLP(t) and NRHP(t) for
the above case of a system spin that is strongly coupled to
a unidirectional waveguide. The two witnesses agree well in
identifying the bound-state oscillations as the dominant non-
Markovian behavior. This is expected in this single emitter
case, since both witnesses depend on the time derivative of the
system spin occupation. Related works where the dynamics
of bound states in bidirectional waveguides have been studied
can be found in Refs. [71,72].

2. Retardation effects in the presence of strong driving

A quantum network consists in general of many nodes,
which communicate over a distance via emission and absorp-
tion of waveguide excitations. The finite propagation speed
of these excitations naturally introduces time delays in the
dynamics, which can invalidate the Markov approximation.

The minimal model to study non-Markovian effects of
retardation is given by two resonantly driven system spins
(�̃ = 0), with chiral coupling to a spin waveguide, and
separated by a large distance d such that the delay between
them is large compared to their lifetime, τ = d/|v̄|  1/γ .
Again, we can understand some basic aspects of this problem
by first considering the undriven case (�α = 0) within a WW
approach (see Appendix C 2). In the weak-coupling limit
(γ � 2J ), and assuming that only the left system spin α = 1
is initially excited, the occupations of the system spins evolve

as

〈σ+
1 σ−

1 〉(t) =
∣∣∣∣∣

∞∑
n=0

γ n
Lγ n

Rf (0)
n (t − 2nτ )

∣∣∣∣∣
2

, (15)

〈σ+
2 σ−

2 〉(t) =
∣∣∣∣∣

∞∑
n=0

γ n
Lγ n+1

R f (1)
n (t − [2n + 1]τ )

∣∣∣∣∣
2

, (16)

with f (m)
n (t) = eik̄d(2n+m)t (2n+m)e−γ t/2�(t)/(2n + m)!. As de-

scribed by the functions f (m)
n in Eqs. (15) and (16), the

dynamics consists of a succession of emission and reabsorption
of the waveguide excitation from spin α = 1 to α = 2 and
vice versa, occurring at times that are multiples of the magnon
propagation time τ . Equations (15) and (16) generalize the
results of Milonni and Knight [37,91] to a chiral 1D channel
with possibly asymmetric decays γL � γR . This directional
coupling can strongly influence the cycles of emission and
reabsorption, as it is apparent in the extreme unidirectional
limit (γL = 0), where only one excitation transfer from left to
right is possible.

When adding a strong drive to the nodes (|�α| ∼ γ ),
the non-Markovian regime of large retardation γ τ  1 can
no longer be treated analytically due to the many emitted
magnons that propagate through the waveguide before they are
reabsorbed by the other node. Nevertheless, our extended ME
method (11) allows us to describe the system-bath dynamics
also in this nontrivial regime, and in particular, to reach the
steady state.

As an example, we show in Fig. 5 the evolution of the
occupations of the two system spins as well as the spin
waveguide for a considerable delay of γ τ = 2.5 and chirality
γL/γR ≈ 0.26. The complete cycle of decay of the initially
excited system spin α = 1, the directional propagation of the
emitted magnon through the waveguide, and the subsequent
absorption by the second system spin α = 2 at the retarded
time t = τ , is clearly visible for the undriven [see Figs. 5(a)
and 5(b)] and driven [see Figs. 5(c) and 5(d)] cases. The
Markovian prediction from Eq. (7) highly deviates from this
behavior, as it assumes this process to occur instantaneously
(dashed lines). This is also consistent with the non-Markovian
witnesses NBLP and NRHP, introduced in the previous subsec-
tion, which identify this retarded absorption at t = τ as the
largest non-Markovian aspect in the dynamics. Other smaller
peaks in the non-Markovian witnesses correspond to higher-
order emission and reabsorption cycles as well as residual
band-edge oscillations caused by the system-bath coupling
of intermediate strength J̃ = 0.5J . These two sources of
non-Markovianity can be discriminated by comparing the
actual dynamics with the WW prediction [see the dotted lines
in Fig. 5(a)] which neglects the coupling to the band edge in
this case, as explained in Appendix C 2. Finally, we note that
in the driven case the continuous stream of emitted magnons
tends to damp the transient non-Markovian features appearing
as revivals and oscillations. When reaching the steady state,
the non-Markovian witnesses tend to zero, giving no more
information. In Sec. III B, we identify non-Markovian effects
in steady state by quantifying correlations and entanglement.
In the case of a bidirectional waveguide, related studies where
non-Markovianity is quantified via witnesses or entanglement
can be found in Refs. [92–94].
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(a) (c)

(b) (d)

FIG. 5. Retardation effects in the dynamics of two distant
system spins, in the absence (a),(b) and presence (c),(d) of driving.
(a) Occupations 〈σ+

1 σ−
1 〉 (red) and 〈σ+

2 σ−
2 〉 (blue) of the system spins

sitting on the left and right end of the waveguide, respectively. They
are separated by a distance d = 10a, and are chirally coupled to
the spin waveguide with J̃ = 0.5J , φ = π/10, and �̃ = 0 (such
that τ = 2.5/γ and γL/γR ≈ 0.26). We observe the chiral decay of
the initially excited left system spin, and the retarded excitation of
the right system spin at t ≈ τ . This is well described by the WW
prediction (dotted lines), but it strongly deviates from the Markovian
prediction (dashed lines) as the reabsorptions are assumed to be
instantaneous. Small deviations from the WW prediction stem from
a weak coupling to the band-edge modes, which are not accounted
for by the analytical expressions (15) and (16) (see Appendix C 2).
The non-Markovian witnesses BLP (blue) and RHP (cyan) identify
the absorptions at times multiples of τ , as well as the residual
oscillations due to band-edge effects. The two initial conditions used
to calculate the BLP witness are ρ

(1)
S = |eg〉〈eg| and ρ

(2)
S = |gg〉〈gg|,

whereas the RHP witness assumes an initial entangled state between
system and ancilla given by ρSA(0) = |�0〉SA〈�0|, with |�0〉SA =
(|eg〉S |eg〉A + |gg〉S |gg〉A)/

√
2. (b) For the same situation as in (a),

we plot the evolution of the bath spins occupation 〈S+
j S−

j 〉, showing
that the first emitted magnon reaches the right system spin at t ≈ τ ,
when it is absorbed and chirally reemitted. (c),(d) Dynamics of system
and bath spins, under the same conditions as in (a),(b), but including
driving on both system spins (�1 = −�2 = γ /2). In this situation
the analytical WW treatment cannot be applied, but the retarded
absorptions are clearly identified as the dominant non-Markovian
behavior.

3. Very long time delays, and magnons as hard-core bosons

In the examples presented so far, the time delay τ associated
with retardation effects is of the order of the time scales ∼1/γ ,
∼1/�, giving us the possibility to identify deviations from
the Markovian regime. For larger time delays, the number of
magnons propagating in the waveguide increases, rendering
the problem computationally more challenging. Here, we
employ MPS methods with the extended Markovian cut (11)
to keep track of the dynamics in this regime, where the delay
τ represents the largest time scale [95].

In particular, we investigate the transient dynamics of a
network with very long delay lines, where each system spin
evolves first independently, reaching a quasisteady state at

(a) (c)

(b) (d)

FIG. 6. Strong hard-core effects in a spin waveguide, with
unidirectional (a),(b) and bidirectional coupling (c),(d). (a) Two
strongly driven system spins (�α = γ ), separated by a distance d =
60a, and coupled unidirectionally to the waveguide with φ = π/4,
J̃ = 0.5J , and �̃ = 0 (corresponding to τ = 15/γ ). The evolution
of the system spin occupations 〈σ+

α σ−
α 〉 are shown in solid lines for

a spin waveguide, and in dashed lines for a bosonic waveguide, with
red and blue color corresponding to left (α = 1) and right (α = 2)
system spins, respectively. The black dots represent the Markovian
prediction of a single driven system spin (NS = 1), showing that both
system spins reach the single-particle quasistate steady for t < τ .
The larger population of the right system spin for t > τ (blue solid
line), compared to the bosonic case (blue dashed line), is due to
the saturation of the spin waveguide. (b) For the same situation as
in (a), we plot the evolution of the bath spins occupation 〈S+

j S−
j 〉,

showing the unidirectional emission of magnons for t < τ . At t > τ ,
the right system spin also emits into left-moving modes as an effect of
the high density of the spin waveguide and the hard-core constraint.
(c),(d) Dynamics of system and bath spins, under the same conditions
as in (a) and (b), but with a bidirectional coupling to the waveguide
φ = 0. In addition to the saturation effect, the different behavior
in the spin (solid) and a bosonic (dashed) case is due to collisions
between the magnons. All these simulations were obtained using a
MPS representation with a maximum bond dimension of D = 30 and
averaging over 4000 quantum trajectories, giving a statistical error of
less than 0.01 for the populations shown here. The bosonic waveguide
case is obtained when replacing the spin operators S−

j in Eqs. (1)–(3)
by bosonic operators bj , and we restrict the number of excitations to
a maximum of two per site.

tqss ∼ 1/γ , before the stream of emitted magnons reaches
the other system spin at τ  tqss. Such a situation, where
nodes interact via a time delay, is reminiscent of a “quan-
tum feedback” problem, recently addressed in the photonic
context with alternative methods [84,96]. This regime of high
excitation density also provides evidence for the qualitative
differences between spin and boson waveguides. In addition to
the non-negligible collisional interactions between magnons,
the hard-core constraint can also alter the emission properties
of system spins due to a saturation of the spin waveguide.

To distinguish these two spin waveguide effects, we first
consider two driven distant system spins (d = 60a) with
a unidirectional coupling (γL = 0), such that magnons are
emitted only in one direction preventing them from colliding
with each other. The corresponding dynamics is shown in
Figs. 6(a) and 6(b), where the parameters are chosen such that
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the distance corresponds to a delay of τ = 15/γ . As expected,
for times t < τ the system spins evolve independently and
both emit in the same direction. However, at t > τ , when the
stream of magnons emitted by the left system spin reaches the
right one, the latter also starts to emit in the other direction [see
Fig. 6(b)]. This effect can be explained by the large density of
magnons in the vicinity of the second system spin at t > τ ,
which alters its emission properties as compared to the case
of a spin waveguide in the vacuum state. In particular, if the
bath spins neighboring a system spin are excited, the hard-core
constraint blocks the transfer of the excitation from the system
spin to these bath spins, changing the flux on the plaquettes
shown in Fig. 2(b), and thus altering the directionality of
emission. We note that this blocking or saturation of the spin
waveguide does not only affect the chirality of the system
spins, but also inhibits their total emission into the waveguide.
This can be seen in Fig. 6(a), where we also show the
dynamics of the system spins when they are coupled to a
noninteracting bosonic waveguide S−

j → bj (dashed lines). In
fact, the population of the right system spin at t > τ is larger
compared to the bosonic case, meaning that the spin waveguide
is saturated by the large stream of magnons emitted by the left
system spin and passing through its position. We note that
these hard-core effects of the bath spins vanish when reducing
coupling J̃ /J or driving �/γ since then the magnon density
in the waveguide becomes small, and thus behave similar to
bosons [see Sec. II B].

The case of a bidirectional coupling to the spin waveguide
(γL = γR) is illustrated in Figs. 6(c) and 6(d). Here, the emitted
magnons propagate in both directions and thus collide in the
middle of the waveguide, as shown by the “propagation cone”
in Fig. 6(d). The hard-core nature of the spin excitations leads
to a reversal of their phase in each collision [97], modifying
their subsequent absorption by the nodes. This extra collisional
π phase, in addition to the mentioned saturation, explains the
difference in the system dynamics when the interactions are
mediated by bidirectional spin and bosonic waveguides [see
Fig. 6(c)]. In Sec. IV we show that this collision-induced phase
shift can be used to implement a quantum phase gate between
two distant system spins.

To finalize the discussion on the transient non-Markovian
dynamics, we comment on the efficiency of our MPS method to
solve the extended ME (11) for long waveguides. To do so, we
consider the same example as in Fig. 6 and estimate the maxi-
mum bond dimension D required to accurately represent every
quantum trajectory by a MPS. This is related to the amount
of entanglement distributed between different partitions of the
network, which must be bounded by log2(D) to be efficiently
represented [67]. For each trajectory m, which is characterized
by a set of random quantum jump events, we thus calculate
the entanglement entropy S(ρm) = −Tr{ρmlog2(ρm)} for a
partition at the middle of the waveguide, defined by ρm(t) =
Tr(j>NB/2){|�m(t)〉〈�m(t)|}.

For a spin waveguide, our results are shown in Fig. 7 where
we compare the entropies S(ρm) for a representative sample of
trajectories, obtained for three different bond dimensions D =
30,60,120 (shown as red, green, and blue lines, respectively).
The region where curves with different bond dimension D, but
which correspond to the same trajectory m, overlap identifies
the time window where the calculations are converged. We

(a) (b)

FIG. 7. Entanglement entropy S(ρm) across a bipartite splitting
at the middle of the spin chain, for a representative sample of
quantum trajectories. We assume the same physical situation and
parameters as in Fig. 6 and check the convergence of the MPS
approach by evolving the same quantum trajectory |�m〉 for three
different maximum bond dimensions D = 30,60,120 (shown in red,
green and blue lines, respectively), and compare their overlaps. For
a unidirectional waveguide (a), the average entanglement entropy
S̄ (black line) remains low during the whole evolution, but at long
times some trajectories with large entropy are not converged. In the
bidirectional case (b), the progressive entanglement growth also limits
the efficiency of the MPS approach at long times. In both cases (a) and
(b), the dynamics for γ t < 25 is well described by a bond dimension
of D = 30 (see Fig. 6).

see that for times t � 25/γ corresponding to the dynamics
shown in Fig. 6, all trajectories are well converged with MPSs
of maximum bond dimension of D = 30, in both unidirec-
tional and bidirectional cases. For larger times, however, the
entanglement grows further and some trajectories require a
larger bond dimension as illustrated by the blue lines not
overlapping with green or red ones. Such highly entangled
trajectories limit the efficiency of the method, in particular to
reach the steady state. Interestingly, we notice that the quantum
trajectories in a bidirectional spin waveguide require a larger
average entropy S̄(t) = limN→∞

∑N
m=1 S(ρm)/N compared to

the unidirectional case (see black lines in Fig. 7). As analyzed
in detail in Sec. III B 2, this larger complexity to simulate
the evolution with a bidirectional waveguide is related to the
possibility of system spins to emit into spin waves propagating
in both directions, in contrast to the unidirectional case where
they can only be emitted into a single channel.

In Appendix D we extend the present discussion by studying
the influence of the retardation time τ on the entanglement
created during the evolution. In addition, we compare the
entropies for spin and boson waveguides, and show that in the
former case they are smaller due to the absence of hard-core
effects.

B. Steady states in the non-Markovian regime

Steady states of driven chiral quantum networks have been
previously studied in the Markovian limit [48–50]. One of
the most striking predictions is the many-body “cooling” of
two-level systems into clusterized phases (quantum dimers,
tetramers, hexamers, etc.), as the unique steady state of the
chiral driven-dissipative dynamics. Below, we will first review
the conditions and physical picture behind the formation
of such quantum dimers, the simplest clusterized phase,
and illustrate their formation and dynamics in the context
of the chiral spin waveguides (see Sec. III B 1). The tools
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developed in the present work will allow us to systematically
access the non-Markovian regime of quantum dimer formation
by increasing both the distance between system spins and
their coupling to the waveguide. We assess the various
signatures of retardation on unidirectional and asymmetric
bidirectional (chiral) networks in terms of quantum mutual
information between the system spins, two-time correlations,
and entanglement entropy (see Sec. III B 2).

1. Quantum dimer formation in Markovian networks

The interplay between driving and dissipation leads the
system spins, with dynamics described in the Markovian
regime by the ME (7), to a steady state, which is generally
mixed. Nevertheless, as pointed out in Refs. [48–50], there
are special situations when this open system asymptotically
decouples from the chiral waveguide, allowing the dissipative
formation of pure (and possibly entangled) many-body steady
states of the system spins |�ss〉S , as

ρS(t → ∞) = |�ss〉S〈�ss|. (17)

The simplest network to illustrate this mechanism is again
two driven nodes chirally coupled to the spin waveguide,
which are dissipatively purified into an entangled dimer steady
state (see Sec. II C). This is achieved in the Markovian limit,
and in the specific situation where the effective coherent and
dissipative couplings, given in Eqs. (1), (9), and (10), act on
the system states as shown in Fig. 8(a), where the triplet (+)
and the singlet (−) states are defined as

|ψ±〉12 = (|e〉1|g〉2 ± eik̄d |g〉1|e〉2)/
√

2. (18)

The first condition is to drive the two system spins on resonance
(�̃ = 0) and with proper phases, �α = eiαk̄d�, such that the
singlet state decouples from the drive [see Fig. 8(a)]. Second,
we require a commensurate distance between the two system
spins, k̄d = nπ (with n an integer), such that the singlet
|ψ−〉12 is annihilated by both jump operators cR = cL = σ−

2 +
(−1)nσ−

1 , and thus becomes perfectly subradiant [48,50]. We
notice that in the present spin context, the commensurability
condition simply reduces to d/2a = n. Finally, we need the
decay into the waveguide to be chiral γL < γR , so that the
effective Hamiltonian HC in Eq. (9) couples singlet and triplet,
which in combination with |g〉1|g〉2 resemble a �-system [see
Fig. 8(a)]. This admits a unique dark state as a superposition
between |ψ−〉12 and |g〉1|g〉2, which decouples from the
coherent dynamics due to destructive interference between
the drive, decay, and interactions. Explicitly, it is given by

|D〉12 = 1√
1 + |S|2

(|g〉1|g〉2 + S|ψ−〉12), (19)

where the singlet fraction reads

S = −i
√

2

(
�

γ

)
(1 + γL/γR)

(1 − γL/γR)
. (20)

In analogy to optical pumping [98], for long times all the
population will be pumped into the dimer dark state |D〉12,
being the unique pure steady state of the driven-dissipative
dynamics, as in Eq. (17).

The emergence of this dimerization and the corresponding
dynamics of the waveguide excitations can be clearly seen

(a) (d)

(b) (e)

(c) (f)

FIG. 8. Driven-dissipative preparation of pure dimer states, in
the Markovian regime (a) Level scheme and couplings, in the
Markovian limit, and under the conditions for the dimer formation
between two system spins. (b) Minimal configuration for dimer for-
mation, using NS = 2, NB = 4, d = 2a, �̃ = 0, and �1 = −�2 = �.
(c) Dynamical formation of dimer steady state illustrated by the
evolution of the purity PS of the system density matrix and its overlap
with the dimer state FD. Both approach unity, in good agreement with
the Markovian prediction (dashed lines). The imperfect decoupling
between system and waveguide is detected by a nonzero mutual
information ISB (grey line). The purity P of the whole 2 + 4 spin
network also approaches unity, signaling the formation of a composite
dark state between system and bath spins. Other parameters are
J̃ = 0.1J , �/γ = 1, and φ = π/10. (d) For the same situation as
in (c), we show snapshots of the bath spin occupations 〈S+

j S−
j 〉,

evidencing the formation of a constant magnon flux between the
system spins, as γ t → ∞. (e) Dissipative formation of a dimerized
phase of NS = 12 system spins, illustrated by the singlet correlations
Cα,α+1, which build up in pairs, as predicted in the Markovian limit
(dashed lines). Other parameters are J̃ = 0.3J , �/γ = 1, �̃ = 0,
φ = π/4, and NB = 24. (f) For the same situation as in (e), we
show the evolution of the bath spin occupations 〈S+

j S−
j 〉, showing the

decoupling between dimers in steady state, which occurs successively
from left to right due to the unidirectional coupling. The dynamics
shown in (e) and (f) was calculated using an MPS representation
with a maximum bond dimension of D = 10 and averaging over 400
quantum trajectories, giving a statistical error of less than 0.01 for
the occupations shown here.

in the full evolution of the network, by including the spin
waveguides via the extended Markovian cut (11), but choosing
parameters so that we remain in the Markov regime. Remark-
ably, we find that all the features of the chiral ME (7) can be
recovered in a minimal model consisting of only two spins
in the waveguide per spin in the system. This is illustrated in
Fig. 8(b), where four bath spins are enough to account for the
collective reservoir-mediated effects, while a single loss on
each end, with rate �0 = 2J , perfectly mimics the output of
an infinite (nonreflecting) waveguide (see Appendix B).

For this minimal setup, we plot in Fig. 8(c) the dimer fi-
delity FD(t) = Tr{ρS|D〉12〈D|} and the system purity PS(t) =
Tr{ρ2

S}, as a function of time, with ρS(t) = TrB(ρ) the reduced
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system state, and |g〉1|g〉2|0〉 the initial condition. The time
evolution from Eq. (11) agrees well with the Markovian
prediction, reaching the pure dimer steady state with high
fidelity. The direct access to the waveguide allows us to
easily quantify system-bath correlations via their quantum
mutual information, defined as ISB = S(ρS) + S(ρB) − S(ρ).
Here, ρB denotes the reduced state of the bath spins alone
and S(ρ) = −Tr{ρ log2(ρ)} the von Neumann entropy. The
corresponding time evolution is shown in Fig. 8(c), where
the small value of ISB reached in steady state witnesses a
slightly imperfect decoupling between system and waveguide.
Nevertheless, ISB reduce with coupling J̃ /J , as the Markov
approximation becomes more valid. Interestingly, the total
purity of system and waveguide together, P(t) = Tr{ρ2},
reaches a larger steady state value than PS , meaning that the
entire 2 + 4 spin network also decouples from the output, and
forms a better dark state than when considering the system
spins alone.

The interference effect underlying the dimer dark state for-
mation is evident when looking at the waveguide dynamics. In
particular, magnons should be stationary exchanged between
system spins forming a dimer, without being able to escape
from the pair as they are perfectly absorbed. This is clearly
seen in Fig. 8(d), where a constant occupation in the bath
spins j = 2,3 is dynamically built up, whereas the other bath
spins j = 1,4, sitting outside the nodes forming the dimer
become completely depopulated in steady state, i.e. the output
becomes “dark” and magnons are no longer emitted into the
region outside the pair.

Under the same conditions as discussed above, but for an
arbitrary even number NS of system spins, the chiral ME (7)
predicts the dissipative formation of a large dimerized pure
steady state, |�ss〉S = ⊗NS/2

α=1 |D〉2α−1,2α , where each system
spin pairs up with one of its neighbors in the dimer state (19),
and completely decouples from all the others [48–50]. This
is illustrated in Figs. 8(e) and 8(f), where we calculate the
dynamics for NS = 12 driven system spins, coupled to NB =
24 bath spins with unidirectional interactions (γL = 0). Here,
the adjacent spin correlations, defined as

Cα,α+1 = |〈σ+
α+1σ

−
α 〉 − 〈σ+

α+1〉〈σ−
α 〉|, (21)

with α = 1, . . . ,NS − 1, witness the onset of the dimerized
phase in steady state. As shown in Fig. 8(e), spin correlations
Cα,α+1 between neighboring system spins forming a dimer (for
α = odd), asymptotically approach to the same value given by

C1,2(t → ∞) = (−1)1+d/2a|S|4
2(1 + |S|2)2

, (22)

while the other adjacent correlations (for α = even) vanish in
steady state, witnessing the decoupling of system spins not
forming the same dimer. Due to the unidirectional coupling,
this dimerization occurs successively from left to right, which
is clearly seen in the dynamics of Cα,α+1(t), but also in the
dynamical build up of the steplike bath occupation between
dimers, shown in Fig. 8(f). We note that the local entanglement
structure of this dimerized phase is efficiently represented by
MPSs, which allows us to account for large system sizes within
our extended ME framework.

2. Non-Markovian effects in the dimer steady state

Including the dynamics of the spin waveguide with our
extended Markovian cut allows us to systematically investigate
the steady states of chiral networks deep in the non-Markovian
regime. We illustrate this for the case of NS = 2 system spins
under the commensurability conditions, which leads to dimer
formation in the Markovian limit (see Sec. III B 1). Here, the
system spins share correlations in steady state, as discussed
in the singlet correlations (22) [see also Fig. 8(e)]. In the
non-Markovian regime, however, we find that the dark state
formation is imperfect, leading to an incomplete decoupling
of the nodes from the waveguide, and thus to a reduction of
the correlations between system spins, or decoherence.

We quantify the correlations between the two system spins
via the quantum mutual information as

I12 = S
(
ρss

1

) + S
(
ρss

2

) − S
(
ρss

S

)
. (23)

Here ρss
S = TrB{ρ(t → ∞)} is the reduced density matrix in

the steady state of both system spins, and ρss
1 , ρss

2 is the reduced
density matrix of nodes 1 and 2, respectively. We are interested
in studying the robustness of the dimer correlations in the
non-Markovian regime, for which I12 is an appealing measure,
as it does not assume any specific entanglement structure of the
resulting steady state ρss

S . More specifically, it can take values
in the range 0 � I12 � 2, where the maximum correlations
I12 = 2 are achieved in the case of a maximally entangled state
between the two system spins. We note that the non-Markovian
witnesses used in Sec. III A do not apply in steady state, as
they are based on (transient) time evolution, and thus cannot
quantify non-Markovianity in this situation.

Non-Markovian effects become visible first of all by
increasing the distance between the two system spins d, and
thus increasing the time τ that excitations need to propagate
from one node to the other. Additionally, a larger coupling to
the waveguide J̃ enhances their emission rate γ . Nevertheless,
both have the same effect to first order, since the relevant
physical parameter is the product γ τ = (d/a)(J̃ /J )2, i.e., the
number of excitations traveling between the nodes along the
waveguide. For γ τ � 1 and d/a = 2n with n an integer, the
local coupling of each node to the waveguide is necessarily
weak, (J̃ /J )2 � 1, and to leading order all non-Markovian
deviations stem from time delays in the interactions. This can
be seen in Fig. 9(a) where we plot the steady-state mutual
information I12, for various combinations of parameters.
Specifically, the correlations present in the dimer for γ τ → 0+
decrease linearly with γ τ as the two system spins get entangled
with an increasing number of bath spins. For larger couplings
γ ∼ 2J , dispersion and band-edge effects are also important,
such that I12 no longer scales as γ τ . This behavior is presented
in Fig. 9(a) for two values of chirality, γL/γR = 0 (red line)
and γL/γR ≈ 0.45 (blue line), showing that correlations in the
unidirectional limit are more robust against retardation.

We note that–in contrast to the Markovian prediction (22)–it
is not possible to achieve the maximal steady state correlations
between the two system spins by simply increasing the
driving strength �/γ [see Fig. 9(b)]. While the chiral ME
for Markovian networks (7) predicts a monotonic increase of
I12 due to a larger singlet fraction (20), when including a finite
time delay γ τ the correlations between the system spins show
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FIG. 9. Robustness of steady-state correlations in the non-
Markovian regime. (a) Quantum mutual information I12 between the
two system spins in steady state, as a function of γ τ = (d/a)(J̃ /J )2,
for fixed ratio �/γ = 1, and two values of chirality: φ = π/4
(unidirectional, red symbols), and φ = π/16 (asymmetric bidirec-
tional, blue symbols). The various symbols correspond to different
combinations of distance and couplings given by d/a = [2,4,6] and
J̃ /J = [0.1,0.18,0.25,0.35,0.6], where the different values of J̃ /J

are represented by squares, crosses, circles, triangles, and diamonds,
with increasing value. The Markovian predictions are represented as
dashed lines, showing that the maximal correlations are obtained in
this limit (τ = 0+). The linear scaling of I12 with γ τ in the region
γ τ � 1 identifies retardation effects as the main source of deviation
from the Markovian prediction. (b) Mutual information I12 as a
function of �/γ , for φ = π/4 (red) and φ = π/16 (blue) cases, and
two values of retardation γ τ = [0.065,0.245] (increasing for darker
color), corresponding to J̃ /J = [0.18,0.35] and d/a = 2. There is an
optimal �/γ , at which the correlations are maximal, which reduces
with γ τ and γL/γR . The dashed lines show the Markovian predictions
for each chirality, which saturate to the maximum value I12 → 2 for
�/γ → ∞, as the dimer state coincides with the singlet.

a qualitatively different behavior. The two nodes decorrelate
at large driving and there is an optimal driving strength at
which the largest correlations are achieved. The correlations
at the optimal driving are, however, always smaller that the
maximal value of I12 = 2 for the perfect singlet and reduce
with increasing retardation γ τ and γL/γR , as can be seen in
Fig. 9(b).

In the unidirectional (cascaded) case (γR > γL = 0) and
weak-coupling limit (γ � 2J ) the effect of retardation is
particularly simple to understand, as waveguide excitations
emitted by the first node propagate to the second node, but
not vice versa. In the absence of this back action, we expect
that the time delay τ = d/|v̄| will shift in time the effective
dynamics of the second system spin, when compared to the
Markovian prediction (corresponding to τ = 0+). In the theory
of cascaded quantum systems according to Refs. [27,80,81]
the effect of an arbitrary time delay τ is accounted for by
interpreting “time” as the “retarded time” for the second
node as σ±

2 (t + τ ) → σ±
2 (t). Therefore, in the case of a

unidirectional coupling it is possible to recover the lost equal
time dimer correlations [shown in Fig. 9(a)] in two-time
correlations with finite time delay τ . This is clearly seen in
Fig. 10(a), where in analogy to the equal time correlation (21)
we plot the two-time correlation function

C̃12(t,t ′) = |〈σ+
2 (t + t ′)σ−

1 (t)〉 − 〈σ+
2 (t + t ′)〉〈σ−

1 (t)〉|, (24)

as a measure of the delayed singlet correlations of the two
system spins, which is evaluated in steady state t → ∞ for
various delay times τ . In the Markovian limit (τ = 0+, dashed
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FIG. 10. Non-Markovian effects in the dimer steady state via
two-time correlations. (a),(b) Two-time singlet correlation function
C̃12(∞,t ′) in steady state, for different delay times τ ≈ 0.19/γ and
τ ≈ 0.39/γ (increasing for darker color), in the unidirectional φ =
π/4 (a), and in an asymmetric bidirectional case φ = π/16 (b). (a) For
γL = 0, the correlations are rigidly displaced by t ′ = τ as compared
to the Markovian prediction (dashed), showing that the effects of
retardation can be compensated by a simple time shift of τ . (b) For
γL/γR ≈ 0.45, there is a strong overall reduction of the two-time
correlations with τ , relative to the Markovian prediction (dashed).
Other parameters are d/a = [6,12], J̃ /J = 0.18, �/γ = 1, and
�̃ = 0. (c),(d) “Two-time” mutual information I12(∞,t ′) in steady
state, for the same parameters as in (a) and (b). (c) In addition to the
expected rigid shift by τ , we observe a small decrease in the maximum
of I12(∞,t ′) due to residual dispersion effects. (d) Besides showing
the overall reduction of correlations with τ , I12(∞,t ′) is also sensitive
to two peaks at t ′ = ±τ , showing that correlations can be restored by
a time shift in either direction, the maximum of the two obtained in
the direction of chirality. (e),(f) Deviation of the maximal two-time
mutual information δĨ12 = Imark

12 − Ĩ12(∞,t ′
max) and of the equal time

one δI12 = Imark
12 − I12, with respect the Markovian prediction Imark

12

obtained for τ = 0+. (e) We plot δĨ12 (circles) and δI12 (crosses),
as a function of γ τ = (d/a)(J̃ /J )2, for the same parameters as
in Fig. 9(a). In particular, red symbols correspond to γL = 0, and
blue symbols to γL/γR ≈ 0.45. For γL = 0, Ĩ12(∞,t ′

max) allows to
extract correlations much closer to the Markovian prediction than I12,
whereas for γL/γR ≈ 0.45 the correlations are only slightly increased.
(f) The same conclusions from (e) can be drawn when plotting δĨ12

(solid) and δI12 (dashed), as a function of driving �/γ , for the same
parameters and color code as in Fig. 9(b).

line) we observe the expected maximum of correlations at t ′ =
0, and the vanishing of two-time correlations for |t ′|  1/γ .
A finite time delay indeed leads to a rigid displacement by
τ of the correlations predicted by the Markovian theory of
cascaded systems: the maximum value is now obtained at the
delayed time t ′ = τ .
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In contrast, for an asymmetric bidirectional case correla-
tions between nodes are established by excitations propagating
in both directions (γR > γL �= 0). Figure 10(b) shows the
corresponding two-time correlation function (24) in steady
state, for various time delays τ as above. Although the
maximum correlations appear at a slightly delayed time
t ′ � τ , there is a strong overall reduction of correlations with
increasing τ relative to the Markovian limit τ = 0+.

We note that the mutual information (23) discussed above
measures quantum correlation between the two system spins
at equal times. In light of our discussion of two-time correla-
tions (24) with maximum quantum correlation at a finite time
difference related to τ , one may wonder if one can introduce an
analogous measure based on mutual information for two-time
correlations. This can be done adopting and generalizing
arguments by Carmichael [81]: consider the whole network
of node 1, node 2, and spin waveguide described at time t by
the density operator ρ(t), as solution of the extended ME (11).
We remove node 1 at time t from the dynamics of the total
system, and we define a density operator for the following
evolution as

ρ̃(t,t ′) = eL2t
′
ρ(t) (t ′ > 0), (25)

as a function of time t ′ > 0. Here L2 is the truncated Liouvil-
lian obeying an extended master equation (11) with the first
node removed from the dynamics. Physically, ρ̃(t,t ′) describes
a situation where node 2 will for the time interval t ′ < τ still
“see” all the waveguide excitations, which were emitted by
node 1 at times earlier than t (i.e., before the node 1 was de-
coupled), and which continue propagating towards node 2. We
emphasize that ρ̃(t,t ′) is a proper density operator, and we take
it as an operational definition of a “two-time quantum state.” In
addition, it can be naturally extended to negative times t ′ < 0,
by interchanging the roles of nodes 1 and 2 in Eq. (25).

The idea is now to define a “two-time” quantum mutual
information, in analogy to I12, as

Ĩ12(t,t ′) = S(ρ̃1(t,t ′)) + S(ρ̃2(t,t ′)) − S(ρ̃S(t,t ′)), (26)

where ρ̃S(t,t ′) = TrB{ρ̃(t,t ′)} is the “two-time” reduced den-
sity matrix of both system spins and ρ̃1(t,t ′), ρ̃2(t,t ′) is the
reduced states of system spins 1 and 2, respectively. In the
stationary limit t → ∞, and for various time delays τ , we
discuss Ĩ12(t,t ′) as a function of t ′, in analogy to the two-time
correlation function C̃12(t,t ′) above. The corresponding results
can be found in Figs. 10(c) and 10(d), which look qualitatively
similar to the ones in Figs. 10(a) and 10(b). Nevertheless, as
Ĩ12 does not assume any specific form of two-time correlations,
it allows us to distinguish additional phenomena not present
in C̃12. In the unidirectional case [see Fig. 10(c)], besides
the rigid displacement by τ of the correlations predicted
by the Markovian theory (τ = 0+), we observe a small
decrease of the shifted maxima due to higher-order effects
stemming from the nonlinear Bloch band dispersion relation.
In the asymmetric bidirectional case [see Fig. 10(d)], we
clearly identify two peaks of the correlations at t ′ = ±τ , in
addition to the overall decrease of correlations with τ relative
to the Markovian prediction. Since the chirality is chosen
with preference to the right (γR > γL �= 0), more waveguide
excitations are emitted from node 1 to 2, and thus the maximal
correlations are obtained at the positive delayed time t ′ = τ .

However, the smaller peak at t ′ = −τ evidences that the
same time shift argument independently applies to the fewer
left-moving magnons emitted from node 2 to 1. In essence, as
the two-time steady state ρ̃S(t → ∞,t ′) assumes a privileged
delay direction, it can only fully recover the dimer correlations
in the unidirectional limit (up to dispersion effects). This is also
visible in Figs. 10(e) and 10(f), where we compare I12 with
the corresponding “two-time” mutual information Ĩ12(∞,t ′max)
in steady state, for the same parameters as in Figs. 9(a)
and 9(b), and optimizing the delay time t ′max ≈ τ such that the
two-time correlations between the nodes are maximal. While
in the unidirectional case this allows us to extract two-time
correlations that are much closer to the Markovian value than
I12 (crosses and dashed lines), in the more bidirectional case
the delayed correlations increase only by a small amount.

In the unidirectional limit, the fact that time delays can
be absorbed allows us to understand also the properties of
the entire network for τ > 0. Whereas the Markovian master
equation (τ = 0+) predicts that the system spins decouple
from the waveguide and form a pure dark state, for a finite
τ instead it is actually the combined system of the nodes
together with the stream of waveguide excitations that form a
composite dark state, which disentangles from the output. This
is shown in Fig. 11(b) where we plot the steady-state entropy
S(ρ ′

ss) of the network consisting of the nodes and the relevant
part of the spin waveguide that connects them, as depicted
in Fig. 11(a). In particular, the formation of the global dark
state is signaled by a vanishing entropy in the unidirectional
(γL/γR → 0) and weak-coupling region (J̃ /J � 1). In the
bidirectional limit (γL/γR → 1), however, it is not possible
to reduce the dynamics to a Markovian one by a simple
time shift, and the entire network does not form a dark state
when including a finite time delay γ τ . Correspondingly, the
entropy in Fig. 11(a) increases in the bidirectional region.
Note that at larger coupling (J̃ /J � 1), dispersion effects and
band-edge effects strongly degrade the dark state formation
even in the unidirectional limit, such that the entropy becomes
less sensitive to chirality and increases with coupling due to
the larger amount of magnons leaving the network.
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FIG. 11. Steady-state entropy between system and waveguide (a)
Relevant part of the network composed by the system spins and only
the bath spins connecting them (enclosed by dashed lines). (b) Steady-
state entropy S(ρ ′

ss) of the subsystem indicated in (a), as a function
of chirality γL/γR and retardation γ τ . The vanishing entropy in the
limit of weak coupling (J̃ /J � 1) and unidirectional interactions
(γL/γR → 0), signals the formation of a composite dark state (with no
output) despite the finite time delay τ . At larger coupling (J̃ /J � 1),
the composite dark state is strongly degraded due to dispersion effects,
which is evidenced by an increase of the entropy. Calculations are
done for NB = 6, but S(ρ ′

ss) depends insignificantly on the waveguide
size. Other parameters are d/a = 2, � = γ /4, and �̃ = 0.
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IV. QUANTUM SPINTRONIC CIRCUITS FOR QUANTUM
INFORMATION APPLICATIONS

From a quantum information perspective, the chiral spin
network model proposed in this work provides a natural frame-
work to physically implement, model, and design complex
quantum “spin circuits.” Here the spin chains act as chiral
quantum channels to realize quantum communication between
the nodes of the quantum network, represented by the system
spins (as qubits). We note that the theoretical tools of Sec. II A
to model the quantum network dynamics give the possibility to
(i) systematically go beyond the Born-Markov approximation,
allowing us in particular to calculate and thus visualize the
propagation of the multiple excitations in the spin channels;
(ii) to account for effects related to the dispersive nature
of a structured reservoir, and imperfections, e.g., due to the
presence of disorder in a spin chain as relevant in solid-state
realizations; and (iii) to realize quantum operations exploiting
the chiral coupling of nodes to the spin channel in combination
with the “hard-core boson” nature of spin excitations, in con-
trast to the quantum optical realizations with (noninteracting)
photons as “flying qubits” in photonic waveguides.

In this section, we present three illustrative examples of
basic building blocks of chiral spin quantum circuits and
quantum protocols. In Sec. IV A, we study state transfer
between distant qubits via the spin chain with shaped time-
symmetric wave packets. In Sec. IV B, we describe a “quantum
box,” which can be inserted in the spin channel, to “time
reverse” the spin-wave packet propagating in the channel. In
particular, this allows for the realization of a state transfer
protocol that is resilient to dispersive effects. Finally, in
Sec. IV C, we exploit the “hard-core” nature of the spin
waveguide excitations to realize an entangling quantum gate
between two distant qubits. In all these examples, we consider
the absence of a driving field �α = 0, so that the total number
of excitations is conserved during the evolution.

A. Quantum state transfer via a spin chain

As our first example, we consider a protocol for quantum
state transfer between two distant system spins (qubits) via a
spin channel with chiral coupling, as illustrated in Fig. 12(a).
The goal is to achieve transfer of the state of the first qubit
to the second distant qubit via the spin chain, |ψ〉1|g〉2 →
ei�|g〉1|ψ〉2, where |ψ〉α = cg|g〉α + ce|e〉α refers to an ar-
bitrary state of the qubit α, and � accounts for a phase
accumulated during propagation.

We are interested in a spin analog of the transfer protocol
developed in Refs. [53,54] for photonic channels. For weak
coupling of the qubit to the spin chain, we can approximate
the dispersion relation as linear ωk ≈ (k − k̄)|v̄| and show
analytically [53,54] that the protocol can be realized by
unidirectionally emitting a symmetric wave packet from the
first qubit via a time-dependent modulation of the coupling
J̃1(t), which propagates in the waveguide towards the second
qubit. The wave packet can then be perfectly reabsorbed by the
second qubit via a time-reversed coupling J̃2(t) = J̃1(τ − t),
where τ = d/|v̄| represents the time delay [Fig. 12(a)] [99].
In this way, we mimic the time reversal of the initial decay
process [53].

(a) (c)

(b)

(d)

FIG. 12. State transfer via chiral spin chain. (a) Schematic
representation of the quantum state transfer with chiral coupling to
the spin chain. (b) Numerical simulation of state transfer between two
system spins (qubits), separated by d = 68a. The qubit populations
are represented in the upper panel (solid lines), together with the pulse
shaping of the coupling strengths J̃α(t) to achieve a symmetric spin-
wave packet (dashed lines). The lower panel shows the propagation
of the Gaussian wave packet in the waveguide. (c) Fidelity of the
transferF as a function of distance d for a cosine ω(k) = −2J cos(ka)
(yellow line) and an exactly linear dispersion relation ω(k) = 2Ja|k|
(red line). (d) Robustness of the state transfer protocol in the presence
of disorder in the nearest-neighbor hopping of the spin chain Jj . We
plot the state transfer fidelity F as a function of d and the variance σ 2

of the random distribution, showing the destructive impact of disorder
at large spatial separations between the qubits.

Figure 12(b) shows a numerical example illustrating the
emission, propagation, and absorption of the wave packet
mediating the state transfer. We emphasize that due to the chiral
coupling of the qubits (φ = π/4) to the spin waveguide, the
two qubits are coupled exclusively to the right-moving mode,
and we have chosen the separation between the qubits as a
large distance d = 68a. In Fig. 12, the first qubit is assumed
to be initially prepared in the excited state |ψ〉1 = |e〉1, and
emits a Gaussian wave packet (see Appendix F for details),
which propagates in the spin chain during a time τ before
being reabsorbed by the second qubit.

Compared to the ideal situation of a linear dispersion as-
sumed in Refs. [53,54], where the only source of imperfection
is due to the finite duration of the coupling pulses Jα(t), here
dispersive effects arising from the nonlinear dispersion relation
of the waveguide degrade the efficiency of the protocol. This
is illustrated in Fig. 12(c), where we plot as a function of
d the state-transfer fidelity F , defined by the population of
the second qubit at the end of the protocol (yellow curve).
Moreover, we remark that when adding suitable long-range
couplings to make the dispersion relation exactly linear (see
Appendix E), the resulting fidelity becomes independent of d

[red curve in Fig. 12(c)].
Finally, we estimate the effect of disorder in the spin

chain for the quantum transfer protocol. This is motivated
by possible implementations of a chiral spin waveguide
with solid-state systems [100], e.g., spin chains connecting
nitrogen-vacancy (NV) centers as qubits. We consider the case
of disorder corresponding to a random Gaussian distribution
of the nearest-neighbor spin couplings Jj of variance σ 2. We
show in Fig. 12(d) the averaged fidelity over 250 random
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distributions, as a function of the distance d and the variance
σ 2. We consider here the case of an exactly linear dispersion
relation (see Appendix E) allowing us to quantify the parameter
regime where the protocol is not affected by disorder [101].
Other imperfections in a solid-state context are due to the
finite temperature of the spin chain, an effect we will discuss
elsewhere.

B. Time reversing the spin-wave packet and state-transfer
resilient to dispersion effects

Instead of shaping a time-symmetric spin-wave packet via
J̃1(t) as in Sec. IV A, we discuss here a time reversal of a
spin-wave packet, which consists of reversing the direction
of propagation of a wave packet without altering its shape.
The scheme is the spin analog of a phase-conjugate mirror in
photonics [102,103], which in the present spin context can be
simply achieved by dynamically reversing the sign of the spin
chain hopping J (t), during the propagation of the spin-wave
packet. Formally, this process reverses the direction of time, as
it reverses the spectrum ωk → −ωk of the bath Hamiltonian
HB . It allows for a perfect state-transfer protocol, which is
applicable to arbitrary shapes of wave packets, and in particular
for a wave packet obtained from an exponential decay of the
first qubit, as illustrated in Fig. 13(a). Here, for t < t0, the
value of the hopping is fixed to J (t) = J0, corresponding to
the dispersion relation shown by the red line in Fig. 13(a).

(a) (c)

(b) (d)

FIG. 13. Time-reversal and state transfer resilient to dispersion.
(a) Schematic illustration of time reversal of a wave packet. At t = t0,
the sign of the hopping J (t) is reversed, which reverses the sign of
the dispersion relation (right) and the direction of propagation of the
wave packet (left). (b) Application of the time-reversal protocol to the
spontaneous emission of a system spin into the spin waveguide. Lower
panel: The excitation in the waveguide clearly shows the inversion of
propagation direction at t = t0, without a change of the wave-packet
shape. Upper panel: As the system spin population shows, the wave
packet is perfectly reabsorbed at t = 2t0. Parameters are J̃ = 0.4J0,
J0t0 = 190, and d = 398a. (c) Application of the time reversal to a
state-transfer protocol that is insensitive to dispersive effects. At time
t = t0, the emitted wave packet is time reversed and then reflected due
to the presence of a broken link ja,ja + 1. (d) Numerical simulation
of the protocol with J̃ = 0.25J0, J0t0 = 190, and d = 398a. Upper
panel: Population of the system spins. Lower panel: Occupation of
the bath spins in the waveguide, showing the trajectory of the time-
reversed wave packet.

Consequently, a wave packet whose momentum distribution
is initially centered at k = k̄ > 0 propagates to the right due
to a positive group velocity (∂ωk/∂k)(k̄) > 0. For t � t0 the
dispersion relation is reversed by setting J (t) = −J0 (blue
line), such that the wave packet propagates in the opposite
direction (∂ωk/∂k)(k̄) < 0, time reversing its dynamics.

Figure 13(b) shows the most basic example of time reversal:
at time t = 0, a system spin emits into the right-moving mode
via a fixed coupling J̃ . The wave packet propagates in the
waveguide until t0 = 190J−1

0 , when the dispersion relation is
reversed. Consequently, the wave packet comes back to the
qubit and is then perfectly reabsorbed, since whole dynamics
is completely time reversed. Remarkably, also the dispersive
effects arising from the nonlinear dispersion relation are time
reversed and thus compensated.

As an application of this time-reversal “gadget,” we
now present a state-transfer protocol that is robust against
dispersion. The different steps of the protocol are illustrated
in Fig. 13(c). The first system spin, initially excited, emits
a wave packet to the right. At time t = t0, the dispersion
relation is inverted so that the wave packet then propagates
in the left direction. In order to make it reach the second qubit,
an additional reflection is required. To do so, we remove the
hopping term of a specific link ja,ja + 1 during the second
part of the process at some time t > t0, thus cutting the spin
chain into two distinct pieces [see Fig. 13(c)]. Consequently,
the wave packet reaching the site ja + 1 is reflected and
finally moves in the right direction before being reabsorbed
by the second qubit. In the case where the broken link is
placed at the middle position between the two spins, one can
see that the spin excitation propagates for an equal distance
with the initial and final dispersion relation, reminiscent of a
photon echo: dispersion effects have thus no influence in the
transfer. We show in Fig. 13(d) a numerical simulation of the
protocol where we could achieve a state-transfer fidelity of
F = 98% with two system spins separated by d = 398a, the
small error being attributed to the tail of the wave packet which
remains trapped in the left part of the spin chain (j < ja). For
comparison, we obtain a fidelity F = 67% when we apply
the state-transfer protocol presented in the last section, for the
same separation d (and the cosine dispersion relation as here).

C. A two-qubit quantum gate mediated by spin-spin collisions

The state-transfer protocol involves the propagation of a
single excitation in the waveguide and is thus insensitive to
the nature, photon or magnon, of the waveguide excitation.
We now show an example where we make use of the hard-core
nature of spin waves to realize a quantum gate between two
qubits. The gate we have in mind is described by

|g〉1|g〉2 → |g〉1|g〉2,

|g〉1|e〉2 → ei�|e〉1|g〉2,

|e〉1|g〉2 → e−i�|g〉1|e〉2,

|e〉1|e〉2 → −|e〉1|e〉2, (27)

which together with arbitrary single-qubit gates, forms a
universal set of gates [104].
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(a)

(b)

(c)

(d)

FIG. 14. Two-qubit quantum gate via spin-spin collision.
(a) Schematic representation of the entangling gate protocol. Two
system spins with opposite chirality emit in opposite directions into
the waveguide. Due to the spin nature of the waveguide, the magnonic
wave packets pick up a phase of π in the collision, allowing for the
realization of a phase gate, after the reabsorption of the excitations.
(b) Numerical simulation of the gate for an initial state |e〉1|e〉2

between two system spins, separated by d = 58a, and the rest of
the parameters as in Fig. 12 for the time-dependent couplings. The
spin populations are represented in the upper panel. The lower panel
shows the propagation of the two wave packets in the spin waveguide.
(c) Transfer matrix χj,i and (d) the error of the gate as a function
of interspin distance d , showing the resilience of the protocol to
dispersion effects.

The realization of such a gate in the context of our spin
model is shown schematically in Fig. 14(a). In the first part of
the protocol, the two qubits are coupled to the waveguide via
a time-dependent coupling of same magnitude J̃1(t) = J̃2(t)
and opposite phases φ1 = −φ2 = π/4, so that each qubit, if
initially excited, emits a wave packet towards the other qubit.
As in Sec. IV A, the wave packets are then absorbed using
the coupling J̃1(τ − t) = J̃2(τ − t) and the reversed phases
φ1 = −φ2 = −π/4. Note that the time delay τ has to be
sufficiently large so that the overlap between the emitting and
absorbing pulses is negligible. If only one qubit is initially
excited, the protocol reduces to the state transfer presented
in Sec. IV A, which also applies to photonic waveguides.
However in the case where the two qubits are initially excited,
the use of a spin waveguide becomes a crucial ingredient: the
spin-chain state, described by a two excitation wave function,
acquires a π phase sign when the two counterpropagating
spin waves (emitted by both qubits) exchange positions [97].
Consequently, we obtain the required minus sign, which
allows the entangling gate in Eqs. (27).

We show in Fig. 14(b) a numerical simulation where the
initial two-qubit state is |e〉1|e〉2, corresponding to the case
where the collision between the spin waves occurs. The two
qubits exchange their populations by emitting simultaneously
a wave packet into the waveguide and reabsorbing the wave
packet coming from the other direction after the time delay τ .

The gate efficiency can be assessed by calculating the
transfer matrix χ [105,106], which relates any initial state
ρS to the state ρ ′

S obtained at the end of the protocol by
ρ ′

j = ∑
j,i χj,iρi . Here (ρi) is defined by vectorizing ρS as

ρS = ∑
i ρiAi , with the set (Ai) = {|ee〉〈ee|,|ee〉〈eg|, . . .}

being a basis of the (two-qubit) operator Hilbert space. We
show in Fig. 14(c) the transfer matrix corresponding to the pa-
rameters in panel (b). The relative errorE ≡ ||χ − χP ||/||χP ||,
with respect to the ideal transfer matrix χP [calculated from
Eq. (27)] is represented in Fig. 14(d) as a function of the
distance d between the qubits [107]. For these parameters, the
trace distance between the two matrices remains very small,
showing that the gate operates almost perfectly. As in the state-
transfer protocol, the efficiency of the gate is, however, affected
by dispersive effects at large distances. At very short distances,
the gate can also not operate, as it would require to emit and
absorb the two wave packets simultaneously [see Fig. 14(d)].

The present section has shown simulations of elementary
quantum tasks in a quantum spin network, based on chiral
coupling of qubits to the spin waveguide, involving control of
the dispersion relation, and exploiting the natural interaction
between the spin waves. In a broader context, this provides
both the building blocks and the theoretical techniques to
model complex composite quantum circuits based on spin
waveguides as the communication channel. We will pursue
this in future publications.

V. CONCLUSIONS AND OUTLOOK

In this paper we have developed a theory of chiral quantum
networks with spin chains as waveguides. The unique feature
of our model is an engineered chiral coupling of two-level
systems, representing the nodes of the network to the spin
waveguides representing the quantum channel. The main
focus of our work has been the non-Markovian open system
dynamics beyond the Born-Markov approximation, familiar
from quantum optical descriptions. The physical origin of
non-Markovianity in our model system is the nonlinear Bloch
band dispersion relation for spin excitations, their finite
propagation speed resulting in time delays in communication
between the nodes, and/or strong coupling of the nodes to
the spin waveguide. We have developed a description of the
dynamics of such networks within an extended Markovian
model (extended ME), where we keep the dynamics of the
nodes and part of the spin chains connecting the nodes,
while the “Markovian cut” is moved to the input and output
ports of the network. The description of the waveguide by
a spin chain offers a natural representation within tDMRG
methods, which allows for efficient solution of the extended
ME. In particular, this method opens perspectives to address
computationally challenging regimes, such as the quantum
feedback problem or networks with long delay times and
highly populated waveguides [84,96,108]. As an example of
the non-Markovian network dynamics we have discussed the
transient and steady-state regime of system spins coupled
to a chiral spin waveguide, including the driven-dissipative
formation of quantum dimers. Furthermore, we have demon-
strated how the chiral spin chains can be exploited for the
design of quantum spintronic circuits for quantum information
applications.

The present setting of chiral quantum networks with
spins (and photons) has attractive physical implementations
with various physical platforms. In a companion paper [58],
we give details for possible realizations of chiral quantum
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spin networks with Rydberg atoms, polar molecules, and
magnetic atoms, showing how chirality can be obtained via
gauge fields naturally present in the dipole-dipole interactions.
We moreover discuss a related implementation in trapped
ion crystals, where phonon vibrations form a noninteracting
bosonic chiral waveguide. In this companion paper, we also
generalize the present model to long-range dipolar spin-spin
couplings inherent to these setups. The theory developed in
the present paper thus furnishes both a setup as well as
the computational tools for constructing “on-chip” quantum-
communication networks within existing physical platforms
and state-of-the-art technology.
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APPENDIX A: CHIRAL MASTER EQUATION FOR
INFINITE SPIN WAVEGUIDE

In this section, we derive the chiral Markovian ME (7) for
the reduced density matrix of the system spins ρS, assuming
they are chirally coupled to an infinite spin waveguide.
Under the three assumptions (i)—(iii) explained in Sec. II C
of the main text, we can apply the standard Born-Markov
procedure [27,28] to the closed network of system spins and
infinite spin waveguide, described by Hamiltonians (1)–(3). As
a result of this adiabatic elimination of the waveguide degrees
of freedom, we formally obtain

ρ̇S = −i[HS,ρS] +
∑
α,β

{Qα−β[σ−
β ρS,σ

+
α ] + H.c.}. (A1)

Here Qα−β = lims→i� Fα−β(s) are the Markovian reservoir-
mediated couplings, expressed as a limiting case of the general
system-waveguide coupling functions

Fα−β(s) =
∫ π/a

0
dk

[
g2

ke
ikd(α−β) + g2

−ke
−ikd(α−β)

]
s + iωk

. (A2)

Quite remarkably, these coupling functions Fα−β(s) can be
evaluated exactly in the present model, taking into account all
reservoir modes and the nonlinearities of the dispersion ωk and
coupling gk , given in Sec. II B. In fact, using the integrals

I1 =
∫ 1

−1

dx

π

(1 + px) cos[n arccos(x)]√
1 − x2(z − ix)

= (1 − ipz)√
1 + z2

ein arccos(−iz) + ipδn0, (A3)

I2 =
∫ 1

−1

dx

π

sin[n arccos(x)]

(z − ix)
= −iein arccos(−iz), (A4)

valid for Re(z) > 0 and integer n � 0, the general couplings
Fα−β(s), for Re(s) > 0, take the form

Fα−β (s) = J̃ 2

J

[
1 − i cos(2φ)s̄√

1 + s̄2
+ (2�̄α−β − 1) sin(2φ)

+ iδαβ cos(2φ)

]
ei|α−β|(d/a) arccos(−is̄). (A5)

Here s̄ = s/2J , �̄α−β is the Heaviside function defined such
that �̄0 = 1/2 and δαβ is the Kronecker delta.

In Appendix C, the s dependence of Fα−β(s) will be crucial
to describe non-Markovian effects in the interaction of system
spins with the waveguide. However, in the Markovian regime,
the couplings Qα−β are obtained by taking the limit s → i�

in Eq. (A5), which yields

Qα−β = [γR�̄α−β + γL�̄β−α]eik̄d|α−β| − iωLSδαβ. (A6)

Here, γL and γR are the asymmetric decay rates into left- and
right-moving reservoir modes, given in Eq. (8) of the main text
(for J > 0). In addition, the Lamb shift

ωLS = P

∫ π/a

−π/a

dk
|gk|2

ωk + �S
= − J̃ 2

J
cos(2φ) (A7)

renormalizes the transition frequency of the system spins as
� → �̃ = � + ωLS, and k̄a = arccos(�̃/2J ) is the resonant
wave vector of the right-moving excitations, satisfying vk̄ > 0.
Finally, replacing Eq. (A6) into Eq. (A1) and rearranging
terms, we obtain the chiral ME in Lindblad form as shown
in Eq. (7), with reservoir-mediated coherent interactions and
collective jump operators as given in Eqs. (9) and (10),
respectively.

Finally, we notice that in the case of inhomogeneous detun-
ings of the system spins, �α = � + δ�α , the previous deriva-
tion of the ME still applies provided these inhomogeneities
are smaller than the bandwidth, i.e., |δ�α| � γR + γL. This
is particularly important for the formation of multipartite
entangled clusterized phases of the system spins in steady
state, as discussed in Refs. [48,50].

APPENDIX B: CHIRAL MASTER EQUATION FOR A
FINITE SPIN WAVEGUIDE WITH LOSSES: PROOF FOR

PERFECT ABSORBING BOUNDARIES IN THE
WEAK-COUPLING LIMIT

The goal of this subsection is to show that, in the presence
of a finite waveguide with local losses at its ends, one can
derive a ME for the system spins, which coincides with the cor-
responding one for an infinite chain, given in Eq. (7) of the main
text. To do so, we first divide the total Hilbert space in the set
of subspaces P (i), containing exactly i bath excitations. In the
Born-Markov approximation, we can neglect the excitation of
the manifolds P (i>2) and adiabatically eliminate P (1) to obtain
a ME describing the effective dynamics of the system spins in
the slow subspace P (0). Applying the formalism developed in
Ref. [111] to the extended ME (11), we obtain

ρ̇S = −i[HS + HC,ρS] +
∑

X=L,R

M−1∑
n=0

D[LX(n)]ρS, (B1)
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where the effective Hamiltonian and jump operators
read HC = − 1

2V−RV+ and LX(n) = √
�nS

−
X(n)H

−1
NHV+, with

L(n) = 1 + n, and R(n) = NB − n. The operator V− =
P (0)HSBP (1) transfers an excitation from the spin chain to the
system (V+ = V

†
−) and the non-Hermitian bath Hamiltonian is

defined as

HNH = P (1)

(
HB −

∑
n,X

i�n

2 S+
X(n)S

−
X(n)

)
P (1). (B2)

The other auxiliary quantities readR = H−1
NH + (H−1

NH)
†
. Using

Eq. (2), we can write HNH as a NB × NB matrix

(HNH)j,l = −Jδj,l±1 −
∑

n

i�n

2
δj,l

(
δj,1+n + δj,NB−n

)
, (B3)

while the coupling V− can be written in the form of a NS × NB

matrix as (V−)α,j = J̃ (e−iφδj,R[α] + eiφδj,L[α]). In the general
case, the inverse H−1

NH must be numerically calculated in order
to obtain the system ME via Eqs. (B1). However, in the special
case of a single loss per end of the chain, M = 1, and an even
number of bath spins NB , the non-Hermitian Hamiltonian (B3)
can be expressed as the sum of a symmetric tridiagonal Toeplitz
(STT) matrix [112] and a rank-2 matrix, whose inverse can be
analytically calculated using the Woodbury identity. Finally,
for �0 = 2J , we obtain a particularly simple result of the
inverse (

H−1
NH

)
j,l

= i

2J
eiπ |j−l|/2. (B4)

Plugging Eq. (B4) into Eq. (B1), we exactly obtain the chiral
ME (7), derived in Appendix A assuming an infinite spin
waveguide. This identification proves that in the Markovian
approximation, a finite spin chain with a single loss of �0 = 2J

at each of its ends can simulate perfect absorbing boundary
conditions [82] and thus the physics of an infinite reservoir.
Although we have only derived this result for an even number
of bath spins NB , we checked using symbolic numerical
libraries [113] that it also applies for the odd case.

Finally, we note that the waveguide observables can also be
derived from the adiabatic elimination technique. For example,
the bath spin amplitude at site j is simply given by

〈S−
j 〉 =

∑
α

(
H−1

NHV+
)
j,α

〈σ−
α 〉. (B5)

APPENDIX C: WIGNER-WEISSKOPF TREATMENT
OF UNDRIVEN SYSTEM SPINS COUPLED TO

A CHIRAL SPIN WAVEGUIDE

In this section, we consider the spin network model in
the absence of driving (�α = 0), and find analytical solutions
for the dynamics of the system spins beyond the Markovian
approximation. For an initial condition in the global one-
excitation manifold, the state |�(t)〉 for system spins and
waveguide can be exactly written at all times in a Wigner-
Weisskopf ansatz as

|�(t)〉 =
(∑

α

cα(t)σ+
α +

∫
dk ck(t)b†k

)
|g〉⊗NS |0〉. (C1)

Here, cα(t) and ck(t) are the probability amplitudes describing
the presence of the excitation in the system spin α and in the
spin-wave momentum state k, respectively. Replacing Eq. (C1)
into the Schroedinger equation d|�(t)〉/dt = −i(HS + HB +
HSB )|�(t)〉, with the Hamiltonians given in Sec. II A, one
obtains the following coupled differential equations for the
amplitudes:

ċα(t) = i�cα(t) − i

∫
dk eiαkdck(t), (C2)

ċk(t) = −iωkck(t) − igk

∑
α

e−iαkdcα(t). (C3)

Writing the latter equations in Laplace space and solving for
c̃α(s) = ∫ ∞

0 dt e−st cα(t), one obtains

[s − i� + F0(s)]c̃α(s) +
∑
β �=α

Fα−β(s)c̃β(s) = cα(0), (C4)

where the functions Fα−β(s) are given in Eq. (A5), and
we assumed that the bath spins are initially not excited,
ck(0) = 0.

The linear system of equations (C4) describes the dy-
namics of NS system spins, with interactions mediated by
the infinite spin waveguide in the one-excitation manifold.
For simplicity, we consider the case NS � 2, whose solution
reads

c̃1(s) = 1

[1 − B(s)]

[
c1(0)

s − i� + F0(s)
− c2(0)B(s)

F1(s)

]
, (C5)

c̃2(s) = 1

[1 − B(s)]

[
c2(0)

s − i� + F0(s)
− c1(0)B(s)

F−1(s)

]
, (C6)

where

B(s) = F1(s)F−1(s)

[s − i� + F0(s)]2
. (C7)

In the following Appendices C 1 and C 2, we analytically
perform the inverse Laplace transform of the functions (C5)
and (C6), via the integral

cα(t) = 1

2πi
lim

y→∞

∫ ε+iy

ε−iy

c̃α(s)estds (ε > 0), (C8)

and thus solve for the corresponding non-Markovian dynamics
in the case of one and two emitters, respectively.

1. Strong coupling in the single emitter problem:
Band-edge physics and chirality

In this section we analytically solve the problem of a single
emitter coupled to the chiral waveguide, which in the strong-
coupling regime (J̃ � J ) exhibits band-edge effects associated
to the formation of localized bound states between system and
waveguide [30–32,34]. Assuming NS = 1 in Eq. (A5), we
obtain F±1(s) = B(s) = 0, and thus the problem in Eqs. (C5)
and (C6) with c1(0) = 1 reduces to Laplace inverting the
function c̃1(s) = 1/[s − i� + F0(s)], where

F0(s) = J̃ 2

J

(
[1 − i cos(2φ)s̄]√

1 + s̄2
+ i cos(2φ)

)
. (C9)
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∞
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∞
)| 2

J̃2/J2

FIG. 15. General solution of a single emitter chirally coupled
to the spin waveguide. (a) Contour integral used in the calculation
of c1(t) [see Eq. (C11)]. (b),(c) Phase diagram of the chiral bound
state problem as a function of (J̃ /J )2 and �, for φ = π/4 (b) and
φ = 0 (c).

The calculation of the inverse Laplace transform requires us
to define the branch cuts of the multivalued function

√
1 + s̄2

in the complex plane. Here, we choose√
1 + s̄2 ≡

√
|1 + s̄2| exp

[
arg(s̄ + i) + arg(s̄ − i)

2

]
, (C10)

corresponding to two branch cuts at s̄ = s/2J = ±i. Accord-
ingly, we choose the contour integral defined in Fig. 15(a) and
obtain via the Residue theorem,

c1(t) =
∑

n=−1,0,1

Res[c̃1,sn]esnt + 1

2πi

4∑
m=1

Im. (C11)

Here, sn denote the poles of c̃1(s) satisfying

s − i� + F0(s) = 0, (C12)

and Im label the various integrals of c̃1(s)est along the
four branch cuts shown in Fig. 15(a). Finally, the residues
associated to each pole sn are given by

Res[c̃1,sn] = 1

1 + F ′
0(sn)

. (C13)

Notice that the pole decomposition in Eq. (C11) allows us
to understand the behavior of the system dynamics in simple
terms: a real pole corresponds to the usual exponential decay
behavior, whereas the existence of purely imaginary poles is
associated to the presence of (nondecaying) bound states (as
also shown in Fig. 4). Finally, the contributions of the branch
cuts Im vanish at long-time t → ∞, showing an oscillating
behavior in the transient.

In the case of perfect chirality φ = π/4, and a resonant
coupling � = 0, the poles and residues can be calculated
analytically. This allows us to derive the expression for
c1(t) in Eq. (12) of the main text, valid for arbitrary strong
coupling J̃ /J . Specifically, the real pole leading to a mod-
ified decay rate is given by s0 = −√

2(λ − 1)J with λ =

[1 + (J̃ /J )2]1/2, whereas the two imaginary poles associated
to the bound-state excitation read s±1 = ±i

√
2(λ + 1)J . In

addition, the corresponding residues are given by Res[c̃1,s0] =
(λ + 1)/(2λ) and Res[c̃1,s±1] = (λ − 1)/(2λ). The integrals
along the branch cut are nonanalytic [33,114], however we
can characterize their long-time behavior considering the
limit Re[s] → 0. For instance, using

∫ ∞
0 ext

√
x = √

π/(2t3/2)
and t̄ = 2J t , we obtain I3 + I4 ≈ −√

πJ 2/J̃ 2(2i/t̄)3/2eit̄ ,
for t → ∞, showing that this contribution decays with a
power-law behavior ∼t̄−3/2 and oscillates with the band-
edge frequency 2J . When neglecting these contributions for
J t  1, we obtain the expression in Eq. (12) of the main
text.

In the general chiral case with φ �= π/4 and � �= 0, we
solve the pole equation Eq. (C12) numerically and obtain the
corresponding residues from Eq. (C13). The purely imaginary
poles, associated to bound-state solutions, determine the
behavior of the system spin dynamics in the very long-time
limit as

c1(t → ∞) =
∑

n

Res[c̃1,sn]esnt , (C14)

where the sum is taken over purely imaginary poles. In the case
where only one bound state is present, the steady-state behavior
is characterized by a constant two-level atom population
|c1|2 = |Res[c̃1,sn]|2 representing the overlap between the
initial state and the bound-state solution. In the case where two
or more bound states are present, the system spin population
|c1|2 oscillates between 0 and (

∑
n |Res[c̃1,sn]|)2.

The average system spin occupation in steady state
|c1(t → ∞)|2 = ∑

n |Res[c̃1,sn]|2 is shown in Figs. 15(b)
and 15(c) for the unidirectional (φ = π/4), and bidirectional
(φ = 0) cases, respectively, as a function of the detuning �

and the relative coupling strength J̃ 2/J 2. The blue region
identifies the Markovian limit where the spin behavior is
characterized by a decay into the waveguide whereas the red
region corresponds to the parameters for which the bound-state
excitation is dominant. In the cascaded case [see Fig. 15(b)],
we find that the steady state is always characterized by a
superposition of two bound states whereas in the bidirectional
limit [see Fig. 15(c)], we identify a region with only one bound
state (shown by black dots).

2. Retardation effects for two emitters chirally
coupled to a waveguide

In this section we study the case of two undriven system
spins chirally coupled to a waveguide, and separated by a
distance d, such that they interact via emitting and absorbing
waveguide excitations with a time delay τ . The corresponding
dynamics, in the absence of driving �α = 0 and for a
single global excitation, is obtained by Laplace inverting the
functions in Eqs. (C5) and (C6). In the bidirectional case
(γR = γL), this problem was solved by Milonni and Knight
in Ref. [37], but here we generalize the solution to the chiral
case γR � γL. Following the original approach, we expand
in geometric series [1 − B(s)]−1 = ∑∞

n=0 Bn(s) in Eqs. (C5)
and (C6) [provided |B(s)| < 1], and thus obtain a convenient
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expression for c̃α(s), with α = 1,2, as

c̃α(s) = δα2cα(0)R̃011(s) +
2∑

β=1

cβ(0)
∞∑

n=0

R̃nαβ(s). (C15)

Here, the Laplace functions R̃nαβ (s), are explicitly given by

R̃nαβ(s) = (−1)α+β [F1(s)]n+α−1[F−1(s)]n+β−1

[s − i� + F0(s)]2n+α+β−1
. (C16)

As c̃α(s) is now written as a sum over R̃nαβ(s) functions, one
can clearly see that the corresponding poles are identical to
the single emitter case NS = 1, satisfying Eq. (C12), but here
they appear in arbitrary higher orders. Analytically calculating
the corresponding higher-order residues is very challenging,
but in the weak-coupling limit J̃ /J � 1, we can neglect the
contribution from the imaginary poles and expand R̃nαβ (s)
in powers of |s|/2J ∼ (J̃ /J )2 ∼ �/2J ∼ (d/a)(J̃ /J )2 � 1.
To first order, we obtain a simple expression that admits an
analytical Laplace inverse:

R̃nαβ(s) ≈ (−1)α+β γ n+α−1
R γ

n+β−1
L eiπJτnαβ e−sτnαβ

[s + γ /2 − i�̃]2n+α+β−1
, (C17)

with τnαβ = (2n + α + β − 2)τ a generalized retarded time.
Notice that Eq. (C17) neglects the coupling to band-edge
modes, and simply corresponds to the case of a 1D photonic
bath with linear dispersion relation, as in Ref. [37]. By Laplace
inverting R̃nαβ , we obtain the general solution for the dynamics
of both system spins α = 1,2, including retardation as

cα(t) = δα2cα(0)R011(t) +
2∑

β=1

cβ(0)
∞∑

n=0

Rnαβ(t − τnαβ ),

(C18)

where

Rnαβ(t) = (−1)α+β γ n+α−1
R γ

n+β−1
L eik̄d(2n+α+β−2)

(2n + α + β − 2)!

× e−(γ /2+i�̃)t t2n+α+β−2�(t). (C19)

Finally, the expressions (15) and (16) in the main text are
obtained as a specific case of Eq. (C18) by assuming �̃ = 0
and the initial condition c1(0) = 1 and c2(0) = 1, in addition
to the identifications f (m)

n (t) = Rn,m+1,1(t), τn,m+1,1 = (2n +
m)τ , and τ = d/(2Ja).

APPENDIX D: DETAILS ON THE MPS CALCULATIONS
WITH THE QUANTUM TRAJECTORIES APPROACH

In this Appendix, we give more details on the MPS approach
used to calculate the dynamics shown in Fig. 6 and analyze
in particular the role of the bosonic or spin character of the
waveguide.

Analogously to Fig. 7, but for a bosonic waveguide, we
show in Figs. 16(a) and 16(b) the entropies S(ρm) as a function
of time, for a representative sample of trajectories, and three
different maximum bond dimensions D = 30,60,120. In the
case of unidirectional coupling, the trajectories are in general
associated with a low level of entropy as in the spin case. For
a bidirectional boson waveguide, the average entropy is larger
than the unidirectional case, but it is much smaller than for its
spin counterpart in Fig. 7(b). In both cases, the presence of a

bosons

spins

bosons

spins

(a) (b)

(c) (d)

FIG. 16. (a),(b) Entropies S(ρm) for a partition in the middle of a
bosonic waveguide, for a representative sample of MPS quantum
trajectories, and calculated for three different bond dimensions
D = 30,60,120 (shown as red, green, and blue lines, respectively).
Parameters are the same as in Figs. 7(a) and 7(b), except for the
bosonic nature of the waveguide S−

j → bj . The average entropy S̄(t)
is represented by a black solid line. For the unidirectional bosonic
waveguide (a), the behavior is analogous to the spin case in Fig. 7(a)
with the majority of the trajectories staying at low entropy, but with
some of them reaching high values at long times. In the bidirectional
case (b), the trajectories have a larger average entropy compared to
(a), but a much smaller one with respect to its spin counterpart in
Fig. 7(b). (c),(d) Comparison of the average entropy S̄(2τ ) for spin
and boson waveguides, and as a function of γ τ . We assume the same
situation and parameters as in Fig. 6, with D = 30 and J̃ = 0.5J ,
but we vary γ τ by choosing the distance between system spins as
d/a = 30,40,50,60. The average entropy S̄(2τ ) increases with τ (up
to an oscillation with k̄d), and is larger for a spin than for a boson
waveguide due to the hard-core constraint.

few trajectories with very large entropy limits our method at
long times, as they cannot be correctly described with a small
bond dimension.

Additionally, we show in Figs. 16(c) and 16(d) the average
entropy S̄(2τ ) as a function the time delay τ ∝ d, and compare
the results for a spin (solid) and a bosonic (dashed) waveguide.
For a unidirectional coupling, the entropy stays on the order
of 1, with an oscillating behavior, which we attribute to the
different phases k̄d accumulated by the waveguide excitations
during the propagation between the two system spins. In
the bidirectional case, the entropy increases with the time
delay τ as the existence of two channels gives the possibility
to entangle the system spins with waveguide excitations
propagating in both directions (see Ref. [84] for a study in
the photonic context). For a spin waveguide, in particular,
the average entropy can reach large values as each collision
between spin waves can be associated with an interaction phase
shift of π (hard-core constraint). The number of these events
increase with the delay τ , which is associated to the entropy
growth observed in Fig. 16(d).

With this particular example, we have shown that the
quantum trajectories MPS approach can simulate the dynamics
of our chiral network over long times and with small bond
dimensions. The losses placed at the ends of the waveguide
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play in this context an important role as they dissipate the
entropy which is irrelevant for the system spin dynamics
(excitations leaving the waveguide, for instance). A limitation
of the present MPS method is the large bond dimension
required by some trajectories at long times, and thus it would
be interesting to test other MPS approaches on our network
model, especially the ones tailored to perform the evolution
directly in the density-matrix representation [68–70].

APPENDIX E: EXACT LINEAR DISPERSION RELATION
VIA LONG-RANGE INTERACTIONS BETWEEN

BATH SPINS

We present in this appendix the bath spin couplings,
which are required to obtain an exactly linear dispersion
relation for the magnons in the waveguide. In particular, a
triangular dispersion relation of the form ω(k) = 2J |k|, can
be obtained by simply adding long-range interactions in the
bath Hamiltonian as

HB = −4J

π

∑
j,n

(2n + 1)−2S+
j S−

j+2n+1 + H.c. (E1)

Then, by expressing this Hamiltonian in terms of momentum
eigenstates bk as in Eq. (4), we obtain the expected dispersion
relation.

APPENDIX F: STATE-TRANSFER PULSES

Here we present the time-dependent couplings used to
generate the Gaussian wave packets in Sec. IV. Our method is
based on Ref. [54], where the shape of the required couplings
are derived analytically under the weak-coupling assump-
tion, so that the dispersion relation can be approximated
as linear. Specifically, we choose J̃1(t) = √

γ1(t)J/2 and
J̃2(t) = J̃1(τ − t), with γ1(t) = (2

√
κγ me−κ(t−tm)2

)/{2√
κ −√

πγ merf[
√

κ(t − tm)]}. Further assuming κ = (1.01πγ 2
m)/4

and tm = 6/γm, one obtains an ideal maximum transfer fidelity
Fideal ≡ limt→∞〈σ+

2 σ−
2 (t)〉 ∼ 0.995, limited only by the finite

duration of pulse. In the examples presented in this work we
considered γm = 0.3J .
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[89] Á. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105,

050403 (2010).
[90] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[91] H. T. Dung and K. Ujihara, Phys. Rev. A 59, 2524 (1999).
[92] T. Tufarelli, M. S. Kim, and F. Ciccarello, Phys. Rev. A 90,

012113 (2014).
[93] C. Gonzalez-Ballestero, F. J. Garcı́a-Vidal, and E. Moreno,

New J. Phys. 15, 073015 (2013).
[94] Q. Gulfam, Z. Ficek, and J. Evers, Phys. Rev. A 86, 022325

(2012).
[95] We remark that standard MPS methods for 1D spin chains are

efficient to account for the generated system-bath entanglement
since all the couplings and Lindblad terms involved in our
network model are local.

[96] A. L. Grimsmo, Phys. Rev. Lett. 115, 060402 (2015).

062104-22

http://arxiv.org/abs/arXiv:1601.02303
http://arxiv.org/abs/arXiv:1512.07238
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1038/nphoton.2015.201
http://dx.doi.org/10.1038/nphoton.2015.201
http://dx.doi.org/10.1038/nphoton.2015.201
http://dx.doi.org/10.1038/nphoton.2015.201
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/nnano.2015.159
http://dx.doi.org/10.1038/nnano.2015.159
http://dx.doi.org/10.1038/nnano.2015.159
http://dx.doi.org/10.1038/nnano.2015.159
http://dx.doi.org/10.1103/PhysRevLett.115.153901
http://dx.doi.org/10.1103/PhysRevLett.115.153901
http://dx.doi.org/10.1103/PhysRevLett.115.153901
http://dx.doi.org/10.1103/PhysRevLett.115.153901
http://dx.doi.org/10.1038/ncomms11183
http://dx.doi.org/10.1038/ncomms11183
http://dx.doi.org/10.1038/ncomms11183
http://dx.doi.org/10.1038/ncomms11183
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1103/PhysRevLett.109.013901
http://dx.doi.org/10.1103/PhysRevLett.109.013901
http://dx.doi.org/10.1103/PhysRevLett.109.013901
http://dx.doi.org/10.1103/PhysRevLett.109.013901
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1088/1367-2630/14/6/063014
http://dx.doi.org/10.1103/PhysRevLett.113.237203
http://dx.doi.org/10.1103/PhysRevLett.113.237203
http://dx.doi.org/10.1103/PhysRevLett.113.237203
http://dx.doi.org/10.1103/PhysRevLett.113.237203
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1103/PhysRevA.91.042116
http://dx.doi.org/10.1088/1367-2630/14/11/115004
http://dx.doi.org/10.1088/1367-2630/14/11/115004
http://dx.doi.org/10.1088/1367-2630/14/11/115004
http://dx.doi.org/10.1088/1367-2630/14/11/115004
http://dx.doi.org/10.1103/PhysRevX.5.021025
http://dx.doi.org/10.1103/PhysRevX.5.021025
http://dx.doi.org/10.1103/PhysRevX.5.021025
http://dx.doi.org/10.1103/PhysRevX.5.021025
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevA.84.042341
http://dx.doi.org/10.1103/PhysRevA.84.042341
http://dx.doi.org/10.1103/PhysRevA.84.042341
http://dx.doi.org/10.1103/PhysRevA.84.042341
http://dx.doi.org/10.1016/j.physrep.2011.06.003
http://dx.doi.org/10.1016/j.physrep.2011.06.003
http://dx.doi.org/10.1016/j.physrep.2011.06.003
http://dx.doi.org/10.1016/j.physrep.2011.06.003
http://dx.doi.org/10.1038/nphys3347
http://dx.doi.org/10.1038/nphys3347
http://dx.doi.org/10.1038/nphys3347
http://dx.doi.org/10.1038/nphys3347
http://arxiv.org/abs/arXiv:1502.06263
http://arxiv.org/abs/arXiv:1603.09097
http://dx.doi.org/10.1103/PhysRevLett.109.266804
http://dx.doi.org/10.1103/PhysRevLett.109.266804
http://dx.doi.org/10.1103/PhysRevLett.109.266804
http://dx.doi.org/10.1103/PhysRevLett.109.266804
http://dx.doi.org/10.1038/ncomms6391
http://dx.doi.org/10.1038/ncomms6391
http://dx.doi.org/10.1038/ncomms6391
http://dx.doi.org/10.1038/ncomms6391
http://dx.doi.org/10.1103/PhysRevA.91.053617
http://dx.doi.org/10.1103/PhysRevA.91.053617
http://dx.doi.org/10.1103/PhysRevA.91.053617
http://dx.doi.org/10.1103/PhysRevA.91.053617
http://dx.doi.org/10.1103/PhysRevA.70.012106
http://dx.doi.org/10.1103/PhysRevA.70.012106
http://dx.doi.org/10.1103/PhysRevA.70.012106
http://dx.doi.org/10.1103/PhysRevA.70.012106
http://dx.doi.org/10.1063/1.4866769
http://dx.doi.org/10.1063/1.4866769
http://dx.doi.org/10.1063/1.4866769
http://dx.doi.org/10.1063/1.4866769
http://dx.doi.org/10.1063/1.3159671
http://dx.doi.org/10.1063/1.3159671
http://dx.doi.org/10.1063/1.3159671
http://dx.doi.org/10.1063/1.3159671
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://arxiv.org/abs/arXiv:1412.5746
http://dx.doi.org/10.1103/PhysRevLett.114.220601
http://dx.doi.org/10.1103/PhysRevLett.114.220601
http://dx.doi.org/10.1103/PhysRevLett.114.220601
http://dx.doi.org/10.1103/PhysRevLett.114.220601
http://dx.doi.org/10.1103/PhysRevA.92.022116
http://dx.doi.org/10.1103/PhysRevA.92.022116
http://dx.doi.org/10.1103/PhysRevA.92.022116
http://dx.doi.org/10.1103/PhysRevA.92.022116
http://arxiv.org/abs/arXiv:1603.09408
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1103/PhysRevA.89.053826
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1088/0034-4885/77/12/126401
http://dx.doi.org/10.1103/PhysRevLett.110.080502
http://dx.doi.org/10.1103/PhysRevLett.110.080502
http://dx.doi.org/10.1103/PhysRevLett.110.080502
http://dx.doi.org/10.1103/PhysRevLett.110.080502
http://dx.doi.org/10.1088/1367-2630/14/6/063003
http://dx.doi.org/10.1088/1367-2630/14/6/063003
http://dx.doi.org/10.1088/1367-2630/14/6/063003
http://dx.doi.org/10.1088/1367-2630/14/6/063003
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1016/0021-9991(91)90135-8
http://dx.doi.org/10.1016/0021-9991(91)90135-8
http://dx.doi.org/10.1016/0021-9991(91)90135-8
http://dx.doi.org/10.1016/0021-9991(91)90135-8
http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.116.093601
http://dx.doi.org/10.1103/PhysRevLett.111.243602
http://dx.doi.org/10.1103/PhysRevLett.111.243602
http://dx.doi.org/10.1103/PhysRevLett.111.243602
http://dx.doi.org/10.1103/PhysRevLett.111.243602
http://dx.doi.org/10.1103/PhysRevLett.105.050404
http://dx.doi.org/10.1103/PhysRevLett.105.050404
http://dx.doi.org/10.1103/PhysRevLett.105.050404
http://dx.doi.org/10.1103/PhysRevLett.105.050404
http://dx.doi.org/10.1103/PhysRevA.92.052116
http://dx.doi.org/10.1103/PhysRevA.92.052116
http://dx.doi.org/10.1103/PhysRevA.92.052116
http://dx.doi.org/10.1103/PhysRevA.92.052116
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevA.59.2524
http://dx.doi.org/10.1103/PhysRevA.59.2524
http://dx.doi.org/10.1103/PhysRevA.59.2524
http://dx.doi.org/10.1103/PhysRevA.59.2524
http://dx.doi.org/10.1103/PhysRevA.90.012113
http://dx.doi.org/10.1103/PhysRevA.90.012113
http://dx.doi.org/10.1103/PhysRevA.90.012113
http://dx.doi.org/10.1103/PhysRevA.90.012113
http://dx.doi.org/10.1088/1367-2630/15/7/073015
http://dx.doi.org/10.1088/1367-2630/15/7/073015
http://dx.doi.org/10.1088/1367-2630/15/7/073015
http://dx.doi.org/10.1088/1367-2630/15/7/073015
http://dx.doi.org/10.1103/PhysRevA.86.022325
http://dx.doi.org/10.1103/PhysRevA.86.022325
http://dx.doi.org/10.1103/PhysRevA.86.022325
http://dx.doi.org/10.1103/PhysRevA.86.022325
http://dx.doi.org/10.1103/PhysRevLett.115.060402
http://dx.doi.org/10.1103/PhysRevLett.115.060402
http://dx.doi.org/10.1103/PhysRevLett.115.060402
http://dx.doi.org/10.1103/PhysRevLett.115.060402


NON-MARKOVIAN DYNAMICS IN CHIRAL QUANTUM . . . PHYSICAL REVIEW A 93, 062104 (2016)

[97] A. V. Gorshkov, J. Otterbach, E. Demler, M. Fleischhauer, and
M. D. Lukin, Phys. Rev. Lett. 105, 060502 (2010).

[98] W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[99] Note that in contrast to the model presented in Sec. II A, we

consider here a situation where the coupling J̃α(t) of the qubit
α to the spin chain is not homogeneous.

[100] N. Y. Yao, Z. X. Gong, C. R. Laumann, S. D. Bennett, L. M.
Duan, M. D. Lukin, L. Jiang, and A. V. Gorshkov, Phys. Rev.
A 87, 022306 (2013).

[101] We also considered the case of “diagonal disorder” correspond-
ing to a random distribution of the detunings �α , for which we
obtained similar results .

[102] M. F. Yanik and S. Fan, Phys. Rev. Lett. 93, 173903 (2004).
[103] C. Wang, R. Martini, and C. P. Search, Phys. Rev. A 86, 063832

(2012).
[104] N. Schuch and J. Siewert, Phys. Rev. A 67, 032301

(2003).
[105] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 390

(1997).

[106] I. L. Chuang and M. A. Nielsen, J. Mod. Opt. 44, 2455 (1997).
[107] Here, the trace norm is defined as for the BLP measure in

Sec. III A 1 as ||A|| = Tr(
√

A†A).
[108] G. Tabak and H. Mabuchi, EPJ Quantum Technol. 3, 3 (2016).
[109] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.

Commun. 184, 1234 (2013).
[110] http://itensor.org.
[111] F. Reiter and A. S. Sørensen, Phys. Rev. A 85, 032111 (2012).
[112] C. F. Fischer and R. A. Usmani, SIAM J. Numer. Anal. 6, 127

(1969).
[113] SymPy Development Team, SymPy: Python library for

symbolic mathematics (2014), http://www.sympy.org/en/
index.html.

[114] S. Tanaka, S. Garmon, and T. Petrosky, Phys. Rev. B 73, 115340
(2006).

[115] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature (London)
417, 709 (2002).

[116] J. M. Taylor, W. Dür, P. Zoller, A. Yacoby, C. M. Marcus, and
M. D. Lukin, Phys. Rev. Lett. 94, 236803 (2005).

062104-23

http://dx.doi.org/10.1103/PhysRevLett.105.060502
http://dx.doi.org/10.1103/PhysRevLett.105.060502
http://dx.doi.org/10.1103/PhysRevLett.105.060502
http://dx.doi.org/10.1103/PhysRevLett.105.060502
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/PhysRevA.87.022306
http://dx.doi.org/10.1103/PhysRevA.87.022306
http://dx.doi.org/10.1103/PhysRevA.87.022306
http://dx.doi.org/10.1103/PhysRevA.87.022306
http://dx.doi.org/10.1103/PhysRevLett.93.173903
http://dx.doi.org/10.1103/PhysRevLett.93.173903
http://dx.doi.org/10.1103/PhysRevLett.93.173903
http://dx.doi.org/10.1103/PhysRevLett.93.173903
http://dx.doi.org/10.1103/PhysRevA.86.063832
http://dx.doi.org/10.1103/PhysRevA.86.063832
http://dx.doi.org/10.1103/PhysRevA.86.063832
http://dx.doi.org/10.1103/PhysRevA.86.063832
http://dx.doi.org/10.1103/PhysRevA.67.032301
http://dx.doi.org/10.1103/PhysRevA.67.032301
http://dx.doi.org/10.1103/PhysRevA.67.032301
http://dx.doi.org/10.1103/PhysRevA.67.032301
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1103/PhysRevLett.78.390
http://dx.doi.org/10.1080/09500349708231894
http://dx.doi.org/10.1080/09500349708231894
http://dx.doi.org/10.1080/09500349708231894
http://dx.doi.org/10.1080/09500349708231894
http://dx.doi.org/10.1140/epjqt/s40507-016-0041-9
http://dx.doi.org/10.1140/epjqt/s40507-016-0041-9
http://dx.doi.org/10.1140/epjqt/s40507-016-0041-9
http://dx.doi.org/10.1140/epjqt/s40507-016-0041-9
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://itensor.org
http://dx.doi.org/10.1103/PhysRevA.85.032111
http://dx.doi.org/10.1103/PhysRevA.85.032111
http://dx.doi.org/10.1103/PhysRevA.85.032111
http://dx.doi.org/10.1103/PhysRevA.85.032111
http://dx.doi.org/10.1137/0706014
http://dx.doi.org/10.1137/0706014
http://dx.doi.org/10.1137/0706014
http://dx.doi.org/10.1137/0706014
http://www.sympy.org/en/index.html
http://dx.doi.org/10.1103/PhysRevB.73.115340
http://dx.doi.org/10.1103/PhysRevB.73.115340
http://dx.doi.org/10.1103/PhysRevB.73.115340
http://dx.doi.org/10.1103/PhysRevB.73.115340
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1103/PhysRevLett.94.236803
http://dx.doi.org/10.1103/PhysRevLett.94.236803
http://dx.doi.org/10.1103/PhysRevLett.94.236803
http://dx.doi.org/10.1103/PhysRevLett.94.236803



