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Ground state and the spin precession of the Dirac electron in counterpropagating plane
electromagnetic waves
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The fundamental solution of the Dirac equation for an electron in an electromagnetic field with harmonic
dependence on space-time coordinates is obtained. The field is composed of three standing plane harmonic
waves with mutually orthogonal phase planes and the same frequency. Each standing wave consists of two
eigenwaves with different complex amplitudes and opposite directions of propagation. The fundamental solution
is obtained in the form of the projection operator defining the subspace of solutions to the Dirac equation. It is
illustrated by the analysis of the ground state and the spin precession of the Dirac electron in the field of two
counterpropagating plane waves with left and right circular polarizations. Interrelations between the fundamental
solution and approximate partial solutions is discussed and a criterion for evaluating the accuracy of approximate
solutions is suggested.
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I. INTRODUCTION

Considerable recent attention has been focused on the
possibility of time and space-time crystals [1–4], analogous
to ordinary crystals in space. The papers [1,2] provide the
affirmative answer to the question, whether time-translation
symmetry might be spontaneously broken in a closed quantum-
mechanical system [1] and a time-independent, conservative
classical system [2]. A space-time crystal of trapped ions and
a method to realize it experimentally by confining ions in a
ring-shaped trapping potential with a static magnetic field is
proposed in [3]. Standing electromagnetic waves comprize
another type of space-time crystals. It was shown [4] that
one can treat the space-time lattice, created by a standing
plane electromagnetic wave, by analogy with the crystals
of nonrelativistic solid-state physics. In particular, the wave
functions, calculated within this framework by using the
first-order perturbation theory for the Schrödinger-Stuekelberg
equation, are Bloch waves with energy gaps [4]. The analytical
solution for the Kein-Gordon equation in the case of a field
composed of two counterpropagating laser waves is obtained
in [5].

Standing electromagnetic waves constitute an interesting
family of localized fields which may have important practical
applications. In particular, optical standing waves can be used
to focus atoms and ions onto a surface in a controlled manner;
nondiffracting Bessel beams can be used as optical tweez-
ers which are noninvasive tools generating forces powerful
enough to manipulate microscopic particles. Superpositions of
homogeneous plane waves propagating in opposite directions,
the so-called Whittaker expansions, play a very important
role in analyzing and designing localized solutions to various
homogeneous partial differential equations [6].

In this article we treat the motion of the Dirac electron in an
electromagnetic field with four-dimensional periodicity, i.e.,
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with periodic dependence on all four space-time coordinates.
In terms of the three-dimensional description, such an electro-
magnetic space-time crystal (ESTC) can be treated as a time-
harmonic 3D standing wave. In solid-state physics, the motion
of electrons in natural crystals is described by the Schrödinger
equation with a periodic electrostatic scalar potential. The
description of the motion of electrons in ESTCs by the Dirac
equation takes into account both the space-time periodicity
of the vector potential and the intrinsic electron properties
(charge, spin, and magnetic moment). In this case, the Dirac
equation reduces to an infinite system of matrix equations.
To solve it, we generalize the operator methods developed
in [7] to the cases of infinite-dimensional spaces and finite-
dimensional spaces with any number of space dimensions.
The evolution, projection, and pseudoinverse operators are of
major importance in this approach. The evolution operator
(the fundamental solution of a wave equation) describes the
field dependence on the space-time coordinates for the whole
family of partial solutions. The method of projection operators
is very useful at problem solving in classical and quantum
field theory [8–10]. It was developed by Fedorov [8,9] to
treat finite systems of linear homogeneous equations. In the
frame of Fedorov’s approach, it is necessary first to find
projection operators which define subspaces of solutions for
two subsystems (constituent parts) of the system to solve,
and then to find its fundamental solution, i.e., the projection
operator defining the intersection of these subspaces, by
calculating the minimal polynomial for some Hermitian matrix
of finite dimensions. We present a different approach, based
on the use of pseudoinverse operators, which is applicable to
both finite and infinite systems of equations and has no need
of minimal polynomials.

The fundamental solution of the Dirac equation for the
field composed of three standing plane harmonic waves with
mutually orthogonal phase planes and the same frequency
is presented in Sec. II. The case of two counterpropagating
plane waves with left and right circular polarizations is
treated in Sec. III. Additional information on the numerical

2469-9926/2016/93(6)/062103(10) 062103-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.062103


G. N. BORZDOV PHYSICAL REVIEW A 93, 062103 (2016)

implementation of the presented approach and some results of
its computer simulation can be found in [11–13].

II. BASIC RELATIONS

A. Matrix form

An electron in an electromagnetic field with the four-
dimensional potential A = (A,iϕ) is described by the Dirac
equation [

γk

(
∂

∂xk

− iAk

e

c�

)
+ κe

]
� = 0, (1)

where κe = mec/�, c is the speed of light in vacuum, � is the
Planck constant, e is the electron charge, me is the electron
rest mass, γk are the Dirac matrices, � is the bispinor, x1, x2,
and x3 are the Cartesian coordinates, x4 = ict , and summation
over repeated indices is carried out from 1 to 4. In [11–13] we
have treated the field with A4 ≡ iϕ = 0 and

A′ ≡ e

mec2
A =

6∑
j=1

(Aj e
i K j ·x + A∗

j e
−i K j ·x), (2)

which is composed of six plane waves with unit wave normals
±eα , where eα are the orthonormal basis vectors, α = 1,2,3;
x = (r,ict), r = x1e1 + x2e2 + x3e3. All six waves have the
same frequency ω0 and

K j = k0 Nj , j = 1,2, . . . ,6, k0 = ω0

c
= 2π

λ0
,

(3)
Nj = (ej ,i), Nj+3 = (−ej ,i), j = 1,2,3.

They may have any polarization, so that their complex
amplitudes are specified by dimensionless real constants ajk

and bjk as follows:

Aj =
3∑

k=1

(ajk + ibjk)ek, j = 1,2, . . . ,6, (4)

where ajj = bjj = aj+3 j = bj+3 j = 0,j = 1,2,3.

For the electromagnetic lattice under consideration, the
solution of Eq. (1) can be found in the form of a Fourier
series

� = �0e
ix·K , �0 =

∑
n∈L

c(n)eix·G(n), (5)

where K = (k,iω/c) is the four-dimensional wave vector,
k = k1e1 + k2e2 + k3e3, n = (n1,n2,n3,n4) is the multi-index
specifying n = n1e1 + n2e2 + n3e3 and G(n) = (k0n,ik0n4).
Here, c(n) are the Fourier amplitudes (bispinors), and L is the
infinite set of all multi-indices n with an even value of the sum
n1 + n2 + n3 + n4. Substitution of A (2) and � (5) in Eq. (1)
results in the infinite system of matrix equations∑

s∈S13

V (n,s)c(n + s) = 0, n ∈ L, (6)

where

S13 = {sh(i),i = 0,1, . . . ,12} = {(0,0,0,0),

(0,0,−1,−1),(0,−1,0,−1),(−1,0,0,−1),

(1,0,0,−1),(0,1,0,−1),(0,0,1,−1),

(0,0,−1,1),(0,−1,0,1),(−1,0,0,1),

(1,0,0,1),(0,1,0,1),(0,0,1,1)} (7)

is the set of 13 values of the function sh = sh(i), where
sh(0) = (0,0,0,0) is the null shift. At i = 1, . . . ,12, this
function specifies the shifts s = (s1,s2,s3,s4) = sh(i) of multi-
indices n, defined by the Fourier spectrum of the field A
(2), which satisfy the condition |s1| + |s2| + |s3| = |s4| = 1.
Because of this, they will be denoted the shifts of the first
generation [g4d (s) = 1]. By the definition, g4d (s1,s2,s3,s4) =
max{|s1| + |s2| + |s3|,|s4|}. Thus, each equation of the system
relates 13 Fourier amplitudes (bispinors), in other words,
each amplitude enters in 13 different matrix equations. We
intensively use indexing of various mathematical objects
by points n = (n1,n2,n3,n4) of the integer lattice L. The
sequential numbering of these points, based on the use of
g4d (n), drastically simplifies both numerical implementation
of the presented techniques and analysis of solutions, because
it takes into account the specific Fourier spectra of the
electromagnetic lattice and the wave function, as well the
structure of the finite models described below and in more
detail in [12].

It is well known, e.g., see Ref. [14], that 16 Dirac matrices
form a basis in the space of 4 × 4 matrices. In the Appendix,
we present a specific numeration of these basis matrices
�k,k = 0, . . . ,15, which makes it possible, in particular, to
reconstruct any matrix �k from its number k; see Ref. [11].
Any 4 × 4 matrix V = ∑15

k=0 Vk�k is uniquely defined by
the set of its components Ds(V ) = {Vk} in the Dirac basis
(the Dirac set of matrix V , briefly, D set of V ). Due to
the structure of the Dirac equation, such expansions yield a
convenient way to represent derived matrix expressions in a
concise form, accelerate numerical calculations, and reduces
data files. This approach is of particular assistance in solving
the system of Eq. (6); see Refs. [11–13]. D sets of matrices
V (n,s) are presented in [11] as functions of the dimensionless
parameters

Q = (q,iq4) = K/κe, � = �ω0

mec2
, (8)

q = q1e1 + q2e2 + q3e3 = �k
mec

, q4 = �ω

mec2
. (9)

B. Operator form

Let us treat the infinite set C = {c(n),n ∈ L} of the
Fourier amplitudes c(n) of the wave function � (5) as an
element of an infinite dimensional linear space VC . Since, for
any n ∈ L,

c(n) =

⎛
⎜⎜⎜⎝

c1(n)

c2(n)

c3(n)

c4(n)

⎞
⎟⎟⎟⎠ ≡

⎛
⎜⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎟⎠

n

(10)

is the bispinor, C ∈ VC will be denoted the multispinor. Let us
define a basis ej (n) in VC and the dual basis θj (n) = e

†
j (n) in
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the space of one-forms V ∗
C (n ∈ L):

e1(n) =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠

n

, e2(n) =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠

n

,

e3(n) =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

n

, e4(n) =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠

n

, (11)

θ1(n) = (1 0 0 0)n, θ2(n) = (0 1 0 0)n,

θ3(n) = (0 0 1 0)n, θ4(n) = (0 0 0 1)n. (12)

In this notation, the system of equation (6) takes the form

〈f j (n),C〉 ≡
∑
s∈S13

V j
k(n,s)ck(n + s) = 0, (13)

where j = 1,2,3,4, n ∈ L, and

f j (n) =
∑
s∈S13

V j
k(n,s)θk(n + s),

〈f j (n),ek(n + s)〉 = V j
k(n,s). (14)

These relations can be rearranged to the basic system of
equations

P (n)C = 0, n ∈ L, (15)

where

P (n) = [f α(n)]† ⊗ aα
β(n)f β(n) (16)

is the Hermitian projection operator with the trace tr[P (n)] = 4
and the following properties:

[P (n)]2 = [P (n)]† = P (n), (17)

a(n) = [L(n)]−1, Lα
β(n) = 〈f α(n),[f β(n)]†〉, (18)

where α,β = 1,2,3,4. The Hermitian 4 × 4 matrices L(n) and
a(n) at n = (n1,n2,n3,n4) are defined by the following D sets:

Ds[L(n)] = {
1 + IA + w2

1 + w2
2 + w2

3 + w2
4,0,0,0,

− 2w4,0,0,0,0,2w3w4,2w1w4,2w2w4,0,0,0,0
}
,

(19)

Ds[a(n)] = 1

|L(n)|
{
1 + IA + w2

1 + w2
2 + w2

3

+w2
4,0,0,0,2w4,0,0,0,0,−2w3w4,

− 2w1w4, − 2w2w4,0,0,0,0
}
, (20)

where

IA = 2
6∑

j=1

|Aj |2 = 2
(
a2

12 + b2
12 + a2

13 + b2
13 + a2

21 + b2
21

+ a2
23 + b2

23 + a2
31 + b2

31 + a2
32 + b2

32

+ a2
42 + b2

42 + a2
43 + b2

43 + a2
51 + b2

51

+ a2
53 + b2

53 + a2
61 + b2

61 + a2
62 + b2

62

)
, (21)

|L(n)| = I 2
A + 2IA

(
1 + w2

1 + w2
2 + w2

3 + w2
4

)
+ (

1 + w2
1 + w2

2 + w2
3 − w2

4

)2
, (22)

and wj = qj + nj�. It is significant that, for a nonvanishing
electromagnetic field (IA 	= 0), the determinant |L(n)| > 0 and
hence equations (15)–(22) are valid for any n ∈ L.

C. Fundamental solution

The fundamental solution S, i.e., the operator of projection
onto the solution subspace of the multispinor space VC , and
the projection operator P of the infinite system of equations
(15) are defined as follows [11]:

S = U − P, P =
+∞∑
k=0

∑
n∈Fk

ρk(n), (23)

+∞⋃
k=0

Fk = L, Fj

⋂
Fk = ∅, j 	= k, (24)

where ρk(n) are Hermitian projection operators with the trace
tr[ρk(n)] = 4, and U is the unit operator in VC , which can be
written as

U =
∑
n∈L

I (n), I (n) = ej (n) ⊗ θj (n), tr[I (n)] = 4. (25)

For any C0 ∈ VC , C = SC0 is a partial solution of Eq. (15),
i.e., the function � (5) with the set of Fourier amplitudes
{c(n),n ∈ L} = SC0 satisfies the Dirac equation (1) for the
problem under consideration.

The Hermitian operator P of the system of equations (15),
by definition (see the Appendix), has the following properties:

P† = P2 = P, P (n)P = PP (n) = P (n) (26)

for any n ∈ L, and ρk(n) satisfy the relations

ρ
†
k(n) = ρ2

k (n) = ρk(n), tr[ρk(n)] = 4, n ∈ L, (27)

ρk(m)ρl(n) = 0 if k 	= l or (and) m 	= n, (28)

ρ0(n) = P (n), n ∈ F0. (29)

There exist various ways to split the lattice L into sublattices
Fk to fulfill conditions (24) and (28); one of them is described
in Ref. [12]. Providing these conditions are met, substitution of

α =
k−1∑
j=0

∑
n∈Fj

ρj (n) ≡ Pk−1, β = P (m), m ∈ Pk (30)

into Eqs. (A9) and (A10) results in ρk(m) = δ (A9).
It follows from Eq. (16) that

P (m)P (n) = [f i(m)]† ⊗ [a(m)N (m,n)a(n)]i j f
j (n), (31)

where

Ni
j (m,n) = 〈f i(m),[f j (n)]†〉, i,j = 1,2,3,4, (32)

N (n,n) ≡ L(n) (18). At any given n, Eq. (6) relates the
Fourier amplitude c(n) only with 12 amplitudes c(n + s),
where g4d (s) = 1. In consequence of this, N (m,n) ≡ 0 at
g4d (n − m) > 2. Substitution of (14) in (32) at n = m + s
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gives

N †(n,m) = N (m,n) = L(m) for n = m,

= N1(m,s) for g4d (s) = 1,

= N2(s)�0 for g4d (s) = 2. (33)

The D sets of 12 matrices N1(m,s) and the table of 56 scalar
coefficients N2(s) are presented in Ref. [13]. These major
structural parameters of the electromagnetic lattice specify
interrelations in the system of equation (6).

The relations presented in this section and the Appendix
provide convenient means to find operators ρk(n) by making
use the recurrent algorithm devised to minimize volumes of
computations and data files [11,12]. It begins with the selection
of an infinite subsystem consisting from independent equations
and the calculation of the projection operators ρ0(n) =
P (n), n ∈ F0 ⊂ L, which uniquely define the fundamental
solutions of these equations. At each new step of the recurrent
process, we add another infinite set of mutually independent
equations which, however, are related with some of the
equations introduced at the previous steps. Consequently,
we obtain an infinite set of independent finite systems of
interrelated equations (fractal clusters of equations). It can
be described as a 4d lattice of such clusters. Each step of the
recurrent procedure expands clusters for which it provides the
exact fundamental solutions.

D. Approximate solutions

Numerical implementation of the obtained solution implies
the replacement of the projection operatorP (23) of the infinite
system (15) by the projection operator

P ′ =
∑
k∈kL

∑
n∈nL(k)

ρk(n) (34)

of its finite subsystem

P (n)C = 0, n ∈ L′ =
⋃
k∈kL

nL(k) ⊂ L. (35)

Here, kL is an ordered finite list of integers, and nL(k) is a finite
list of points n ∈ Fk , specifying a finite model of the infinite
lattice. The projection operator

S ′ = U − P ′ (36)

defines the exact fundamental solution of Eq. (35), which is
also the approximate solution of Eq. (15), provided by this
finite model.

In this article, we restrict our consideration to the case
when the amplitude C0 specifying a partial solution is given
by C0 = a

j

0ej (no), no = (0,0,0,0), and the relation

C = {c(n),n ∈ Sd} = S ′C0 = C0 − P ′C0 (37)

describes the four-dimensional subspace of exact solutions of
Eq. (35). Here, Sd ⊂ L is the solution domain, i.e., the subset
of L with nonzero bispinors c(n). Bispinors c(n) and a0 are
linearly related as

c(n) = S(n)a0, (38)

where S(n) is the 4 × 4 matrix, Si
j (n) = 〈θ i(n),S ′ej (no)〉 are

defined in [12]. Substituting c(n) in Eq. (5) gives

� =
∑
n∈Sd

c(n)eiϕn(x) ≡ Eva0, (39)

where

Ev =
∑
n∈Sd

eiϕn(x)S(n) (40)

is the evolution operator. In terms of the dimensionless
coordinates r′ = r/λ0 = X1e1 + X2e2 + X3e3, X4 = ct/λ0,
the phase function ϕn(x) can be written as

ϕn(x) = (k + k0n) · r − (ω + ω0n4)t

= 2π [(n + q/�) · r′ − (n4 + q4/�)X4]. (41)

The evolution operator Ev is the major characteristic of
the whole family of partial solutions � (39). In particular, it
provides a convenient way to calculate the mean value

〈A〉 = a
†
0AEa0

a
†
0UEa0

(42)

of an operator A with respect to function �, where AE =
I�X(E†

vAEv),

UE = I�X(E†
vEv) =

∑
n∈Sd

S†(n)S(n), (43)

I�X(f ) ≡
∫

�X

f dX1dX2dX3dX4, (44)

and �X is the domain given by intervals [Xk,Xk + 1],k =
1,2,3,4.

E. Evaluating accuracy of solutions

The distinguishing feature of the presented technique is that
each step of the recurrent procedure expands the subsystem of
equations for which it provides the exact fundamental solution.
One can check the calculation for accuracy by using relations
(27) and (28). Substitution of c(n) (38) into the left side of
Eq. (6) reduces it to the form VS(n)a0, where

VS(n) =
∑
s∈S13

V (n,s)S(n + s). (45)

At n ∈ L′, the equation VS(n)a0 = 0 is satisfied at any a0,
because in this domain VS(n) ≡ 0. This provides means for
final numerical checking of the fundamental solution S ′ of
the system (35) and the evolution operator Ev(x) (40) for
accuracy [12].

Let D be a differential operator in a space V� of scalar,
vector, spinor, or bispinor functions, and ‖�‖ be the norm of
� on V� . The functional

R : � �→ R[�] = ‖�D‖
‖�‖ (46)

where �D = D�, evaluates the relative residual at the substi-
tution of � into the differential equation D� = 0. It provides
a fitness criterion to compare in accuracy various approximate
solutions of this equation. For an exact solution �, the residual
�D vanishes, i.e., R[�] = 0. If �D 	= 0, but R[�] � 1, the
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function � may be treated as a reasonable approximation
to the exact solution, and the smaller is R[�], the more
accurate is the approximation. In terms of distances d = ‖�‖
and dD = ‖�D‖ of � and �D to the origin of V� (the zero
function), one can graphically describe R[�] as shrinkage
in distance R[�] = dD/d. The functional R, as applied to
a family of functions �(x,λ) with members specified by a
parameter λ, results in the function R[�(x,λ)] of λ, denoted
below R(λ) for short.

To introduce this criterion in the problem under consid-
eration, we first transform Eq. (1) to the equivalent equation
D� = 0 with the dimensionless operator

D =
3∑

k=1

αk

(
− i�

mec

∂

∂xk

− A′
k

)
− i�

mec2

∂

∂t
+ α4. (47)

From Eqs. (39) and (47) follows that

�D = D� = Dva0, (48)

where Dv = DEv is the evolution operator describing the
family of remainder functions �D [12]. The norm of �D (48)
can be written as

‖�D‖ =
√

a
†
0UDa0, (49)

where the matrix UD is presented in [12]. Thus, for the function
� (39), from the definition (46) follows

R =
√√√√a

†
0UDa0

a
†
0UEa0

. (50)

F. Orthogonality relation

Let �a = �0ae
ix·K a and �b = �0be

ix·K b be solutions of
the Dirac equation, i.e., D�a ≡ 0,D�b ≡ 0, where K a =
(k,iωa/c),K b = (k,iωb/c),ωa 	= ωb, and

�0a =
∑
n∈L

a(n)eix·G(n), �0b =
∑
n∈L

b(n)eix·G(n). (51)

Upon integrating the identity �
†
bD�a − (�†

aD�b)∗ ≡ 0 we
obtain the orthogonality relation I�X(�†

0b�0a) = 0, which can
be also written as ∑

n∈L
b†(n)a(n) = 0. (52)

G. Dispersion relation

It should be emphasized that the analytical fundamental
solution S (23) is obtained without recourse to any dispersion
relation, i.e., for any vector Q (8). Let us explain this on the
example of the exact Volkov solution for an electron in the
field of a plane wave. There exist different representations
of this solution [9,15]. We present below another one which
is more straightforward and convenient for our purposes. In
this particular case, there is only one wave of six waves in
Eq. (2), namely, the wave with amplitude A3 = a31e1 + ib32e2.
Substituting �(x) = �(ζ )eiκe Q·x with ζ = N3 · x = x3 − ct

in Eq. (1) gives an ordinary differential equation which has the
exact solution �(x) = Ev(x)a0, where

Ev(x) = ei�(x)J (ζ ) (53)

is the evolution operator (the fundamental solution of this
equation), J = J (ζ ) is the 4 × 4 projection matrix (J 2 =
J,trJ = 2) defined by

Ds(J ) = {1/2,0, − iJ11,iJ10,J4,0,0,0,0,

− 1/2,J10,J11,0, − iJ4,0,0}, (54)

J4 = [2(q4 − q3)]−1, J10 = J4(q1 − 2a31 cos k0ζ ),

J11 = J4(q2 + 2b32 sin k0ζ ). (55)

At any given ζ , the bispinor �(ζ ) belongs to the two-
dimensional subspace defined by J (ζ ). The phase function
� consists of two parts which are linear in x and periodic in
ζ , respectively, as follows:

� = κe Q′ · x + J4

�

[
4b32q2(1 − cos k0ζ )

−4a31q1 sin k0ζ + (
a2

31 − b2
32

)
sin 2k0ζ

]
, (56)

Q′ = Q − 1 + Q2 + IA

2 Q · N3
N3, IA = 2

(
a2

31 + b2
32

)
. (57)

It is easy to verify that Q′ satisfies the dispersion relation
1 + Q′2 + IA = 0 at any Q. In other words, the fundamental
solution has the built-in dispersion relation. Similarly, in optics
of plane-stratified complex mediums, fundamental solutions
(exponential evolution operators) define both wave vectors and
polarizations of eigenwaves in an anisotropic or bianisotropic
slab [7]. It is convenient to preset Q satisfying the dispersion
relation, then Q′ ≡ Q and the parameter ξV = q4 −

√
1 + q2

specifies the deviation from the free-space dispersion relation
1 + q2 = q2

4 as follows:

ξV =
√

1 + q2 + IA −
√

1 + q2 (58)

for any given q.
In the general problem under study, the dispersion relation

manifests itself in the spectral distribution of Fourier compo-
nents c(n) (5). In numerical calculations for a finite model with
a localized Fourier spectrum, when g4d (n) � gmax for all n in
Eq. (34), it has a pictorial presentation in the form of spectral
curves of approximate solutions Rj = Rj (ξ ), where

ξ = q4 −
√

1 + q2 = �ω

mec2
−

√
1 +

(
�k
mec

)2

, (59)

andRj = √
λj is given by Eq. (50) at a0 = cj . The generalized

eigenvalues λj and eigenvectors cj are defined by the equation
UDcj = λjUEcj with the Hermitian 4 × 4 matrices UE and
UD , and the quartic equation det(UD − λUE) = 0 has real
coefficients and positive roots λj indexed below in increasing
order of magnitude. The minimum {ξ0,R0 = R1(ξ0)} of
the spectral curve R1 = R1(ξ ) specifies the most accurate
approximate solution. It follows from the results of computer
simulations [13] that ξ0 converges to a positive limit and
R(ξ0) tends to zero with increasing gmax. In the limit, � (39)
converges to a family of exact solutions with the dispersion
relation

�ω

mec2
= ξ0 +

√
1 +

(
�k
mec

)2

. (60)
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III. TWO COUNTERPROPAGATING WAVES

A. Dispersion relation

In this section we apply the presented technique to find
the ground state of the Dirac electron with, by definition,
the quasimomentum p = �k = mecq = 0, in the field of two
counterpropagating circularly polarized waves with the same
amplitude

A1 = A4 = Am(e2 + ie3)/
√

2. (61)

The other four amplitudes in Eq. (2) are equal to zero
and hence IA = 4A2

m. In this case, most of the struc-
tural parameters in Eq. (33) are vanishing, only N1(m,s)
for s ∈ {(−1,0,0,−1),(−1,0,0,1),(1,0,0,−1),(1,0,0,1)} and
N2(s) for s ∈ {(−2,0,0,0),(2,0,0,0)} are not zero, therefore �

(39) contains only Fourier components with n = (n1,0,0,n4),
where |n1| � 1 + gmax, whereas |n4| = 0,1. Figure 1 shows
the corresponding spectral curve of approximate solutions,
which reveals that the ground state has two different frequency
levels specified by minimums of spectral lines a and b. Their
bottom parts (see dashed curves in Fig. 1) can be closely
approximated as follows:

Rap

1 (ξ ) =
√
R2

0 + β2
0 (ξ − ξ0)2. (62)

The half-width δξ (Rav) of the solution line, i.e., the half-width
of ξ domain, where R0 � R � Rav , can be estimated from
Eq. (62) as

δξ (Rav) = 1

β0

√
R2

av − R2
0. (63)

This half-width is a rapidly decreasing function of gmax.
The condition R1 � 1 is satisfied within narrow limits of

ξ values, whereas R2,3,4 � R1 and they do not satisfy the
similar condition at any value of ξ , for example, {Rj ,j =
2,3,4} = {1.92,1.96,2.12} and {1.86,1.92,1.96} at ξ = ξ0a

and ξ = ξ0b, respectively. Thus the amplitude subspaces in
Eq. (39) for both of levels are one-dimensional, they are
specified by the generalized eigenvectors a0a = c1(ξ0a) = a+
and a0b = c1(ξ0b) = a− or, in other words, by the projection

a b

1.986 1.988 1.990 1.992 10 4
ξ

0.5

1.0

1.5

FIG. 1. Spectral curve of approximate solutions R = R1(ξ ) and
its models R = Rap

1 (ξ ) (dashed curves) for the spectral lines (a)
ξ0 = ξoa = 0.000 198 76, R0 = 1.772 97 × 10−9, β0 = 1.322 12 ×
107, δξ (Rav) = 1.512 72 × 10−9 and (b) ξ0 = ξob = 0.000 199 16,
R0 = 1.0835 × 10−9, β0 = 2.143 23 × 107, δξ (Rav) = 9.331 72 ×
10−10 at � = 0.1, Rav = √

IA = 0.02, and gmax = 4.

A

B

2.5 2.0 1.5 1.0
log10

0.00005

0.00010

0.00015

0.00020
ξm

FIG. 2. Plot of ξm against log10 � at (A) IA = 0.0004, and (B)
IA = 0.0002.

matrices Pa = P+ and Pb = P−, where

a± = 1√
2

⎛
⎜⎝

±1
1
0
0

⎞
⎟⎠, P± = 1

2

⎛
⎜⎝

1 ±1 0 0
±1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (64)

It is convenient to describe the closely spaced levels of the
Dirac electron, i.e., the normalized frequencies ξ0a and ξ0b, in
terms of the mean value ξm = 1

2 (ξ0a + ξ0b) and the difference
of levels �ξ = ξ0b − ξ0a . The dependence of ξm and �ξ on
the normalized frequency � of the electromagnetic lattice
is shown in Figs. 2 and 3, respectively. The dots represent
calculations, while the curves are obtained by the linear
interpolation, for the range of � from 1/1280 to 1/10, i.e., for
the x-ray standing waves with the wavelength λ0 from 0.024 to
3.1 nm. In the central band of this range �ξ has the maximum
at λ0 = λA = 0.214 631 8 nm (� = �A = 0.011 304 52) and
λ0 = λB = 0.303 256 4 nm (� = �B = 0.008 000 855) for
curves A and B in Fig. 3, respectively. In the hard x-ray region
ξm weakly depends on �; see Fig. 2. The dependence ξm on IA

can be approximated by ξV = √
1 + IA − 1 in a wide range of

IA; see Fig. 4. Figure 5 illustrates the dependence of �ξ on
IA in this range. The smaller is � or the greater is IA or both,
the greater is gmax which provides reasonably small values
of R1, because the Fourier spectrum of the wave function
expands with such variations of � and IA. For IA = 0.0004,
gmax � 6 at � = 0.1 provides R1 � 1.3 × 10−11, whereas
gmax � 16 at � = 1/1280 provides R1 � 2.0 × 10−6. For
� = �A, gmax � 4 at IA = 3.9 × 10−7 provides R1 � 7.1 ×
10−15, whereas gmax � 10 at IA = 0.0004 provides R1 �

A

B

2.5 2.0 1.5 1.0
log10

0.5

1.0

1.5

2.0

2.5 10 6

FIG. 3. Plot of �ξ against log10 � at (A) IA = 0.0004, and (B)
IA = 0.0002.
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B

A

6.0 5.5 5.0 4.5 4.0 3.5
log10 IA

0.6

0.8

0.9

1.0
m V

FIG. 4. Ratio ξm/ξV against log10 IA at (A) � = �A, and (B)
� = �B .

8.6 × 10−11. Equation (64) is valid for the whole domain of
study.

B. Doublet structure of the ground state

Let us now compare the ground-state wave functions spec-
ified by {ξ0a,a0a} and {ξ0b,a0b} in terms of the corresponding
mean values of Hamiltonian

H = c

3∑
k=1

αkpk + mec
2α4, (65)

operators of kinetic momentum

pk = −i�
∂

∂xk

− e

c
Ak, (66)

probability current density jk = cαk , and spin Sk = �

2 �k , k =
1,2,3. Both of these functions provide mean values: 〈jk〉 = 0,
〈pk〉 = 0, k = 1,2,3, and 〈S2〉 = 〈S3〉 = 0. The mean values
〈S1〉a = �

2 〈�1〉a and 〈S1〉b = �

2 〈�1〉b for the doublet lines a

and b, respectively, are equal in magnitude but opposite in
sign. They depend on IA and can be approximated as follows:

〈�1〉a = −〈�1〉b ≈ 1 − IA + 3

2
I 2
A. (67)

The normalized energy levels Ea and Eb of the doublet are
different and depend on both � and IA as shown in Figs. 6–8,
where E = 〈H 〉/(mec

2).

B

A

6.0 5.5 5.0 4.5 4.0 3.5
log10 IA

11

10

9

8

7

6

log10

FIG. 5. Plot of log10 �ξ against log10 IA at (A) � = �A, and (B)
� = �B .

B

A
D

C

2.5 2.0 1.5 1.0
log10

1.00005

1.00010

1.00015

1.00020

E

FIG. 6. Normalized energy E against log10 � at (A) IA = 0.0004,
ξ = ξ0a , (B) IA = 0.0004, ξ = ξ0b, (C) IA = 0.0002, ξ = ξ0a , (D)
IA = 0.0002, ξ = ξ0b.

C. Spin precession

The whole family of the ground-state wave functions is
defined the evolution operator [see Eqs. (40) and (41)]

Ev(x) ≡ Ev(X1,X4)

= eiϕb

⎛
⎝ ∑

n∈Sda

Sa(n)Pae
i(ϕ′

n+ϕab) +
∑
n∈Sdb

Sb(n)Pbe
iϕ′

n

⎞
⎠,

(68)

where ϕb = −2π (1 + ξ0b)X4/�, ϕab = 2π�ξX4/�, and
ϕ′

n = 2π (n1X1 − n4X4), Sda and Sdb are the solution domains
of the doublet lines a and b, respectively. In this case, the set
Sda contains only points n = (n1,0,0,n4) ∈ Lwith n4 = −1,0,
whereas the set Sdb contains only points n with n4 = 0,1. The
Fourier amplitudes a = a(n) and b = b(n) [see Eq. (51)] have
the following symmetry properties:

a∗ = (−1)n4a, �1a = (−1)n4a, n ∈ Sda, (69)

b∗ = (−1)n4b, �1b = −(−1)n4b, n ∈ Sdb. (70)

Each member � = Ev(x)a0 of this family is specified by the
amplitude a0 which can be written without loss of generality
as

a0 = a0ae
iδ cos α + a0b sin α, (71)

where α ∈ [0,π/2] and δ ∈ [0,2π ].
The matrix function Ev(X1,X4) is periodic in X1. It is not

periodic in X4, but �ξ/� � 1, so that variations of ϕab at any

2.5 2.0 1.5 1.0
log10

6.5

6.0

5.5

5.0

4.5

log10 E

FIG. 7. Logarithm of �E = Eb − Ea against log10 � at IA =
0.0004 (solid curve) and IA = 0.0002 (dashed curve).
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A

B

C

D

6.0 5.5 5.0 4.5 4.0 3.5
log10 IA

8

6

5

4

log10 Ea 1 , log10 E

FIG. 8. Plot of log10(Ea − 1) against log10 IA (solid curves) at (A)
� = �A, and (C) � = �B . Plot of log10 �E against log10 IA (dashed
curves) at (B) � = �A, and (D) � = �B .

unit interval of the X4 axis are negligibly small, for example,
in calculation of norms and mean values using Eqs. (42)–(44).
In this approximation, for the normalized energy E and the
mean value 〈S〉 = �

2 〈�〉 of the spin operator, one can readily
obtain the relations

E = 〈H 〉/(mec
2) = Ea + �E sin2 α

1 − u0 cos2 α
, (72)

〈�〉 = e1〈�1〉a(cos 2α − u0 cos2 α) + eρ(v0 − 1) sin 2α

1 − u0 cos2 α
,

(73)

where eρ = e3 cos ϕ + e2 sin ϕ,ϕ = δ + 2π�ξX4/� = δ +
2πνpr t , δ specifies the initial precession phase, νpr =
�ξmec

2/h is the precession frequency, and

u0 = 1 − ua

ub

,ua =
∑
n∈Sda

|a(n)|2,ub =
∑
n∈Sdb

|b(n)|2, (74)

〈�1〉a = 1

ua

∑
n∈Sda

(−1)n4 |a(n)|2, (75)

v0 − 1 = 1

ub

∑
n∈Sda

⋂
Sdb

a†(n)�3b(n)

= 2

ub

∑
n∈Sda

⋂
Sdb

[a1(n)b1(n) + a3(n)b3(n)]. (76)

The mean values 〈jk〉 and 〈pk〉 (k = 1,2,3) of the probability
current density operators jk and the kinetic momentum
operators pk are equal to zero for any ground-state wave

A

C

B

D

2.5 2.0 1.5 1.0
log10

0.001

0.002

0.003

0.004

0.005

u0, v0

FIG. 9. Plot of u0 against log10 � (solid curves) at (A) IA =
0.0004, and (C) IA = 0.0002. Plot v0 against log10 � (dashed curves)
at (B) IA = 0.0004, and (D) IA = 0.0002.

A

B

C

D

6.0 5.5 5.0 4.5 4.0 3.5
log10 IA

7

6

5

4

3

log10 u0, log10 v0

FIG. 10. Plot of log10 u0 against log10 IA (solid curves) at (A)
� = �A, and (C) � = �B . Plot log10 v0 against log10 IA (dashed
curves) at (B) � = �A, and (D) � = �B .

function �. The mean value 〈�1〉a depend on IA and can
be approximated by Eq. (67), parameters u0 and v0 depend on
� and IA as shown in Figs. 9 and 10, respectively.

Since u0 � 1 and v0 � 1, the ground-state wave functions
specified by 0 � α � π

2 describe various spin states of
the Dirac electron, including the spin precession with the
frequency νpr at 0 < α < π

2 . The corresponding normalized
energy levels E fill the band from Ea to Eb = Ea + �E; see
Figs. 6–8. The frequency νpr is defined by �ξ = ξ0b − ξ0a;
see Figs. 3 and 5, in particular, νpr = 3.062 347 × 1014 Hz
at � = �A,IA = 0.0004, and νpr = 1.082 908 × 1014 Hz at
� = �B,IA = 0.0002.

Replacing the amplitudes A1 = A4 (61) by A1 = A4 =
Am(e2 − ie3)/

√
2 inverts the signs of 〈�1〉a and 〈�1〉b and

reverses the precession direction, i.e., eρ in Eq. (73) takes
the form eρ = e3 cos ϕ − e2 sin ϕ. In the case of counterpropa-
gating waves with the same circular polarization [A1 = A∗

4 =
Am(e2 ± ie3)/

√
2] or the same linear polarization (A1 = A4 =

Ame2), the spin precession is absent, because �ξ ≡ 0.

IV. CONCLUSION

The fundamental solution of the Dirac equation for an
electron in the electromagnetic field with four-dimensional
periodicity is obtained. The projection operator S ′ (36) defines
the exact fundamental solution of the finite subsystem (35)
which expands with each new step of the recurrent process. The
relations, presented above and in [11,12], form the complete set
which is sufficient for the fractal expansion of this subsystem
to a finite model of ESTC of any desired size. A criterion for
evaluating accuracy of the approximate solutions, obtained by
the use of such a model, is suggested. It plays a leading role in
the search for the best approximate solutions in the framework
of the selected model. The presented techniques are illustrated
by analyzing the ground state of the Dirac electron in the
field of counterpropagating plane waves. It is shown that in
the electromagnetic lattice, composed by the left and right
circularly polarized waves, the ground state is described by
the family of wave functions with zero mean values of the
probability current density operators and kinetic momentum
operators, but with different energy levels and various spin
states, including the spin precession.
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APPENDIX

1. Dirac basis for the linear space of 4 × 4 matrices

Let us enumerate 16 Dirac matrices, forming a basis for
the linear space of 4 × 4 matrices, by taking into account
both interrelations between 2 × 2 blocks of each matrix and
interrelations between elements of each nonzero 2 × 2 block
as follows:

�0 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ = U,

�1 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ = �3,

�2 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ = �1,

�3 =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i

0 0 i 0

⎞
⎟⎠ = �2,

�4 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ = γ4 = α4,

�5 =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ = τ3,

�6 =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠ = τ1,

�7 =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i

0 0 −i 0

⎞
⎟⎠ = τ2,

�8 =

⎛
⎜⎝

0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0

⎞
⎟⎠ = γ5,

�9 =

⎛
⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎠ = α3

�10 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ = α1,

�11 =

⎛
⎜⎝

0 0 0 −i

0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠ = α2,

�12 =

⎛
⎜⎝

0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

⎞
⎟⎠ = τ4,

�13 =

⎛
⎜⎝

0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

⎞
⎟⎠ = γ3,

�14 =

⎛
⎜⎝

0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0

⎞
⎟⎠ = γ1,

�15 =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎠ = γ2.

Commonly used notation to the right of each matrix is given for
convenience. At the presented numeration order, the structural
information on each matrix �ν is enclosed in its number ν, i.e.,
one can reconstruct �ν from ν, and the multiplication rule for
�λ�μ can be written as a function of λ and μ [11].

Any 4 × 4 matrix A can be written

A =
15∑

ν=0

Aν�ν,

where Aν = 1
4 tr(A�ν), and tr A = 4A0. To single out the

specific basis used in this expansion, the set of coefficients
{Aν} is called in this article the Dirac set of matrix A, briefly, D
set of A, and it is denoted Ds(A). This approach is of particular
assistance in solving the system of equation (6). It is best suited
to the structure of its matrix coefficients, accelerates numerical
calculations and reduces data files. It should be emphasized
that all major matrix operations (summation, multiplication,
inversion, etc.) can be performed directly with D sets, i.e.,
without matrix form retrieval [11].

2. Projection operator of a system of homogeneous
linear equations

LetV andV∗ be a linear space (finite or infinite dimensional)
and its dual. At given ω ∈ V∗, the linear homogeneous
equation in x ∈ V ,

〈ω,x〉 = 0, (A1)

can be transformed to the equivalent equation

αx = 0, (A2)

where

α = ω† ⊗ ω

〈ω,ω†〉 (A3)

is the Hermitian projection operator (dyad) with the trace
tr α = 1, and ω† ∈ V . Let U be the unit operator, i.e., U x = x
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for any x ∈ V and ωU = ω for any ω ∈ V∗. The Hermitian
projection operator S = U − α is the fundamental solution of
(A2), i.e., for any given x0 ∈ V , x = Sx0 is a partial solution
of (A1) and (A2).

Let now α and β be Hermitian projection operators (α† =
α2 = α,β† = β2 = β) in V . Providing the series

A = α + β +
+∞∑
k=1

[(αβ)kα − (αβ)k + (βα)kβ − (βα)k]

(A4)

is convergent, it defines the Hermitian projection operator with
the following properties:

A† = A2 = A, αA = Aα = α,

βA = Aβ = β, tr A = tr α + tr β. (A5)

Hence, the system of equations in x ∈ V ,

αx = 0, βx = 0, (A6)

reduces to one equation Ax = 0 and has the fundamental
solution S = U − A. The operator A will be designated the
projection operator of the system (A6). The trace tr α of the
projection operator α specifies the dimension of the image
α(V) of V under the mapping α. It is significant that the
relations (A4) and (A5) are valid for any values of integers tr α

and tr β. This enables us to extend this approach to systems
with any (finite or infinite) number of homogeneous linear
equations. To this end, we transform (A4) to the following
expression [16]:

A = (α − αβα)−(U − β) + (β − βαβ)−(U − α), (A7)

where (α − αβα)− is the pseudoinverse operator with the
following properties:

(α − αβα)−(α − αβα)

= (α − αβα)(α − αβα)− = α,

α(α − αβα)− = (α − αβα)−α = (α − αβα)−,

+∞∑
k=1

(αβ)k = (α − αβα)−β. (A8)

The similar relations for (β − βαβ)− can be obtained from
(A8) by the replacement α ↔ β. Numerical implementation
of the pseudoinversion reduces to the inversion of (tr α) ×
(tr α) matrix for (α − αβα)− and (tr β) × (tr β) matrix for (β −
βαβ)−.

In Ref. [16], we have proposed a technique based on the use
of (A7) to find the fundamental solution of the system (15).
Here, we present the advanced version of this technique based
on a fractal expansion of the system of equations taking into
account and on the use of A (A4) expressed as

A = α + δ, δ = (β − α)γ (β − α), (A9)

where

γ = β +
+∞∑
k=1

(βαβ)k = (β − βαβ)−, (A10)

α, β, δ, and A are projection operators, α, β, γ, δ, and A are
Hermitian operators interrelated as

βγ = γβ = γ, βαγ = γαβ = γ − β,

αδ = δα = 0, βδ = β − βα, δβ = β − αβ,

αA = Aα = α, βA = Aβ = β, δA = Aδ = δ.

In the frame of this approach, calculation of all pseudoinverse
operators in use reduces to the inversion of 4 × 4 matrices.
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