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Measure-independent freezing of quantum coherence
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We find that all measures of coherence are frozen for an initial state in a strictly incoherent channel if and only if
the relative entropy of coherence is frozen for the state. Our finding reveals the existence of measure-independent
freezing of coherence, and provides an entropy-based dynamical condition in which the coherence of an open
quantum system is totally unaffected by noise.
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Quantum coherence is a fundamental feature of quantum
mechanics, describing the capability of a quantum state
to exhibit quantum interference phenomena. The coherence
effect of a state is usually ascribed to the off-diagonal
elements of its density matrix with respect to a particular
reference basis, which is determined according to the physical
problem under consideration. It is an essential ingredient in
quantum information processing [1], and plays a central role in
emergent fields, such as quantum metrology [2–4], nanoscale
thermodynamics [5–11], and quantum biology [12–16].

It is only in recent years that the quantification of coherence
has become a hot topic due to the development of quantum in-
formation science, although the theory of quantum coherence
is historically well developed in quantum optics [17–19]. A
rigorous framework to quantify the coherence of quantum
states in the resource theories has been recently proposed
after a series of efforts [20–29]. By following the rigorous
framework comprising four postulates [20], a number of
coherence measures based on various physical contexts have
been put forward. The l1 norm of coherence and the relative
entropy of coherence were first suggested as two coherence
measures based on distance. The coherence measures based
on entanglement [30], the coherence measures based on
operation [31,32], and the coherence measures based on
convex-roof construction [33,34] were subsequently proposed.
With coherence measures, various properties of quantum co-
herence, such as the relations between quantum coherence and
other quantum resources [30,35,36], the quantum coherence
in infinite-dimensional systems [37,38], the complementarity
relations of quantum coherence [39], and the measure of
macroscopic coherence [40], have been discussed.

Quantum coherence is a useful physical resource, but
coherence of a quantum state is often destroyed by noise.
A challenge in exploiting the resource is to protect coherence
from the decoherence caused by noise, as the loss of coherence
may weaken the abilities of a state to perform quantum infor-
mation processing tasks. Today, after having been equipped
with the knowledge of coherence measures, it becomes
possible to analyze under which dynamical conditions the
coherence of an open system is frozen in a noisy channel.
Studies on this topic have been started in Ref. [41], where the
authors found that the coherence measures based on bonafide
distances are frozen for some initial states of a quantum system
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with even number of qubits undergoing local identical bit
flip channels. This finding illustrates that there exist such
quantum states of which some coherence measures remain
constant in certain noisy channels, and hence the ability of
such states to perform quantum information processing tasks
is not weakened by the noise if the ability exploited in the task
is based on these frozen coherence measures.

However, some coherence measures being frozen do not
imply other coherence measures being frozen too, since
different coherence measures result in different orderings of
coherence in general [42]. Freezing of coherence is dependent
on the coherence measures adopted in general. Although a
noisy channel may not weaken some abilities of a quantum
state if these abilities are based on the frozen coherence
measures, it can still weaken the other abilities that are
based on unfrozen coherence measures. Only the states with
measure-independent freezing of coherence can keep all the
abilities of coherence resource totally unaffected. Here, the
phrase, measure-independent freezing of quantum coherence,
means that coherence of some states is frozen independently of
coherence measures, i.e., all coherence measures of the states
are frozen in certain channels. The question then is under which
dynamical conditions does the measure-independent freezing
phenomenon occur for an open quantum system in a noisy
channel? This is an important issue, since only in this case the
coherence of an open system is totally unaffected by noise. In
this Rapid Communication, we address this issue.

To present our finding clearly, we need first to recapitulate
some notions, such as incoherent states, incoherent operations,
strictly incoherent operations, and coherence measures.

An incoherent state is defined as

δ =
∑

i

pi |i〉〈i|, (1)

where {|i〉} represents a fixed reference basis and pi are
probabilities. The set of all incoherent states is denoted by I.
All other states which cannot be written as diagonal matrices
in this basis are called coherent states. Hereafter, we use ρ to
represent a general state and δ specially to denote an incoherent
state.

An incoherent operation or an incoherent channel, i.e., an
incoherent completely positive trace-preserving map (incoher-
ent CPTP) map, is defined as

�(ρ) =
∑

n

KnρK†
n, (2)
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where the Kraus operators Kn satisfy not only
∑

n K
†
nKn =

I but also KnIK
†
n ⊂ I for each Kn, i.e., each Kn maps an

incoherent state to an incoherent state. An incoherent operation
is called a strictly incoherent operation or a strictly incoherent
channel if Kn also satisfy K

†
nIKn ⊂ I for each Kn [31,43].

A functional C can be taken as a coherence measure if it
satisfies the four postulates [20].

(C1) C(ρ) � 0, and C(ρ) = 0 if and only if ρ ∈ I.
(C2) Monotonicity under incoherent operations, C(ρ) �

C(�(ρ)) if � is an incoherent operation.
(C3) Monotonicity under selective incoherent opera-

tions, C(ρ) �
∑

n pnC(ρn), where pn = Tr(KnρK
†
n), ρn =

KnρK
†
n/pn, and �(ρ) = ∑

n KnρK
†
n is an incoherent oper-

ation.
(C4) Nonincreasing under mixing of quantum states, i.e.,

convexity,
∑

n pnC(ρn) � C(
∑

n pnρn) for any set of states
{ρn} and any probability distribution {pn}.

One well-known coherence measure is the relative entropy
of coherence Cr . It is defined as

Cr (ρ) = min
δ∈I

S(ρ||δ), (3)

where S(ρ||δ) = Tr ρ(log ρ − log δ) is the relative entropy.
With these notions, we can now state our main finding as a

theorem.
Theorem. C(ρt ) = C(ρ0) for all coherence measures C if

and only if Cr (ρt ) = Cr (ρ0), where ρt = �t (ρ0) with �t being
a strictly incoherent channel and ρ0 being an initial state.

We only need to prove that C(ρt ) = C(ρ0) if Cr (ρt ) =
Cr (ρ0) in the theorem, since Cr is certainly frozen if all
measures are frozen.

First, we show that S(�t (ρ0)||�t (δ0)) = S(ρ0||δ0), where
δ0 is the diagonal part of the density matrix ρ0. By definition,
Cr (ρ) = minδ∈I S(ρ||δ). The minimum is attained if and only
if δ = ρd , where ρd is the diagonal part of ρ [20], and then
there is

Cr (ρ0) = S(ρ0||δ0). (4)

By using the contractivity of the relative entropy, i.e.,
S(E(ρ1)||E(ρ2)) � S(ρ1||ρ2) for any two states ρ1 and ρ2 under
a CPTP map E [1,44,45], we have

S(�t (ρ0)||�t (δ0)) � S(ρ0||δ0). (5)

On the other hand, since �t is an incoherent channel, there is
�t (δ0) ∈ I, which further leads to

Cr (ρt ) = min
δ∈I

S(ρt ||δ) � S(ρt ||�t (δ0)). (6)

Combining Eqs. (4), (5), and (6), we obtain the inequality,

Cr (ρt ) � S(ρt ||�t (δ0)) � Cr (ρ0). (7)

In the condition of Cr (ρt ) = Cr (ρ0), Eq. (7) results in

Cr (ρt ) = S(ρt ||�t (δ0)) (8)

and

S(�t (ρ0)||�t (δ0)) = S(ρ0||δ0). (9)

Equation (8) indicates that �t (δ0) is just the diagonal part of
the density matrix ρt = �t (ρ0), while Eq. (9) shows that the
equality for the contractivity of relative entropy in Eq. (5) is

attained. Hereafter, we will use δt to denote the diagonal part
of the density matrix ρt for simplicity. The above discussion
implies that δt = �t (δ0).

Second, we demonstrate that there exists an incoherent
operation Rt such that Rt (ρt ) = ρ0 and Rt (δt ) = δ0. According
to the well-known result about the contractivity of relative
entropy given in Refs. [46,47], we have that Eq. (9) is valid if
and only if there exists a CPTP map Rt such that

Rt (ρt ) = ρ0, Rt (δt ) = δ0. (10)

We therefore only need to prove that this CPTP map is
incoherent. In the case that δt is invertible, a CPTP map
satisfying Eq. (10) can be explicitly expressed as [48]

Rt (ρ) =
∑

n

δ
1
2
0 K†

n(t)δ
− 1

2
t ρδ

− 1
2

t Kn(t)δ
1
2
0 , (11)

with the Kraus operators K̃n(t) = δ
1
2
0 K

†
n(t)δ

− 1
2

t . Since

δ
− 1

2
t Iδ

− 1
2

t ⊂ I, K
†
n(t)IKn(t) ⊂ I, and δ

1
2
0 Iδ

1
2
0 ⊂ I, it is easy

to verify that K̃n(t)IK̃
†
n(t) ⊂ I. Hence Eq. (11) defines an

incoherent CPTP map satisfying Eq. (10). In the case that δt is
not invertible, instead of Eq. (11), Rt can be written as

Rt (ρ) =
∑

n

δ
1
2
0 K†

n(t)δ
− 1

2
t ρδ

− 1
2

t Kn(t)δ
1
2
0 + PρP, (12)

where P is the orthogonal projector onto the eigenspace of δt

associated with eigenvalue 0, and δ
− 1

2
t is defined by (δ

− 1
2

t )ii =
(δt )

− 1
2

ii if (δt )ii �= 0, and (δ
− 1

2
t )ii = 0 if (δt )ii = 0. Similarly, we

can show that the Rt defined in (12) is an incoherent CPTP
map, and satisfies Eq. (10).

Third, with the above arguments, we are ready to obtain the
conclusion C(ρt ) = C(ρ0). By combining the two incoherent
operations �t and Rt , there is

ρ0
�t−→ ρt

Rt−→ ρ0. (13)

Since all the coherence measures C have the monotonicity of
coherence measure under incoherent CPTP map, expressed by
the postulate (C2), Eq. (13) results in

C(ρ0) � C(ρt ) � C(ρ0), (14)

which implies that C(ρt ) = C(ρ0). This completes the proof
of our theorem.

The theorem means that all measures of coherence are
frozen for an initial state in a strictly incoherent channel if
and only if the relative entropy of coherence is frozen for the
state. It provides an entropy-based criterion for identifying the
states with measure-independent freezing of coherence, and is
applicable to all strictly incoherent channels.

It is worth noting that all the typical qubit noisy channels [1],
such as the bit flip, phase flip, bit-phase flip, depolarizing,
phase damping, and amplitude damping channels, belong
to this class of channels. It is easy to verify that all
the Kraus operators describing these channels satisfy both
Kn(t)IK

†
n(t) ⊂ I and K

†
n(t)IKn(t) ⊂ I. Furthermore, if N

channels �α
t with Kraus operators Kα

n (t), α = 1,2, . . . ,N ,
are strictly incoherent channels, then the local channel �t =
�1

t ⊗ �2
t ⊗ · · · ⊗ �N

t is also a strictly incoherent channel
with its Kraus operators Kn1n2...nN

= K1
n1

⊗ K1
n2

⊗ · · · ⊗ KN
nN
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satisfying Kn1n2...nN
IK

†
n1n2...nN

⊂ I and K
†
n1n2...nN

IKn1n2...nN
⊂

I. Note that here �1
t ,�

2
t , . . . ,�

N
t need not be identical, i.e.,

they may be different noisy channels. In fact, Kn(t)IK
†
n(t) ⊂ I

means that there is at most one nonzero entry in each column
of Kn [35], while similarly K

†
n(t)IKn(t) ⊂ I means that there

is at most one nonzero entry in each row of Kn. Therefore, a
channel is a strictly incoherent channel if and only if at most
one nonzero entry appears in each row and each column of
its Kraus operators with respect to the fixed reference basis.
This provides a simple approach to identify strictly incoherent
channels, by which it is very easy to confirm that all the local
channels consisting of strictly incoherent channels are strictly
incoherent channels. Hence our theorem is applicable to all
local channels consisting of the typical qubit noisy channels.

Our theorem can help to effectively identify the states
with measure-independent freezing of coherence in a strictly
incoherent channel. All the states can be obtained only by
solving the equation Cr (�t (ρ0)) = Cr (ρ0), although it may be
difficult to solve analytically the equation to obtain the whole
solutions since the calculation of entropy is complicated.
However, in general, it is unnecessary to obtain all the
solutions. In quantum information processing, researchers are
usually interested only in some special states, such as the Bell
states, GHZ states, and some other special families of states.
In this case, we only need to examine the desired states, to
which our theorem is quite useful.

As an example, we now apply our theorem to local
bit flip channels to show the measure-independent freezing
phenomenon of coherence. Consider an N -qubit system
undergoing a local bit flip channel �t = �1

q1
⊗ · · · ⊗ �N

qN
,

where �α
qα

(ρ) = Kα
0 ρK

α†
0 + Kα

1 ρK
α†
1 is the bit flip operation

on the αth qubit with Kα
0 = √

1 − qαI and Kα
1 = √

qασ1, and
q1, . . . ,qN are parameters dependent on time t . Here σ1 is the
Pauli-X operator.

We first examine a family of pure states, defined by

|ϕ±
l1l2...lN

〉 = |l1l2 . . . lN 〉 ± |l̄1 l̄2 . . . l̄N 〉√
2

, (15)

where l1 = 0, li �=1 = 0,1, and l̄i = NOT(li) = 1 − li . These
states are widely used in quantum information processing.
For instance, at N = 2, |ϕ±

00〉 = |00〉±|11〉√
2

and |ϕ±
01〉 = |01〉±|10〉√

2

are just the Bell states, and at N � 3, |ϕ+
00...0〉 = |0〉⊗N +|1〉⊗N√

2
are just the N -qubit GHZ states. We will show that all
coherence measures for each of the states in Eq. (15) are
frozen.

Hereafter, we use l (l̄) to denote the sequence l1l2 . . . lN
(l̄1 l̄2 . . . l̄N ) for simplicity. The expression in Eq. (15) can then
be simply written as |ϕ±

l 〉 = |l〉±|l̄〉√
2

. According to our theorem,

we only need to show that the relative entropy Cr (ρ±
t,l) are

constants, where ρ±
t,l = �t (ρ

±
0,l) with ρ±

0,l = |ϕ±
l 〉〈ϕ±

l | being
the initial states.

By detail calculations, we obtain

ρ±
t,l =

∑
l′

pt,l′l|ϕ±
l′ 〉〈ϕ±

l′ |,

where

pt,l′l =
∏

1�i�N

(
qi + (1 − 2qi)δl′i li

)

+
∏

1�i�N

(
1 − qi − (1 − 2qi)δl′i li

)
.

The 2N eigenvectors of ρ±
t,l can be taken as |ϕ+

l′ 〉 and |ϕ−
l′ 〉,

which satisfy

ρ±
t,l |ϕ+

l′ 〉 = pt,l′ l±pt,l′ l
2 |ϕ+

l′ 〉,
ρ±

t,l |ϕ−
l′ 〉 = pt,l′ l∓pt,l′ l

2 |ϕ−
l′ 〉,

and the diagonal part of ρ±
t,l is

δt,l =
∑

l′

(
1

2
pt,l′l|l′〉〈l′| + 1

2
pt,l′l|l̄′〉〈l̄′|

)
.

With the aid of the above expressions, we can calculate the
relative entropy of coherence, and obtain

Cr (ρ±
t,l) = S

(
ρ±

t,l||δt,l

) = S(δt,l) − S
(
ρ±

t,l

)

= −
∑

l′

(
pt,l′l log(pt,l′l) + pt,l′l log

1

2

)

+
∑

l′
pt,l′l log pt,l′l =

∑
l′

pt,l′l = 1. (16)

Equation (16) shows that the relative entropy of coherence for
each state ρ±

t,l is constant, and therefore all coherence measures
manifest freezing forever for the N -qubit system initially in the
states expressed by Eq. (15) undergoing local bit flip channels.
The measure-independent freezing occurs in this case.

We now extend our discussion to a family of mixed states,
defined by

ρ0 =
∑

l

pl

(
p|ϕ+

l 〉〈ϕ+
l | + (1 − p)|ϕ−

l 〉〈ϕ−
l |), (17)

where 0 � p � 1, and {pl} is any probability distribution.
Again, |ϕ±

l 〉 = |l〉±|l̄〉√
2

is the brief expression of the pure states
defined in Eq. (15).

For the local bit flip channel �t = �1
q1

⊗ · · · ⊗ �N
qN

, we
have

ρt = �t (ρ0) =
∑

l

pt,l

(
p|ϕ+

l 〉〈ϕ+
l | + (1 − p)|ϕ−

l 〉〈ϕ−
l |),

where

pt,l =
∑

l′
pl′

⎛
⎝ ∏

1�i�N

(qi + (1 − 2qi)δl′i li )

+
∏

1�i�N

(1 − qi − (1 − 2qi)δl′i li )

⎞
⎠.

The 2N eigenvectors of ρt can be taken as |ϕ+
l 〉 and |ϕ−

l 〉,
which satisfy

ρt |ϕ+
l 〉 = pt,lp|ϕ+

l 〉, ρt |ϕ−
l 〉 = pt,l(1 − p)|ϕ−

l 〉,
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and the diagonal part of ρt is

δt =
∑

l

(
1

2
pt,l|l〉〈l| + 1

2
pt,l|l̄〉〈l̄|

)
.

We can then obtain the relative entropy of coherence,

Cr (ρt ) = S(δt ) − S(ρt )

= −
∑

l

(
pt,l log pt,l + pt,l log

1

2

)

+
∑

l

(pt,l log pt,l + pt,l(p log p

+ (1 − p) log(1 − p))) = 1 − H (p), (18)

with H (p) = −p log p − (1 − p) log(1 − p) being the binary
Shannon entropy. Equation (18) shows that Cr (ρt ) is a
constant, which implies that all coherence measures manifest
freezing forever for the N -qubit system initially in the states
expressed by Eq. (17) undergoing local bit flip channels, i.e.,
the measure-independent freezing occurs.

Specially, if we take N as even numbers and let p = 1+c1
2

and pl = 1+(−1)w(l)c3
2N−1 in our example, where −1 � c1,c3 � 1

are two real numbers and w(l) is the Hamming weight of
|l〉, then Eq. (17) gives the states discussed in Ref. [41],
where the authors found that the coherence measures based
on the bonafide distance are frozen in the local identical bit
flip channel �t = �⊗N

q . Here, our example implies that in

this case all coherence measures, not limited to the bonafide
coherence measures, are frozen.

In conclusion, we have proved the theorem that all
measures of coherence are frozen for an initial state in a
strictly incoherent channel if and only if the relative entropy
of coherence is frozen for the state. Our finding reveals
the existence of measure-independent freezing of coherence
and, more importantly, provides an entropy-based dynamical
condition in which the coherence of an open quantum system
is totally unaffected by noise.

Our theorem is applicable to all strictly incoherent channels,
such as the typical channels including the bit flip, phase
flip, bit-phase flip, depolarizing, phase damping, amplitude
damping channels, and all the multiqubit local noisy channels
consisting of these typical qubit channels. As an example, we
have applied the theorem to local bit flip channels, and shown
that there are a number of states including the Bell states, the
GHZ states, other pure states, and a family of mixed states, of
which all coherence measures are frozen.

In passing, we would like to add that the relative entropy
of coherence plays a crucial role in the theorem. We do not
find other coherence measures which can take the place of the
relative entropy in the theorem.
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