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Observation of optical second-harmonic generation in porous-silicon-based photonic crystals in the
Laue diffraction scheme
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Second-harmonic generation (SHG) in the Laue scheme of the dynamical Bragg diffraction in one-dimensional
photonic crystal (PhC) is studied. The experiments are performed for partially annealed porous-silicon PhC
containing 250 periods of the structure. Our measurements confirm that the phase-matched optical SHG is
observed under the Bragg conditions, which is evidenced by a narrow angular and spectral distribution of the
diffracted SHG outgoing the PhC. This is confirmed by both the analytical description of the SHG process
performed in the two-wave approximation, and by direct calculations of the PhC dispersion curves for the
fundamental and SHG wavelengths by the revised plane wave method. Possible types of phase- and quasi-phase-
matching realized in the studied PhC under the Laue diffraction scheme are discussed.
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I. INTRODUCTION

Nonlinear optical effects in spatially periodic dielectric
structures, referred to now as photonic crystals (PhCs),
have been intensively studied over recent decades. Unlike
conventional anisotropic nonlinear crystals, which are com-
monly used for an efficient frequency up-conversion, the
PhCs are characterized by structural lattice-induced dispersion
that gives additional possibilities for the realization of the
phase-matching conditions for optical harmonics’ generation.
Their unique nonlinear-optical properties were first discussed
in Ref. [1], where the quasi-phase-matching conditions for
second-harmonic generation (SHG) in PhC were suggested
involving necessarily the reciprocal lattice vector of a periodic
medium [2–5]. Near the photonic band gap edge, phase-
matching conditions can be satisfied due to an essential change
of the effective refraction index of the composite media [6,7].
The efficiency of the SHG process is further enhanced by the
spatial light localization in a PhC [8–10].

Similarly to x-ray diffraction in conventional electronic
crystals, there are two main experimental geometries for the
interaction of optical fields with PhCs, the so-called Bragg
and Laue schemes. They differ by the way the light propa-
gates inside the structure under the fulfillment of the Bragg
diffraction condition. In the Laue transmission scheme in
one-dimensional (1D) PhC, the light beam propagates parallel
to the PhC layers. In that case, optical effects are described
by the dynamical Bragg diffraction theory [11–15], where an
interaction of so-called Borrmann (B) and anti-Borrmann (aB)
modes existing in a PhC under the Bragg diffraction condition
takes place. Being spatially localized in different types of PhC
layers, they reveal different dispersion properties, which brings
a number of specific effects. Among them, temporal Bragg-
diffraction-induced laser-pulse splitting [12,13,16], pendulum
effect [17–20] and selective compression of femtosecond
laser pulses in 1D photonic crystals [14,21] were studied
theoretically and experimentally. Importantly, contrary to the
case of the Bragg (reflection) scheme, the photonic band gap
is not formed in the Laue geometry, so that the radiation
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propagates without any exponential attenuation within a PhC.
Thus the SH intensity could increase along all the length of
the nonlinear structure participating in the SHG process in the
Laue geometry.

An experimental realization of optical effects in the Laue
diffraction geometry requires a high structural quality and
relatively large sizes of the PhC cross section, or a large
number of layers constituting a PhC. Thus, a flexible method
for the PhC fabrication is needed, and a good candidate
here is the electrochemical etching technique, which allows
us to make porous-silicon-based PhCs with the number of
layers up to several hundreds [22]. It provides acceptably
large PhC geometrical sizes, a desired high modulation of
the refractive indexes of the adjacent layers, etc. Importantly,
such PhC reveals second- and third-order nonlinear properties
as well, which were demonstrated up to now in the Bragg
diffraction geometry [23–26], while in the Laue diffraction
scheme these effects are much less studied. Theoretical aspects
of SHG in the Laue geometry were first described in Ref. [27]
and later in Ref. [28]. It was shown that different types of
phase-matching conditions can contribute to the optical SHG
process under the dynamical Bragg diffraction in the Laue
geometry, which involves different combinations of the wave
vectors of Borrmann and anti-Borrmann modes at both the
fundamental and second-harmonic (SH) wavelengths. The first
experimental evidence for SHG at hard x-ray wavelengths was
reported recently in Ref. [29]. At the same time, to the best of
our knowledge, there have been no experimental verifications
of these ideas in optical PhCs.

In this paper we present the observation of phase-matched
optical SHG in 1D partially annealed porous-silicon-based
PhC in the Laue diffraction scheme. We demonstrate that
two strong SHG peaks corresponding to the transmitted and
diffracted fundamental beams obtained in the Laue scheme
of diffraction are formed, which are associated with the
phase-matched SHG effect. An additional type of quasi-phase-
matched SHG appears as a less intensive intermediate SHG
peak. The experimental observations are supported by the theo-
retical description of these phenomena. The paper is organized
as follows: In Sec. II the methods of experiment and sample
preparation are described. In Sec. III experimental results on
the SHG in the Laue geometry are presented. Experimental
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determination of the refractive indexes of the two types of
PhC layers are described in Sec. IV. A theoretical description
of SHG is presented in Sec. V, followed by discussion and
conclusions. In the Appendix the experimental method of
refractive indexes determination based on diffraction induced
pulse splitting effect is described in detail.

II. EXPERIMENT

The samples under study are 1D photonic crystals based
on mesoporous silicon multilayer structure made by electro-
chemical etching technique described in detail elsewhere [22].
In brief, a p-type crystalline silicon wafer of (100) crystal-
lographic orientation and the resistivity of 0.005 � cm was
used as a PhC template. The 1D porous-silicon-based PhC was
formed by a periodic in time modulation of the electrochemical
anodic current density j , the layers with low and high porosity
were formed when using the values j1 = 40mA/cm2 and
j2 = 100mA/cm2, respectively. Hydrofluoric acid of the mass
concentration 28% was used as an electrolyte. The fabricated
porous-silicon-based PhC consisted of 500 layers (250 periods
of the PhC structure), each of them being 400 nm thick.

In order to increase the transparency of the porous-silicon-
based PhC it was annealed at the temperature of 750 ◦C
for five hours, so that an oxidation of the major part of
crystalline silicon and formation of SiO2 was attained. As
a result, the PhC sample consisted of Si, SiO2, and air, and
the parameters of the constituting layers differ from those of
the initial porous-silicon sample. Due to a volume expansion,
the thickness of the layers in annealed PhC was approximately
440 nm. It is necessary to note that we definitely avoided
the total oxidation of the PhC in order to keep a certain
amount of crystalline silicon in the structure, which formed
the second-order susceptibility on the Si-SiO2 interfaces. After
annealing the sample was cleaved into a rectangular block of
the length L = 500μm.

For the experimental studies of SHG we used a setup based
on a Ti:sapphire laser (with the wavelength of 800 nm, pulse
duration of 100 fs, repetition rate of 80 MHz, the average power
of 100 mW). The fundamental radiation was focused on the
sample’s facet by a 5 cm lens into a spot of approximately
50 μm in diameter, as is shown schematically in Fig. 1.
The angle of incidence was close to the Bragg angle of the
composed PhC, θB = 27◦ ± 0.25◦. The SH radiation generated
in transmission through the sample was gathered by a lens
(f = 5 cm), passed through a diaphragm with � ≈ 5 mm,
spectrally selected by a necessary set of filters (SCHOTT
BG-39, Thorlabs FB400-10) and detected by a photomultiplier
(Hamamatsu R4220P) operating in the photon-counting mode.
In order to study the SHG diffraction, the PhC was placed on a
rotation stage, so that the detection angle ϕ could be changed
in the interval [−40◦, + 40◦] with an accuracy of 0.5◦. Linear
diffraction measurements were performed on the same setup
where the blue filters were removed, and the photomultiplier
was replaced by a Si-based photodiode.

Schematically, the experimental geometry along with the
coordinate frame is shown in Fig. 1. The layers of different
porosity are depicted by yellow and green colors, and the two
directions that correspond to the transmitted (T ) and diffracted
(D) beams leaving the PhC are shown by red lines. The left-

(a)

(b)

FIG. 1. (a) Schematic view of the dynamical diffraction of light
in 1D PhC in the Laue geometry. Inset: the scheme of porous
PhC microstructure with the layers of the thicknesses of d1 and
d2. (b) Borrmann (B) and anti-Borrmann (aB) eigenvectors of the
PhC for the fundamental (red) and SH (blue) waves, h stands for
the reciprocal lattice vector. Diffracted (D) and transmitted (T )
propagation directions of light are shown.

hand inset presents the orientation of pores with respect to
the PhC facet. The p polarization of the fundamental electric
field E(ω) lies in the (XOZ) plane and thus contains the
projection of the electric field on the pores’ axis as well as
that perpendicular to them, while the s polarization of E(ω) is
parallel to the (OY ) axis and is perpendicular to the pores.

III. SECOND-HARMONIC GENERATION IN PHOTONIC
CRYSTALS IN THE LAUE GEOMETRY

Figure 2(a) shows the SHG diffraction pattern obtained for
the angle of incidence of the p-polarized fundamental beam
θ = θB. For the comparison, the linear scattering indicatrix
is shown as well. In both cases one can see two strong
angular maxima, their angular positions correspond to the T

and D directions and are centered at ϕ = ±27◦. Spectra of
the registered signal revealed a narrow peak corresponding to
the SHG wavelength, and its intensity was found to reveal
a second-order dependence on the fundamental power, as is
shown at the inset of Fig. 2(b). These data confirm that it
was SH registered in the experiment. Importantly, the angular
width of the SHG maxima is nearly twice smaller as compared
to the linear diffraction peaks; the FWHM is approximately 3◦
in the case of SHG and of 7◦ for the fundamental beam. The
latter value is consistent with the angular divergence of the
fundamental beam outgoing the PhC. Besides, an additional
SHG peak centered at ϕ = 0◦ is observed, which is absent in
the linear indicatrix.

The SHG diffraction patterns measured when using the
p- and s-polarized fundamental radiation and for θ = θB

presented in Fig. 2(b) show that an efficient SHG is observed
only for the p polarization of the fundamental light, while
the SHG indicatrix for the s-polarized fundamental radiation
is absent within the experimental accuracy. We verified as
well the absence of the SHG for the s-polarized fundamental
beam. It is worth noting that despite the fact that the PhC
is composed by an inhomogeneous nanoporous structure, the
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FIG. 2. (a) Fundamental (triangles, dashed blue line) and SHG
intensity (circles, red line) diffraction patterns measured for θB = 27◦.
(b) SHG diffraction patterns measured when using the p-polarized
(circles, red line) and s-polarized (rhombs, green line) fundamental
radiation. T and D stand for the transmitted and diffracted beams
directions.

SHG scattering turned out to be rather low as compared to
the diffraction-induced SHG, as can be seen from Fig. 2(a). It
appears as a wide SHG scattering indicatrix with the average
amplitude being approximately two orders of magnitude
smaller as compared to the SHG peak value in T or D maxima.
A relatively small effect of the scattering processes in SHG
for the studied samples is also supported by the estimations
of the elastic scattering length that was made by a procedure
discussed in Ref. [30]. Assuming spherical shape of pores in
the PhC structure, it gives the characteristic scattering lengths
for the fundamental wave of lω ∼ 5–13 mm and for the SH
wave of l2ω ∼ 0.3–0.8 mm. The relation lω � L proves that
the scattering at the fundamental wavelength can be neglected,
and the relation l2ω ∼ L indicates that while the scattering at
the SH wave occurs, this process is not crucial and does not
influence much the phase matched SHG.

We have also studied the SHG intensity as a function of
the angle of incidence θ and of the diffraction angle ϕ, the
corresponding pattern obtained for the p polarization of the
fundamental beam is shown in Fig. 3. Here again the FWHM of
the SHG maxima on the ϕ scale is less than 3.5◦ and the FWHM
is only about 1.5◦ on the θ scale. In other words, as the angle of
incidence is slightly detuned from the exact Bragg condition
θB = 27◦, the SHG intensity falls down rapidly. Again, a small
intermediate SHG maximum centered at zero diffraction angle
is observed, its angular width on the θ scale is also about
1.5◦. In more detail, these properties of the SHG signal are
discussed below when they are compared with the results of
the theoretical description.
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FIG. 3. SHG vs the angle of incidence �θ = θ − θB and the
diffraction angle ϕ; the color bar shows the SHG intensity in arb.
units.

IV. MEASUREMENT OF REFRACTIVE INDEXES OF
PHOTONIC CRYSTALS’ LAYERS

To perform the further analysis, we need to estimate with
a high accuracy the values of the refractive indexes of the
layers, which form the PhC. This is a difficult task to get
correct refractive index values of layers of 440 nm thick in the
middle of the PhC structure when taking into account that the
layers could become optically more inhomogeneous after the
partial annealing.

To perform these measurements, we used the effect of
diffraction-induced pulse splitting (DIPS), observed experi-
mentally in Refs. [16,31] and which has not been exploited
up to now as a diagnostics tool. The DIPS effect consists in a
temporal splitting of the fundamental femtosecond laser pulse
passed through a PhC in the Laue diffraction scheme into
two pulses propagating with different group velocities. The
splitting time is proportional to the product of the difference
of the refractive indexes of the adjacent PhC layers and to
the passing length inside a PhC [13,16]. The DIPS splitting
time was shown to be on the subpicosecond range for a long
enough PhC (hundreds of μm). It provides an accuracy of the
determination of the refractive index of different PhC layers of
at least 10−3, which is a nontrivial task for an inhomogeneous
(layered) structure. A more detailed procedure of refractive
index determination is described in the Appendix. In our
experiment, we made a series of measurements for different
beam positions on the PhC facet. The mean values of n1 and
n2 at 800 nm wavelength and their standard deviations are
summarized in Table I.

As the determination of n1,2 at the SHG wavelength
of 400 nm by measuring the DIPS effect was technically
impossible in our experiment, they were estimated by using the

TABLE I. Averaged values of the initial porosity and refractive
indexes at the wavelengths of 800 nm and 400 nm for the two
composing PhC layers.

Layer ρin,% nω (800 nm) n2ω (400 nm)

1 65.0 ± 1.5 1.394 ± 0.005 1.415 ± 0.007
2 73.0 ± 1.5 1.316 ± 0.006 1.336 ± 0.009
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Bruggeman model for the oxidized porous silicon films [32].
The effective refractive indexes of such a Si-SiO2-air com-
posite is a function εeff = F (ρin,εSi,εSiO2 ,εair,β), where ρin is
the initial (before annealing) porosity of the Si-air composite,
and εSi, εSiO2 , εair are dielectric susceptibilities of Si, SiO2,
and air, respectively. The annealing parameter β characterizes
the ratio of the bulk fraction of the oxidized silicon to its
initial content in a Si-air composite. The porosity of the layers
was estimated from the reflection spectra measurement for
the reference samples with the same structural parameters,
the refractive indexes are estimated from the cross-correlation
measurements at the wavelength 800 nm, and the εSi,εSiO2

dependencies are known [33,34]. This allows us to calculate
the refractive indexes of the two types of PhC layers at the SHG
wavelength, n2ω. All the parameters of the PhC layers required
for the further determination of the SHG phase matching
conditions are summarized in Table I.

V. DISCUSSION

The theory of the nonlinear-optical interactions in 1D
PhCs in the Laue diffraction scheme was first described by
Mayer and Sukhorukov in Ref. [27]. It was predicted that
the dynamical diffraction in the Laue geometry can result
in the fulfillment of the phase-matching conditions for the
SHG process involving different PhC eigenmodes, Borrmann
or anti-Borrmann ones, at both the fundamental and SHG
wavelengths. So the SHG phase-matching conditions take
the form qg(2ω) = qi(ω) + qj (ω), where g,i,j = B,aB. The
vector diagram of the nonlinear process is shown in Fig. 1(b).

First, let us discuss possible mechanisms of SHG in
porous silicon, which are responsible for the results discussed
above. Crystalline silicon belongs to the crystallographic point
symmetry group m3m, possesses the inversion symmetry, and
thus the electric dipole second-order susceptibility is zero
in the bulk of the crystal. At the same time, as was shown
in previous works [35–37], the porous-silicon layers can be
characterized by an effective dipole second-order susceptibility
due to a large surface area of pores inside the structure. In our
case, silicon was to a large extend oxidized to SiO2, but residual
silicon can produce surface-stress-induced and electric-field-
induced second-order susceptibility on the interfaces between
the layers with different porosity. The corresponding surface
SH radiation can be generated if transversal component of the
fundamental and SH fields are involved. Taking into account
the experimental geometry shown in Fig. 1 this can be realized
only for p-polarized fundamental and SH fields.

The SHG indicatrix measured for different angles of
incidence θ (Fig. 3) shows that the SHG occurs in a narrow
angular interval of about ±0.75◦ close to the Bragg angle. This
indicates that SHG is synchronous, and the phase-matching
conditions are fulfilled when the x projections of the Borrmann
and anti-Borrmann wave vectors are equal to h/2 for the
fundamental wave and to h for the SH one. The appearance of
these two maxima that correspond to the T and D beams are
attributed to the fulfillment of the phase-matching conditions
discussed in Ref. [27]:

2q(ω) + lh − q(2ω) = 0, (1)

where q is the wave vector inside the PhC, h is the reciprocal
lattice vector, l = 0,2.

We consider that the phase mismatch near the Bragg angle
is determined predominantly by the z components of the wave
vectors �q

gij
z = q

g
z (2ω) − [qi

z(ω) + q
j
z (ω)].

A. Analytical two-wave approach

Let us consider an analytical estimation for the fulfillment
of the SHG phase-matching condition (1). In a particular case
of the two-wave approximation, under the exact Bragg condi-
tion, and for a weak refraction index modulation |n1 − n2| �
n0 it gives the following expressions for the z projections of
the wave vectors of the Borrmann and anti-Borrmann modes
for the p-polarized fields [31]:

qB,aB
z (ω) = k

(
n2

ω,0 − sin2 θB ∓ Cp|εh|
)1/2

, (2)

where nω,0 ≈ (nω,1d1 + nω,2d2)/d is the average refractive
index of the structure, k = |k| = 2π/λ is the wave number
in vacuum, Cp = 1 − 2n−2

ω,0 sin2 θB is the polarization factor
for the p-polarized fields, εh is the first Fourier component of
the linear permittivity.

In the PhC sample used in our experiments the thicknesses
of the layers are d1 = d2, and therefore the values of the second
Fourier components are ε±2h = 0. This means that in the
two-wave approximation, the splitting of the dispersion curve
for the SH radiation can be assumed to be negligibly small.
Then the expression (2) for the SH field takes the simple form
qz(2ω) = 2k(n2

2ω,0 − sin2 θB)1/2, where n2ω,0 is the averaged
refractive index for the SH wave. The corresponding phase-
matching condition (1) is performed accurately for the mea-
sured values n1,2 within the error limits: 2qaB

z (ω) − qz(2ω) = 0
for the n2(2ω) = 1.3332 and other indices are from the Table I.

B. Numerical calculation

In order to figure out the SHG phase-matching mechanism
in PhC, the dispersion curves qz vs the incident angle θ were
calculated numerically using the revised plane-wave method
(RPWM) [38]. In comparison to the two-wave approximation,
RPWM method allows to take into account many waves
propagating in a periodic medium. An intersection of the
dispersion curves for the fundamental and SH waves indicates
that the phase-matching conditions for the SHG process are
fulfilled. The dispersion curves were calculated for the PhC
studied in the experiment using the data summarized in
Table I within the confidence interval of the refractive indexes
variation, and thus the phase-matching conditions available in
our PhC were estimated (1).

This is illustrated by Fig. 4, which shows the realization
of three different types of the phase-matching conditions.
The corresponding dependencies of the dispersion curves
q

B,aB
z,2ω (θ ) for the Borrmann and anti-Borrmann modes at the

SHG wavelength are shown in Figs. 4(a)–4(c) by green lines,
while analogous dependencies for the fundamental wave are
combined as a sum of various modes qi

z,ω(θ ) + q
j
z,ω(θ ) shown

by red lines, θ is the angle of incidence.
Figure 4(a) demonstrates the SHG phase matching of the

first type, attained for the two anti-Borrmann fundamental
waves and also for the anti-Borrmann SHG mode (aB + aB →
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FIG. 4. Dispersion curves for three phase matching of type:
(a) aB + aB → aB, (b) B + aB → B,(c) aB + aB → B; (d) angle
distribution of SHG for three phase matchings of type (solid
lines): aB + aB → aB (blue), B + aB → B (red), aB + aB → B
(green). Calculated dependencies (d) were compared with experiment
(points) for T direction. Calculation parameters were corresponded
to parameters range of experimental PhC structure. For aB + aB →
aB: n1,ω = 1.397, n2,ω = 1.317, n1,2ω = 1.413, n2,2ω = 1.334; for
B + aB → B: n1,ω = 1.398, n2,ω = 1.320, n1,2ω = 1.410, n2,2ω =
1.330; for aB + aB → B: n1,ω = 1.390, n2,ω = 1.311, n1,2ω = 1.421,
n2,2ω = 1.342.

aB). The second type of phase matching achieved when the
Borrmann and anti-Borrmann fundamental waves generate the
Borrmann-type SHG (B + aB → B) shown in Fig. 4(b). The
third type of the phase-matching is obtained for two anti-
Borrmann fundamental waves, which generate the Borrmann
SHG (aB + aB → B) presented in Fig. 4(c). Only these three
types of phase-matching conditions can be realized in the PhC
under study. Figure 4(d) (filled circles) shows the experimental
dependence of the SHG intensity on the angle of incidence θ

close to the Bragg condition; it is a vertical cross section of
Fig. 3. Solid lines represent numerical calculation of SHG
intensity as a function of angle of incidence θ for the available
phase-matching conditions.

C. Discussion of the experimental results: phase- and
quasi-phase-matching SHG

The SHG indicatrices measured in the experiment (see
Fig. 2) reveal the two narrow peaks in T and D directions
with the width of about 3◦. This is smaller than the width of
the fundamental beams widths squared, which can be used as
a reference in accordance with the simplest expression for the
SHG intensity I2ω ∝ I 2

ω. Moreover, the corresponding theoret-
ical estimate for the angular width of the SHG peaks is also
small. This indicates that the phase-matched SHG takes place.
The synchronous SHG in case of B + aB → B requires phase
matching between the Borrmann and anti-Borrmann waves.
However, in the case of short pump pulses the DIPS effect can
be realized [31] due to different group velocities of the Bor-
rmann and anti-Borrmann pulses, which split in time, therefore
the B + aB → B phase matching can be realized only prior to

(a) (b)

FIG. 5. (a) Fundamental intensity distribution by the interference
of the Borrmann and anti-Borrmann modes under the dynamical
diffraction at the Laue scheme. (b) Scheme of QPM for the SHG
in the z direction with the wave vector q‖(2ω) using m induced
reciprocal lattice vector G.

the splitting of the Borrmann and anti-Borrmann pulses takes
place. The quantitative parameter of the DIPS effect is the
splitting length lDIPS, which is the path passed by the pulses
before the splitting time becomes equal to the doubled pulse
duration. The pulse duration of the Ti:sapphire laser used in
the SHG experiments was τ = 100 fs. In this case, the splitting
length lDIPS ≈ 1 mm, which is two times larger as compared to
the length of the sample. So the two pulses are coupled during
the propagation inside the PhC, and synchronous SHG with
phase-matching B + aB → B can take place.

Theoretical investigation in this paper and in Ref. [27] were
made for continuous waves, while in the experiment short
pulses with �λFWHM ≈ 10 nm of a Ti:sapphire laser were used.
The influence of a finite spectra of the fundamental wave leads
also to broadening of the angular SHG peaks in comparison
to the calculated ones, which is proved by the experimental
results presented in Fig. 4(d).

The appearance of the SHG maximum centered at ϕ =
0 (see Fig. 2) can be explained by the existence of an
electric-field-induced lattice of the effective second-order
susceptibility χ (2)(x,z) induced in porous-silicon structure
by the p-polarized fundamental radiation. The origin of
the nonlinear lattice is the spatial periodic structure of the
fundamental field formed by the interference of the Borrmann
and anti-Borrmann modes under the dynamical diffraction at
the Laue scheme, i.e., the so-called pendulum effect [17–20].

The mechanism of the effect is illustrated by Fig. 5(a),
which shows that the spatial structure of the intensity Iω(x,z)
in porous silicon in this case has a rectangular centered
lattice with the periods d transverse to the z axis and
� = 2�ex = λ(n2

ω,0 − sin2 θB)1/2/C(p)|εh| along the z axis.
Here � is the period of pendulum effect, or the period
of the total transfer of energy from the transmitted to the
diffracted waves and vice versa, and �ex is the extinction
depth [14]. In the regions of the maximal intensity Iω(x,z)
the internal photoemission of electrons from silicon, and
their subsequent capturing in surface traps of thin SiO2 layer
takes place. Thus a spatially modulated charge distribution
appears in the interfacial Si/SiO2 region, which results in the
formation of periodically modulated quasi-static interfacial
electric field EDC [39,40]. In turn, this electric field leads
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to the emergence of the electric-field-induced second-order
susceptibility χ (2)(x,z) = 3χ (3)EDC(x,z), where χ (3) is cubic
susceptibility of Si-SiO2 interface region.

This mechanism provides an additional SH source in
Si-SiO2 PhC. The nonlinear lattice of χ (2)(x,z) has the
same spatial distribution as the pump intensity Iω(x,z) and
adds a new reciprocal lattice vector G = (2π/�)ez in QPM
condition (3), where ez is the unit vector along the axis z. This
leads to a new quasi-phase-matching (QPM) condition, which
involves this additional G vector [2,4]:

q(ω) + q(ω) + mG + lh − q(2ω) = 0, (3)

where m,l = 0, ± 1, . . . are the orders of QPM.
Figure 5(b) shows the scheme of QPM for the SHG for

a wave propagating along the layers of the structure in the z

direction with the wave vector q‖(2ω), which is far away from
the diffraction Bragg condition:

q0(ω) + (q0(ω) + h) + mG − q‖(2ω) = 0, (4)

where q‖(2ω)=2kn2ω,0ez and q0(ω) is the wave vector
of the transmitted fundamental field. For the experimental
parameters considered above, the condition (4) is fulfilled
for the anti-Borrmann mode in the fourth order of QPM:
2qaB

z − q‖(2ω) + 4G = 0. It is easy to show from Eq. (2) that
since the difference between the wave vector’s projections is
qaB

z (ω) − qB
z (ω) = G, the QPM of higher orders m = 5,6 are

satisfied also for other waves combinations: qB
z (ω) + qaB

z (ω) −
q||(2ω) + 5G = 0 and 2qB

z (ω) − q||(2ω) + 6G = 0.
So the central SH maximum in Fig. 2 can be explained

by QPM SHG in originally centrosymmetric PhC due to the
second-order susceptibility lattice induced by the electric field
of the space charge at the Si/SiO2 interface in the presence of
the diffraction pendulum effect.

VI. CONCLUSIONS

Summing up, we have studied experimentally optical SHG
in 1D porous-silicon-based PhCs in the Laue diffraction
scheme. By analyzing the angular and spectral width of
the SHG diffraction maxima we confirm the phase-matched
second-harmonic generation process. Numerical analysis of
the dispersion curves of the studied PhC shows that the phase-
matching conditions can be realized when exciting the SHG by
the Borrmann and anti-Borrmann modes in our experimental
conditions. An additional type of SHG synchronism attributed
to electric-field-induced lattice of second-order susceptibility
in Si/SiO2-based PhC is suggested.
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APPENDIX: MEASUREMENT OF REFRACTIVE INDEXES
OF PHOTONIC CRYSTALS’ LAYERS BY THE DIPS

EFFECT

In DIPS experiments, a cross-correlation (CC) technique
was used to determine the time delay of the split pulses leaving
the PhC. Linearly polarized radiation of a 30 fs Ti:sapphire
laser operating at 800 nm wavelength served as a source of
the fundamental radiation and a CC scheme with the signal
(S) and the reference (R) arms containing prism compressors
was used. We measured the cross-correlation function at
the fundamental frequency as ICC(τ ) ∝ ∫ ∞

−∞ IS(t)IR(t + τ )dt ,
where IS(t) and IR(t + τ ) are the intensities measured in the
signal and reference channels of the setup, and τ is the delay
time between them.

The experimental procedure for the determination of the
refractive indices n1 and n2 was as follows. First, the ICC

function without the PhC was measured, so the time T0 of
a single laser pulse passing the optical distance between the
laser source and the detector inside the set-up, L0 = cT0, was
estimated, where c is speed of light. Second, ICC was measured
after the PhC set at θ = θB was introduced in the setup. The
two laser pulses outgoing the PhC were observed, coming
at the times T B (Borrmann pulse) and T aB (anti-Borrmann
pulse): T B,aB = (L0 − LPhC)/c + LPhC/vB,aB

exp , where LPhC is
the PhC length. In turn, this allows for the calculation of the
experimental value of Borrmann and anti-Borrmann group
velocity vB,aB

exp .
An analytical expression for the group velocities vB,aB

g

under the Bragg diffraction conditions was obtained in the two-
wave approach in Ref. [31], which revealed the dependence of
vB,aB

g on the PhC parameters n1,2,d1,2. This gives a system of
the two equation for vB

g (n1,n2) and vaB
g (n1,n2):

c
qB

z

k

⎡
⎣ε0 − Cjεhε−hk

2(2Cj + ω∂Cj/∂ω)

2
√

h2α2
0 + C2

j εhε−hk4

⎤
⎦

−1

= vB
exp,

(A1)

c
qaB

z

k

⎡
⎣ε0 + Cjεhε−hk

2(2Cj + ω∂Cj/∂ω)

2
√

h2α2
0 + C2

j εhε−hk4

⎤
⎦

−1

= vaB
exp,

where k = |k| = ω/c is the wave number in vacuum, qB,aB
z =

k2ε0 − q2
0x + hα0 ∓

√
h2α0 + C2

j εhε−hk4 are the z projection

and q0x = k sin θB is the x projection of the Borrmann and
anti-Borrmann wave vectors, α0 = q0x − h/2, ε0, εh, ε−h

are the Fourier components of the permittivity, Cj are the
polarization factors for the p- and s-polarized field [31]. Taking
into account the dependencies of ε0, εh, ε−h, qB,aB

z , Cj on n1

and n2, the numerical solution of the system (A1) gives the
values of the true refractive indexes of the PhC layers n1 and
n2. It is worth noting that the dependencies vB

g (n1,n2) and
vaB

g (n1,n2) can be obtained as well by numerical methods as
in Ref. [38].
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