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Singular optical axes in biaxial crystals and analysis of their spectral dispersion effects in β-Ga2O3
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We classify and distinguish optically biaxial materials, which can have triclinic, monoclinic or orthorhombic
crystal symmetry, by the degeneracy of the indices of refraction of their four singular optical axes
(Windungsachsen) in the absorption regime. We provide explicit analytical solutions for angular orientations
of the singular optical axes in monoclinic crystals and orthorhombic crystals. As a model material we analyze
monoclinic gallia (β-Ga2O3) and discuss in detail the dispersion (i.e., the spectral variation of the angular position)
of its singular optical axes. For a certain energy range (E ≈ 7.23–7.33 eV) we find quasiuniaxial symmetry. At
two energies (E ≈ 8.14 eV and E ≈ 8.37 eV) we find triaxial spectral points for which one regular optical axis
and two singular optical axes exist. Concurrently a Stokes analysis of the spectral dependence of the electrical
field eigenvectors is made and discussed for various crystal orientations. For a singular optical axis |S3| = 1;
for the two degenerate singular axes at the triaxial point the Stokes vector is undefined. For a certain energy
(E = 6.59 eV), the 〈010〉 orientation is close to a singular optical axis, |S3| = 0.977. The analysis provided here
is prototypical for the treatment of the optical properties of optically biaxial functional materials in the absorption
and gain regimes.

DOI: 10.1103/PhysRevA.93.053839

I. INTRODUCTION

It was pointed out first by Voigt in 1902 [1] that the
two optical axes, i.e., crystal directions in which the index
of refraction does not depend on polarization, of biaxial
crystals split into four Windungsachsen, now mostly termed
“singular optical axes,” in the absorption regime when the
elements of the dielectric tensor are complex. Three crystal
systems are optically biaxial, namely, in increasing order
of symmetry, the triclinic, monoclinic, and orthorhombic
systems. In [1] the singular optical axes were discussed for
biaxial crystals assuming the imaginary part of the dielectric
tensor to be small. The complete problem for orthorhombic
symmetry was elaborated in [2]. In recent literature the general
case, also including chiral contributions has been discussed
theoretically [3].

The forms of the dielectric tensor of triclinic (εt), mono-
clinic [εm, for the nonright angle being in the (x,z) plane], and
orthorhombic (εo) crystals without chirality are symmetric and
given by

εt =
⎛
⎝εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎞
⎠, (1a)

εm =
⎛
⎝εxx 0 εxz

0 εyy 0
εxz 0 εzz

⎞
⎠, (1b)

εo =
⎛
⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎠. (1c)

In the transparency regime the tensor elements are real (ε =
ε′), in the absorption regime they are complex (ε = ε′ + ı ε′′).
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We note here that it is trivial and well known that for uniaxial
crystals, e.g., εxx = εyy in Eq. (1c), there is a single optical axis
regardless whether ε is real or complex.

The discussion of the energy dependence of the direction of
the singular optical axes for real biaxial materials has not been
reported in the literature since spectrally resolved data for the
dielectric tensor of such materials are rarely reported. Here, we
first give a general discussion of the singular optical axes and
the degeneration of their indices of refraction for the triclinic,
monoclinic and orthorhombic systems. We also develop an
analytical formula for the angular azimuthal position of the
singular axes in monoclinic crystals. It can be simplified for
εxz = 0 and provides a complete explicit analytical solution
for the orthorhombic case. Then we use the recently published
complete dielectric tensor for monoclinic β-Ga2O3 (available
in a wide transparency regime 0.5–4.7 eV and within the
absorption regime from about 4.7 eV up to 8.5 eV) [4].

The analysis provided here in general and for the model
material β-Ga2O3 is prototypical for the treatment of the opti-
cal properties of further optically biaxial functional materials,
e.g., used in photodetectors (absorption regime) or lasers (gain
regime), both operating in the ε′′ �= 0 regime.

II. THEORY

We assume an incoming electromagnetic wave with wave
vector along the z direction. The dielectric tensor is rotated by
the polar angle θ around the y axis and subsequently by the
azimuthal angle φ around the z axis (Fig. 1),

R = Rz(φ) Ry(θ ) =
⎛
⎝cos θ cos φ − sin φ cos φ sin θ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞
⎠.

(2)

We note that all algebraic and numerical calculations have
been performed with MATHEMATICA [5].
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FIG. 1. Geometry of rotation operation on the crystal.

The problem of finding the optical axes can be formulated
in the electric field E [6,7],∣∣∣∣∣∣R−1 ε R − n2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠

∣∣∣∣∣∣ = 0. (3)

n denotes the generally complex index of refraction that has
an imaginary part in the absorption regime. With E = ε−1D in
mind and multiplying (3) with R−1 ε−1 R, the similar equation
in the displacement field D is [3],∣∣∣∣∣∣R−1 ε−1 R

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ − 1

n2

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

∣∣∣∣∣∣ = 0. (4)

The latter approach uses nicely the transversality of the D field.
One of the three eigenvalues of (4) is zero and the equation
becomes an eigenvalue problem with a complex symmetric
2 × 2 matrix,∣∣∣∣

(
[R−1 ε−1 R]xx [R−1 ε−1 R]xy

[R−1 ε−1 R]xy [R−1 ε−1 R]yy

)
− 1

n2

(
1 0
0 1

)∣∣∣∣ = 0.

(5)

The orientations (φ,θ ) of the optical axes are found when
the two (complex) solutions n1 and n2 of (3) or equivalently
of (4) are the same.

There are generally eight solutions for biaxial crystals
for the parameter range 0 � φ � 2π and 0 � θ � π , related
to the four singular axes and their forward and backward
intersections with the unity sphere. Along the singular optical
axes in the dissipative regime, only one of the two circularly
polarized waves can propagate, thus Voigt called these optical
axes Windungsachsen [1]. The mathematical reason is that
at these singular axes the two eigenvectors of the matrix
problem (4) are collinear and span only a one-dimensional
space, leading to so-called Voigt waves [8,9]. This is a
general property of 2 × 2 complex symmetric matrices with
degenerated eigenvalues [10].

The two solutions n1,2 determined from (3) are (ε̃ =
R−1 ε R)

n2
1,2 = (ε̃xx + ε̃yy) ε̃zz − ε̃2

xz − ε̃2
yz ± √

r

2 ε̃zz

, (6)

with r(ε,φ,θ ) given by

r = [
(ε̃xx + ε̃yy)ε̃zz − ε̃2

xz − ε̃2
yz

]2

+ 4ε̃zz

[
ε̃2
xzε̃yy − 2ε̃xy ε̃xzε̃yz

+ ε̃2
xy ε̃zz + ε̃xx

(
ε̃2
yz − ε̃yy ε̃zz

)]
. (7)

The requirement of n1 = n2 for an optical axis leads to the
condition,

� = (
n2

1 − n2
2

)2 = r

ε̃2
zz

= 0, (8)

or just r = 0. Simpler analytical expressions for r actually
follow from the equivalent equation to (3)∣∣∣∣∣∣ ε − n′ 2 R

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ R−1

∣∣∣∣∣∣ = 0, (9)

leading to r ′ = 0, with

r ′
m = [

cos2φ
(
εxxεzz − ε2

xz + εyyεzz cos2θ
) + sin2φ

(
cos2θ

(
εxxεzz − ε2

xz

) + εyyεzz

) + εxxεyy sin2θ + εxzεyy sin 2θ cos φ
]2

+ 4εyy

[
ε2
xz − εxxεzz

]
[εxx sin2θ cos2φ + εxz sin 2θ cosφ + εyy sin2θ sin2φ + εzz cos2θ ], (10)

r ′
o = [εzz cos2 φ(εxx + εyy cos2 θ ) + εzz sin2 φ(εxx cos2 θ + εyy) + εxxεyy sin2 θ ]2

− 4εxxεyyεzz[sin2 θ (εxx cos2 φ + εyy sin2 φ) + εzz cos2 θ ] (11)

for the monoclinic and orthorhombic case. The triclinic case
leads to a more lengthy expression and will be treated in detail
in a subsequent publication.

For triclinic material, the values of n1,2 (and r or r ′) at
opposite sides of the sphere are identical,

n1,2(φ,θ ) = n1,2(φ + π,π − θ ), (12)

and the indices of refraction of the four singular axes are
generally all different from each other. For a monoclinic crystal

the following additional symmetry exists,

n1,2(φ,θ ) = n1,2(−φ,θ ) = n1,2(2π − φ,θ ), (13)

thus forcing pairwise identical indices of refraction for the
singular axes. Two independent solutions for φ exist. For an
orthorhombic crystal a further symmetry (additionally to (12)
and (13)) exists,

n1,2(φ,θ ) = n1,2(φ,π − θ ), (14)

forcing all singular axes to have the same index of refraction;
only one independent solution for φ exists.
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TABLE I. Number Na of optical axes for various crystal symme-
tries in the transparency regime (ε ′′ = 0) and the absorption/gain
regime (ε ′′ �= 0) (assuming ε ′ �= 0) and number Nn of different
(complex) indices of refraction for these axes.

ε ′′ = 0 ε ′′ �= 0

Crystal Na Nn Na Nn

Triclinic 2 1 4 4
Monoclinic 2 1 4 2
Orthorhombic 2 1 4 1
Tetragonal 1 1 1 1
Trigonal 1 1 1 1
Hexagonal 1 1 1 1
Cubic ∞ 1 ∞ 1

A summary for all crystal systems is given in Table I (the
case ε′′ = 0 is well known). Thus the three types of biaxial
crystals in the absorption regime are fundamentally different
by the number of different complex indices of refraction of
their singular optical axes.

The singular optical axes are found from the solution
of r = r ′ + ı r ′′ = 0, i.e., simultaneously r ′ = 0 and r ′′ = 0.
The solutions (φ,θ ) can be found numerically from the
intersections of the curves r ′ = 0 and r ′′ = 0 in the (φ,θ ) plane.
For monoclinic crystals, after a few algebraic transformations,
the two independent solutions for φ are given by [11]

φ1,2 = Re

[
arctan

√
a ± 2

√
b

c

]
, (15)

with

a = ε2
xz εyy (−εxx − 2εyy + εzz)

+ εxx εyy (εxx − εzz) (−εyy + εzz), (16a)

b = −ε2
xz ε2

yy

[
ε2
xz + (εxx − εyy) (εyy − εzz)

](
ε2
xz − εxx εzz

)
,

(16b)

c = ε2
yy

[
4 ε2

xz + (εxx − εzz)
2
]
. (16c)

(201)

[100] [010]

[001]

FIG. 2. Unit cell of β-Ga2O3 [oxygen atoms are shown in red,
gallium atoms as green (octahedral-like coordination) and blue
(tetrahedral-like coordination)] and its orientation relative to the
coordinate system of Fig. 1: [100] || x, [010] || y; the angle between
z and [001] is 103.7◦ − π/2 [14]. The (2̄01) plane is indicated.

FIG. 3. The function |�| according to (8) for β-Ga2O3 an energy
E = 6.20 eV in false colors. The curves r ′ = 0 and r ′′ = 0 are shown
in black and red. Their intersections (r = 0), the angular positions of
the singular optical axes, are marked with white dots. The yellow and
red dots mark the positions of the two optical axes of ε ′ and ε ′′. The
photon energy is labeled in the upper left corner. The dashed white
rectangle indicates the (φ,θ ) area for 0 � φ � 2π and 0 � θ � π .
The label “W” indicates a particular singular optical axis and relates
to Fig. 6.

FIG. 4. The function S3 according to (22) for β-Ga2O3 for
E = 6.20 eV in false colors. [The range −1 � S3 � +1 is split with
15 equidistant contour lines with difference �S3 = 1/7; red (blue)
indicates negative (positive) values]. The angular positions of the
singular optical axes are marked with white dots. The contour with
S3 = 0 (linear polarization) is shown as thick black lines. The photon
energy is labeled in the upper left corner.
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The other two azimuthal orientations are given by φ3,4 = 2π −
φ1,2. We note that for orthorhombic crystals [εxz = 0, i.e.,
b = 0 in (16b)] the solution simplifies to φo,1 = φ1 = φ2,

φo,1 = Re

[
arctan

√
εxx (εzz − εyy)

εyy (εxx − εzz)

]
. (17)

Considering (12) and (13), this solution creates two azimuthal
positions of the singular axes, i.e., φo,2 = 2π − φo,1. The angle
θ for the corresponding angle φo,i is then determined by

θ1,2 = arccos

[
a ± 2

√
b

c

]
. (18)

with

a = ı εzz (εxx − εyy) sin 2φo,i , (19a)

b = εxx εyy (εxx − εzz) (εyy − εzz), (19b)

c = 2 εxx εyy − εxx εzz − εyy εzz

+ (εxx − εyy) εzz cos 2φo,i , (19c)

and θ3,4 = π − θ1,2. Two of these solutions are purely real
valued which are connected by each other by θo,2 = π − θo,1

representing the polar angle of the singular optical axis, thus
Eqs. (17) and (18) leading to four singular optical axes. We
note that for a lossless material the singular optical axis for
the left and circular polarized light coincide with each other
forming a classical optical axis. In this case Eqs. (17) and (18)
represent the orientation of the optical axes which are within
the plane given by largest and smallest principal axis of the
ellipsoid of wave normals.

III. APPLICATION TO Ga2O3

After the proposal of a rather general categorization of bi-
axial crystals and analytical formulas for the angular positions

θ 
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FIG. 5. (a) and (b) Angular position of the singular optical axes in β-Ga2O3 as a function of photon energy (a) in the (φ,θ ) plane (all eight
solutions) and (b) stereographic projection from the upper hemisphere (four solutions) onto the (x,y) plane with crystallographic directions
(marked by open circles) as labeled. (c) φ and (d) θ only as a function of energy. “A” denotes the beginning of significant splitting of the singular
optical axes in the dissipative regime (E = 4.78 eV), “B” denotes a range (E ≈ 7.23–7.33 eV) of almost uniaxial degeneracy of the singular
optical axes [in the (x,y) plane close to the x direction]; at “C” (E = 8.14 eV) and “D” (E = 8.37 eV) the material is triaxial, i.e., two of the
singular optical axes are exactly degenerate [in the (x,z) plane], causing one “normal” optical axis and a total of three distinguished directions.
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of the singular optical axes we now turn to the discussion
of a real material and some novel effects regarding singular
optical axes. For monoclinic gallia (β-Ga2O3; a unit cell is
depicted in Fig. 2 [12]) we evaluate the energy-dependent
complex dielectric tensor reported in [4]. We interpolate the
experimental data ε(E) linearly and work here with energy
steps of 0.01 eV. We focus on the singular optical axes
in the absorption regime which starts at about 4.7 eV. The
high-energy cutoff of the data is limited by the spectral range
of the ellipsometer used in [4].

The solution of Eq. (8) for β-Ga2O3 in the energy range of
4.75–8.50 eV can be found in Supplemental Material [13] and
is exemplarily shown for an energy of E = 6.20 eV in Fig. 3.
The angular positions of the singular optical axes are indicated
by white dots.

From the solution (displacement field) eigenvectors D1 or
D2 of (4) [at a given (φ,θ ) position] we construct the E
fields (E = R−1 ε−1 R D) and their Stokes vectors with the
components,

S1 = Ex E∗
x − Ey E∗

y , (20)

S2 = Ex E∗
y + Ey E∗

x , (21)

S3 = −ı (Ex E∗
y − Ey E∗

x ). (22)

In the following we use the normalized components, i.e.,
S2

1 + S2
2 + S2

3 = 1. S3 = ±1 indicates complete circular po-
larization which occurs for the singular optical axes and Voigt
waves. We note that the opposite points of the same singular
optical axis have of course the opposite sign of S3. The angular
dependency of S3 is depicted in Fig. 4 for β-Ga2O3 for an
energy of E = 6.20 eV whereas for the whole investigated
spectral range (E = 4.75–8.50 eV), the evolution of S3 can
be found in Supplemental Material [13]. The centers of the
circularly polarized regions are the singular optical axes whose
positions are indicated by white dots. The positions with
S3 = 0 (linear polarization) are indicated as thick black lines.

In Fig. 5 the spectral dependence of the angular position
of the singular optical axes of β-Ga2O3 is depicted in detail.
Figure 5(a) shows the position in the (φ,θ ) plane and Fig. 5(b)
in stereographic projection. Figures 5(c) and 5(d) depict the
spectral dependence of φ and θ alone.

In the transparency regime there are two optical axes;
They exhibit significant angular splitting into the four singular
optical axes at point “A” at about E = 4.78 eV.

Within the energy range E ≈ 7.23–7.33 eV marked as “B,”
the singular axes are almost (but not quite) oriented along
the [100] direction (at θ close to π/2 and with φ ≈ π and
φ ≈ 0), rendering the material “almost” uniaxial. However,
here the φ positions do not cross the φ = 0 or π symmetry line

FIG. 6. Energy dependence (within 4.5–8.5 eV in equidistant steps of 0.01 eV) of Stokes vectors [stereographic projection (S1,S2)] for (a)
the singular optical axis at E = 6.20 eV (indicated as “W” in Fig. 3, φ = 2.170042 . . ., θ = 1.754275 . . .), (b) for a direction close to “W”
(φ = 2.17, θ = 1.75), exhibiting “anticrossing” behavior compared to panel (a), (c) for a direction a little further away from “W” (φ = 2.13,
θ = 1.79), (d) for the direction where a singular optical axis exists for two different energies [E ≈ 5.02 eV and E ≈ 6.29 eV, intersection
“X” in Fig. 5(b)], running twice through (S1,S2) = (0,0), i.e., S3 = ±1, (e) for the direction of the other singular axis at E ≈ 5.02 eV (“X′”),
exhibiting only one S3 = ±1 point, (f) for φ = π/2, θ = π/2, i.e., the [010] orientation.
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FIG. 7. Energy dependence of the real (blue) and imaginary (red) parts of n2
1 and n2

2 (upper panels) and the Stokes vector components (S1,
black; S2, blue; and S3, red) (lower panels). (a) For the direction “W.” The energy position for which a singular axis exists for this direction is
indicted by a dashed line. (b) For the direction “X.” (c) For the [010] direction. The energy position for which “almost” a singular axis exists
for this direction (E = 6.59 eV, |S3| = 0.977) is indicted by a dashed-dotted line. (d) For the direction “C.” The energy position for which a
triaxial point and a normal optical axis exists for this direction is indicted by a dashed line.
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[related to the (x,z) mirror plane of the monoclinic structure].
At E = 7.29 eV (and at E = 6.52 eV and E = 7.50 eV), one
pair of singular axes is oriented exactly at θ = π/2, i.e., within
the (x,y) plane [Fig. 5(d)].

Remarkably at points “C” (E ≈ 8.14 eV) and “D” (E ≈
8.37 eV), one pair of the singular axes degenerates and lies
at φ = 0 (or π ) in the (x,z) symmetry plane. Thus at such
“triaxial” points, two singular axes remain and one “normal”
but absorptive optical axis (without chirality) exists.

The spectral dependence of the Stokes vectors is visualized
for certain directions in Fig. 6 in stereographic projection
(S1,S2). In Fig. 6(a) the Stokes vectors are shown for the
orientation “W” as labeled in Fig. 3 (φ = 2.170042 . . ., θ =
1.754275 . . .). For E = 6.20 eV, the two vectors intersect at
(S1,S2) = 0. For deviations from that orientation, the vectors
no longer intersect at the pole [Figs. 6(b) and 6(c)]. For the
orientation “W” the Stokes vector components are shown
in a different plot in Fig. 7(a) where also the two solutions
n2

1,2 = ε = ε′ + ı ε′′ are visualized. The singular axis is at that
energy where the real and imaginary parts of n2

1 and n2
2 are

equal. We note that there are other energies where the real or
imaginary parts of n2

1 and n2
2 are equal.

In Fig. 6(d) the Stokes vectors are shown for the orien-
tation “X” (φ = 2.246447 . . ., θ = 0.980297 . . .) for which a
singular axis exists for two different energies, E ≈ 5.02 eV
and E ≈ 6.29 eV; accordingly the Stokes vectors intersect
at S3 = 1 twice [see also Fig. 7(b)]. In Fig. 6(e) the Stokes
vector for the other orientation of the singular optical axis
at E = 5.02 eV is shown that of course displays a S3 = ±1
Stokes vector only once in the displayed energy range.

Finally in Fig. 6(f) the Stokes vectors are shown for the
[010] orientation (φ = π/2, θ = π/2). At E = 6.59 eV a
fairly large circularly polarized component (S3 = −0.977)
exists, but in the investigated spectral range there is no singular
axis oriented exactly in this direction. The according solutions
n2

1 and n2
2 and the Stokes vector components for the [010]

orientation are shown in Fig. 7(c).
For the orientation “C” (φ = 0, θ = 0.682068 . . .) the

solutions n2
1 and n2

2 and the Stokes vector components are
shown in Fig. 7(d). Since this point is within the (x,z) plane
the eigenpolarizations are always along x and y (S1 = ±1) and
S2 ≡ 0 and S3 ≡ 0 except for the energy of the triaxial point
when for the present “normal” optical axis the Stokes vector
is undefined.

IV. SUMMARY AND OUTLOOK

In summary we have categorized biaxial crystals with
regard to the degeneracy of the index of refraction of their four
singular optical axes in the absorption regime. Triclinic, mono-
clinic, and orthorhombic crystals have in general four, two, and
one different complex indices of refraction, respectively. Thus
the different crystal symmetries lead to distinguishable optical
properties. We note that the three crystal systems that lead to
optically uniaxial crystals (tetragonal, trigonal, and hexagonal)
cannot be distinguished optically. Analytical formulas have
been given for the complete angular positions of the singular
axes in the orthorhombic case, (φ,θ )(ε), and at least for their
azimuthal position in the monoclinic case, φ(ε).

The spectral dispersion of the singular optical axes in a
monoclinic material (β-Ga2O3) has been shown and accidental
degeneracies deliver an “almost” uniaxial crystal (all four
singular axes are very close) in a certain spectral range. At
two distinguished spectral positions the crystal is found to be
triaxial when two of the four singular axes are exactly de-
generate, creating the novel case of a “normal” but absorptive
optical axis and leaving two singular optical axes.

We think that the analysis scheme presented here will be
useful to model, predict, and properly analyze in detail the
optical properties of biaxial materials in photonic devices
operating in the absorption and gain regime.
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APPENDIX: SINGULAR AXIS AS A GENERAL PROPERTY
OF BIAXIAL MATERIALS

In the following section we show that the presence of
the singular axis is a general property of absorbing biaxial
materials. As mentioned in Sec. II the orientation of the
singular optical axes can be found by finding the roots of
Eq. (7). This equation can be simplified to

ε̃xx − ε̃yy + ε̃2
yz − ε̃2

xz

ε̃zz

= ±2i

(
ε̃xy − ε̃xzε̃yz

ε̃zz

)
. (A1)

In the following we restrict ourselves to materials with a
monoclinic and orthorhombic crystal structure and we define
α and β as the azimuthal and polar angle with respect to the y

axis. The orientation of the (singular) optical axis is then given
by (cos β cos α, sin α, sin β cos α)T . In doing so, Eq. (A1) can
be written as

a2 cos2 β + a1 sin 2β + a0 = 0, (A2)

with

a0 = ε2
xz(1 − cos2 α) + εzz(εxx − εyy) cos2 α

− 2μεxzεyy + εxx(εyy − εzz) cos α, (A3a)

a1 = εxzεyy(1 + cos2 α)

+μεyy(εxx − εzz) cos α, (A3b)

a2 = εyy(εzz − εxx)(1 + cos2 α)

+ 4μεxz cos α. (A3c)

μ = ±1 representing the sign of Eq. (A1). Equation (A2) has
to be fulfilled for the real and imaginary part, leading to(

cos2 β

sin 2β

)
= −

(
a2,r a1,r

a2,i a1,i

)
︸ ︷︷ ︸

=M

−1(
a0,r

a0,i

)
. (A4)
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The index “r” and “i” denotes the real and imaginary part of the
coefficient ai . The right-hand side depends only on α whereas
the left one only on β. We note that Eq. (A4) is only valid in the
presence of absorption since for lossless material the inversion
of M does not exist. This case has to be treated separately.

It is obvious that sin 2β and cos2 β are not independent
from each other and are connected with each other by

sin2 2β − 4 cos2 β(1 − cos2 β) = 0. (A5)

If we insert Eq. (A4) into Eq. (A5) we obtain

g(z) = (a1,ra0,i − a0,ra1,i)2 + 4(a2,ia0,r − a2,ra0,i − det M)(a2,ia0,r − a2,ra0,i)

(det M)2
= 0, (A6)

with z = cos α, which depends only on the azimuthal an-
gle α. A further inspection of g(z) yields the following
properties:

(1) The numerator and denominator are symmetric poly-
noms in z of degree 8.

(2) It is sufficient to consider only the case μ = 1,
since the case μ = −1 results in the same polynomial
with zμ=−1 = −zμ=1. Thus, the positive (negative) solutions
of g(z) = 0 corresponds to the positive (negative) sign of
Eq. (A1).

(3) g(z) = −1 for z = ±1.
(4) There exists a singularity for z within the range (−1,1)

such that g(z) = ∞.

From the third and the fourth point it is obvious that g(z)
has two real-valued roots in the range [−1,1] representing
the two azimuthal angles of the singular optical axis. The
corresponding polar angle β is then given by Eq. (A4) which
gives two solutions for each polar angle and thus four singular
optical axes. For an orthorhombic crystal structure, g(z) =
g(−z) and g(0) = ∞ holds. Thus all four singular optical axes
have the same polar angle and therefore are within the same
plane in this case.

We note that for these considerations a nonzero imaginary
of at least one component of the dielectric function is required
only. Thus the singular optical axis can be found in all
absorbing biaxial materials.
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[2] M. Berek, Die singulären optischen Richtungen
(Windungsachsen) in beliebig stark absorbierenden
Kristallen rhombischer Symmetrie, Z. Kristallogr. 80, 18
(1931).

[3] M. V. Berry and M. R. Dennis, The optical singularities of
birefringent dichroic chiral crystals, Proc. R. Soc. London A
459, 1261 (2003).

[4] C. Sturm, J. Furthmüller, F. Bechstedt, R. Schmidt-Grund, and
M. Grundmann, Dielectric tensor of monoclinic Ga2O3 single
crystals in the spectral range 0.5–8.5 eV, APL Mater 3, 106106
(2015).

[5] Computer code MATHEMATICA, Version 10.0.2, Wolfram Re-
search, Champaign, IL, 2014.

[6] P. Yeh, Electromagnetic propagation in birefringent layered
media, J. Opt. Soc. Am. 69, 742 (1979).

[7] A. G. Emslie and J. R. Aronson, Determination of the complex
dielectric tensor of triclinic crystals: theory, J. Opt. Soc. Am.
73, 916 (1983).

[8] T. G. Mackay and A. Lakhtakia, Voigt wave propagation in
biaxial composite materials, J. Opt. A: Pure Appl. Opt. 5, 91
(2003).

[9] J. Gerardin and A. Lakhtakia, Conditions for Voigt wave
propagation in linear, homogeneous, dielectric mediums, Optik
112, 493 (2001).

[10] W. D. Heiss and H. L. Harney, The chirality of exceptional
points, Eur. Phys. J. D 17, 149 (2001).

[11] It can be shown numerically that the real part of φ of the solution
of Eq. (10) is independent on θ . The most compact expression
for φ is obtained by choosing θ = π/2.

[12] K. Momma and F. Izumi, VESTA 3 for three-dimensional
visualization of crystal, volumetric and morphology data,
J. Appl. Crystallogr. 44, 1272 (2011).

[13] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.93.053839 for the spectral and angular
dependency of the function |�| [Eq. (8)] and the Stokes vector
component S3.

[14] J. A. Kohn, G. Katz, and J. D. Broder, Characterization of β −
Ga2O3 and its alumina isomorph, θ − Al2O3, Am. Mineral. 42,
398 (1957).

053839-8

http://dx.doi.org/10.1002/andp.19023141006
http://dx.doi.org/10.1002/andp.19023141006
http://dx.doi.org/10.1002/andp.19023141006
http://dx.doi.org/10.1002/andp.19023141006
http://dx.doi.org/10.1524/zkri.1931.80.1.18
http://dx.doi.org/10.1524/zkri.1931.80.1.18
http://dx.doi.org/10.1524/zkri.1931.80.1.18
http://dx.doi.org/10.1524/zkri.1931.80.1.18
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1098/rspa.2003.1155
http://dx.doi.org/10.1063/1.4934705
http://dx.doi.org/10.1063/1.4934705
http://dx.doi.org/10.1063/1.4934705
http://dx.doi.org/10.1063/1.4934705
http://dx.doi.org/10.1364/JOSA.69.000742
http://dx.doi.org/10.1364/JOSA.69.000742
http://dx.doi.org/10.1364/JOSA.69.000742
http://dx.doi.org/10.1364/JOSA.69.000742
http://dx.doi.org/10.1364/JOSA.73.000916
http://dx.doi.org/10.1364/JOSA.73.000916
http://dx.doi.org/10.1364/JOSA.73.000916
http://dx.doi.org/10.1364/JOSA.73.000916
http://dx.doi.org/10.1088/1464-4258/5/2/303
http://dx.doi.org/10.1088/1464-4258/5/2/303
http://dx.doi.org/10.1088/1464-4258/5/2/303
http://dx.doi.org/10.1088/1464-4258/5/2/303
http://dx.doi.org/10.1078/0030-4026-00070
http://dx.doi.org/10.1078/0030-4026-00070
http://dx.doi.org/10.1078/0030-4026-00070
http://dx.doi.org/10.1078/0030-4026-00070
http://dx.doi.org/10.1007/s100530170017
http://dx.doi.org/10.1007/s100530170017
http://dx.doi.org/10.1007/s100530170017
http://dx.doi.org/10.1007/s100530170017
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/10.1107/S0021889811038970
http://link.aps.org/supplemental/10.1103/PhysRevA.93.053839



