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Enhancement of squeezing in resonance fluorescence of a driven quantum
dot close to a graphene sheet
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We investigate squeezing of the resonance fluorescence of a laser-driven quantum dot (QD) close to a graphene
sheet. The coupling between the QD and the surface plasmon around the graphene sheet is frequency dependent
in the terahertz region, which can be adjusted by the laser intensity. Distinct decay rates in different transition
channels of dressed QDs can be achieved due to the tailored photon reservoir, which can be used to improve the
squeezing. It is found that increases in both the dephasing rate and the environmental temperature are harmful
to the squeezing. Meanwhile, an enhancement in the QD-plasmon coupling strength may reduce the fragility of
squeezing against the decoherence process. Additionally, in the strong light-matter coupling region, squeezing
can be largely enhanced by tuning the strength of the pump field and its detuning from the QD.
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I. INTRODUCTION

Graphene is a thin layer of carbon atoms bonded in a
hexagonal structure and arranged in a honeycomb crystal
lattice [1,2]. Due to its peculiar optical properties, it has
been extensively investigated both theoretically and exper-
imentally [3–9]. It has been reported that graphene can
support different kinds of surface waves in the terahertz (THz)
region [10], which can be attributed to the collective excitations
of electrons around the surface. The surface wave often
possesses an extremely high local density of states (LDOS),
restricted near the graphene’s surface and termed the surface
plasma field (SPF) [11–15]. In the THz region, the conductivity
of graphene can be described as Kubo formations [16]. In more
detail, the optical property of graphene is often connected to
intraband and interband interactions [17–22], which dominate
the real part and the imaginary part of the conductivity in
the low-temperature limit, respectively. Unlike normal two-
dimensional materials, graphene possesses a tunable conduc-
tivity, which can be affected by controlling the environmental
temperature or the ac electric field added to it or by applying
different chemical doping methods [23–27]. The tunability of
the conductivity originates from the high mobility of the carrier
concentration [28,29]. It has been reported that the Fermi en-
ergy of graphene will suffer a change when a static electric field
is added [27,30]. That is, the conducting channels of electron-
hole gases will shift, which causes a different optical response
of the graphene sheet to an incident light beam [31,32]. This
tunable property, together with its low loss and the easily
achieved experimental conditions, ensures that graphene can
significantly modify the electromagnetical property around it.

It is known that the power spectrum of a coherent driven
two-level quantum emitter can exhibit a splitting Mollow
triplet [33] because the inelastic scattering originates from the
strong coupling between the driving field and the emitter [34].
In 1981, Zoller et al. proposed that the quantum fluctuations
of the radiation field produced by the laser-driven qubit can
be squeezed below the quantum vacuum limit [35]. Potential
applications of the squeezing field in various areas have
been investigated, such as gravitational wave detection [36],
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quantum teleportation [37], and quantum computing [38].
Recently, the observation of squeezing in resonance fluores-
cence has been realized by the use of a large dipole artificial
atom [39]. Also, the atom’s ensembles [40–42] are designed
to easily obtain single-mode and multimode squeezed light.
Agio et al. [43] studied the radiation spectrum of a single
quantum emitter placed adjacent to a gold nanosphere. Owing
to the strong scattering effect of the nanostructure, even
in the far-field region, the squeezing intensity can show a
prominent enhancement. Additionally, the strong coupling
between the emitter and the SPF on the golden ball weakens the
destructive influence of the dephasing process on squeezing,
thus squeezing can be easily obtained. It has been shown
that when the coherence of the emitter is perfectly under
control, optimal squeezing of resonance fluorescence can be
achieved [44,45]. Large squeezing in the spectrum can be
expected when one transition channel of the dressed QD
is deeply suppressed while the other transition channel is
enhanced [46]. For a quantum system consisting of a QD
and a graphene sheet, it is feasible to modulate the coupling
between the emitter and the SPF by changing the Fermi energy
of graphene, which is easy to realize experimentally [8,27,30].

In this paper, we investigate the radiation properties of a
laser-driven QD situated near a graphene sheet. We present a
detailed treatment of the influence of graphene’s Fermi energy,
the dephasing process of the QD, the Rabi frequency, and the
coupling of the driven QD with the SPF on squeezing. By use
of the Green function of the electromagnetic field around the
graphene sheet, the Purcell factor is studied to illustrate the
interaction between the quantum system and graphene. After
diagnolizing the laser-dot interaction, the master equation
and the corresponding Bloch equations are derived in the
dressed-state basis. Aside from numerical calculations, the
approximated analytical expression of the spectrum is also
given. It is shown that the conditions for achieving squeezing
can be largely relaxed when the QD couples strongly with
the SPF around the graphene. However, it is easy to generate
squeezing with a lower temperature and weaker decoherence
process in the strong QD-SPF coupling region. When the QD
interacts strongly with the SPF, squeezing can be enhanced
by choosing the relevant parameters of the pump field or
adjusting the Fermi energy of graphene.
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The paper is organized as follows. In Sec. II we introduce
the model and derive the Green function in the upper half-
space, then the Purcell factor is studied and the explicit
form of the master equation for a dressed QD is acquired.
Section III presents the noise spectra versus the dephasing
rates, QD-graphene distances, and environmental tempera-
tures. In Sec. IV the influence of the Fermi energy on
squeezing is studied. Also, the decay rates of dressed QDs
through different transition channels are plotted to express
the importance of an unbalanced transition process in the
generation of squeezed light. Finally, a summary is given in
Sec. V.

II. COUPLING BETWEEN QUANTUM DOT AND
RESERVOIR

The system under consideration consists of a two-level
QD with ground state |g〉 and excited state |e〉, driven by
a monochromatic laser field and coupled to a suspended
graphene sheet, as shown in Fig. 1. The graphene sheet is
placed in the x-y plane and the QD is distance d from it,
with coordinate rd = (0,0,z0). The excitation frequency of the
QD is denoted ω0 and located in the terahertz region [47–49];
here we take ω0 = 125 meV. The dipole moment (p = 50 D)
of the QD is modeled in the point dipole approximation and
vertical to the graphene sheet, where the polarization of the
pump laser is aligned with the dipole moment and has the
central frequency ωl . Then the Hamiltonian of the system can
be given as

H =
∫

d3r
∫

�ωf̂†(r,ω)f̂(r,ω)dω + ��

2
(σ̂+e−iωl t + H.c.

+ �ω0

2
σ̂z −

[
σ̂+

∫
p · Ê(+)(rd ,ω)dω + H.c.

]
. (1)

FIG. 1. Geometry of the system. The z axis is taken normal to the
graphene sheet with its origin located on the surface, and the QD is
situated in the upper space at a distance d above the graphene, with a
z-polarized dipole and excitation frequency ω0, which corresponds to
the transition between the excited state |e〉 and the ground state |g〉.
A classical laser beam, whose polarization is assumed to be parallel
to the dipole momentum of the QD, has central frequency ωl and acts
as the pump field.

The QD is described by the Pauli operators σ̂− and σ̂+ that
satisfy the commutation relation [σ̂−,σ̂+] = −σ̂z. The basic
bosonic operators f̂†(r,ω) and f̂(r,ω) represent the creation and
annihilation of a polariton in the reservoir [50] and have the
commutation relation [f̂(r,ω),f̂†(r′,ω′)] = δ(r − r′)δ(ω − ω′).
The parameter � is the Rabi frequency of the driven system,
which also denotes the interaction strength between the QD
and the pump field. The vector rd indicates the location of the
QD, while the electric-field operator Ê(+)(rd ,ω) mediates the
field at the same spacial point under the dipole approximation
and has the form [51]

Ê(+)(rd ,ω) =i
ω2

c2

∫
dr

√
Im[ε(r,ω)]�

πε0

↔
G (rd ,r,ω) · f̂(r,ω).

(2)

The permittivity of graphene is denoted ε(r,ω) and Im[ε(r,ω)]
represents its imaginary part. The propagating Green function
↔
G (rd ,r,ω) of the field is introduced to illustrate the elec-
tromagnetic response at rd due to an excitation at r and

satisfies the equation [∇ × μ−1(r,ω)∇ × −ω2/c2ε(r,ω)]
↔
G

(r,r′,ω) =↔
I δ(r − r′). In this expression,

↔
I is unit dyadic

and δ(r − r′) depicts a point source at position r′ [52]. After
applying the plane-wave expansion method and taking the
boundary conditions into account, the Green function can be
explicitly written as [53]

↔
G (r,r′,ω) = i

4π

∫
d2k

μ0

β0

∑
q=p,s

ζq

[
rq
v→ge+

q e−
q eiβ0(z+z′)

+ e−
q e−

q e−iβ0(z−z′)
(z′ − z)

+ e+
q e+

q eiβ0(z−z′)
(z − z′)
]
eik·(ρ−ρ ′). (3)

Here k and β0 are the parallel and vertical components of
the wave vector; the index 0 is used to denote the physical
quantities in a vacuum. The orthonormal polarization vec-
tors e±

p = (∓β0k + kz)/k0 and e±
s = k × z indicate different

propagating directions of the electromagnetic waves in the
upper space. 
(z) is the unit step function, ζp = 1, ζs = −1,
and r

q
v→g is the reflection coefficient of the vacuum-graphene

interface. In our case the dipole moment of the QD is
perpendicular to the graphene sheet, which indicates that only
a TM (p) polarized wave can be excited. Thus q can be
simply replaced with p in the Green function. The reflection
coefficient of the interface can be derived by following the
Fresnel reflection theory and appears to be

rv→g = σ (ω,μ,T )β0

σ (ω,μ,T )β0 − 2ωε0
. (4)

The optical response of structures made of graphene has
been investigated widely, and it is known that a graphene sheet
can be represented by an infinitesimally thin, two-sided surface
characterized by the surface conductivity σ (ω,μ,T ) [54,55].
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The detailed formation can be derived through the Kubo
theory [16],

σ (ω,μf ,T ) = ie2kBT

π�2(ω + iγa)

[
μf

kBT
+ 2 ln(e−μf /kBT + 1)

]

+ ie2(ω + iγb)

4π

∫ ∞

0

df (η) − df (−η)

η2 − �2(ω + iγb)2/4
dη,

(5)

where e is the charge of the electron, kB is the Boltzmann
constant, T is the environmental temperature, and df (η) =
1/(e(η−μf )/kBT + 1) is the Femi-Dirac distribution function.
The Fermi energy of the graphene is denoted μf and can be
modulated by changing the bias voltage. The first and second
terms in the conductivity are due to the intraband and interband
contributions, respectively. Coefficients γa and γb are the
scattering rates due to intraband and interband transitions,
which often relate to the impurities of graphene. Practically,
the scatter through the interband only broadens the transition
width and does not affect the main physics [27,56]; thus we
take γb equal to 0 for convenience. It has been proven that when
a photon’s energy is low, interband transitions are blocked
due to the existence of electrons and holes near the band
edges [18,21]. In the meantime, intraband transitions exhibit
Drude-like behavior and make a dominant contribution in the
transmission of the SPF [57]. Experimentally, measured values
of the intraband scattering time range from femoseconds
to several picoseconds [20,58,59]; in this paper we use
γa = 1 ps−1 and γa = 3.3 ps−1 for the zero-temperature and
room-temperature cases, respectively.

It is known that in free space, the density of states of the
electromagnetic field is proportional to the imaginary part of
the Green function [60]. The free-space Green function can be
acquired by eliminating the boundary conditions in Eq. (3) and
its imaginary part turns out to be ImG0zz(rd ,rd ,ω) = ω/6πc.
The Purcell factor is the usual measurement to judge the
enhancement of the dipole decay rates (or the LDOS of the
electromagnetic field) due to the different electromagnetic
response resulting from the appearance of materials. Its value is
determined by the ratio of the material-induced emission rate to
the free-space decay rate [61,62], and here we use R to denote
it. As mentioned above, graphene can support the SPF in the
THz region. In Fig. 2 we plot the Purcell factor (R) for different
Fermi energies and environmental temperatures. It is shown
that for μf = 90 meV, the coupling strength between the QD
and the SPF approximately exhibits a Lorentzian-like shape,
whereas in the zero-temperature case the curve has a higher
peak and narrower half-width. In the inset, the case μf = 120
meV is studied for comparison. Obviously for a higher Fermi
energy, the resonant frequency of the SPF suffers a blue shift
and the maximum value of the Purcell factor decreases. Upon
comparing the results in Figs. 2(a) and 2(b), it is clear that
when the QD is closer to the graphene sheet, the increase in
the LDOS is more prominent. On the contrary, the Purcell
factor tends to be distributed averagely in the frequency for
a large QD-graphene distance. The different behaviors of the
Purcell factor reflect the fact that, owing to the high locality
of the SPF, a small QD-graphene distance will result in strong
light-matter coupling. Additionally, it can be predicted that
for a quantum system with a fixed transition frequency, one
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FIG. 2. The Purcell factor vs the frequency. The case μf = 90
meV at different environmental temperatures, T = 0 K (solid blue
line) and T = 300 K (dashed red line), is considered. Inset: The
case μf = 120 meV, at environmental temperatures of T = 0 K
(solid green line) and T = 300 K (dashed pink line), is considered
in comparison to the former case. Locations of peaks are shown
by arrows, and different QD-graphene distances are investigated:
(a) d = 20 nm; (b) d = 10 nm.

can modulate the decay process by building a strong coupling
between the QD and the SPF, which is important in producing
squeezing and is discussed in Sec. IV.

Note that the dispersion relation for an SPF propagating
along the graphene sheet can be solved by finding the pole(s)
of the reflection coefficient rv→g in Eq. (3) [63,64], and the
scattered Green function can be written by the combination
of two parts: the discrete SPF modes plus the integral over
the continuum of radiation modes that is located in the proper
branch cut. Additionally, it has been pointed out that loss of
material may dominate the decay process when the emitter
is close to the graphene sheet [6]. Thus before proceeding
to study the radiation properties of the system, we first
investigate the Purcell factor versus the QD’s position to check
the validity of the parameters chosen, which is illustrated in
Fig. 3. As depicted in the figure, for the working frequency
of the QD, ω0 = 125 meV (the relevant vacuum wavelength
is λ0 = 10 μm), and the Fermi energy of graphene, μf = 90
meV, the SPF dominates the QD decay when the QD is placed
at a distance of about 10−3λ0 (several nanometers to tens
of nanometers) above the graphene sheet. The case where
μf = 120 meV is also plotted for comparison. It is shown that
the SPF still makes a dominant contribution in the same region;
only a subtle decrease in the Purcell factor can be observed.
The circumstances are similar at room temperature, thus for
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FIG. 3. The Purcell factor vs the QD’s position. The case where
μf = 90 meV and T = 0 K at the QD’s excitation frequency is
investigated, both the enhancement of the total decay rate (solid blue
line) and the decay through SPF (dashed red line) are plotted. Inset:
The case where μf = 120 meV at the same temperature.

the QD-graphene distance we choose (d = 10 and 20 nm); the
QD couples strongly with the SPF modes.

We now proceed to deduce the master equation of the
dressed QD. In a frame rotating at the laser’s frequency ωl ,
the Hamiltonian of the system takes the form

H = HDS + HI , (6)

HDS = 1

2
[��σ̂z + ��(σ̂+ + σ̂−)], (7)

HI = −
[
σ̂+

∫
p · Ê(+)(rd ,ω)ei(ωl−ω)t dω + H.c.

]
, (8)

where � = ω0 − ωl is the detuning of the QD excitation
frequency from the driving-field frequency, HDS is the Hamil-
tonian of driven system, and HI describes the interaction
between the QD and the reservoir. Then second-order pertur-
bation theory is applied by tracing over the reservoir degrees
of freedom through [65]

∂ρ̃

∂t
= − 1

h2

∫ t

0
TrR{[H̃I (t),[H̃I (t − τ ),ρ̃(t − τ )]]}dτ. (9)

Under the Born-Markovian approximation, the operator
ρ̃(t − τ ) can be replaced with ρ̃(t) ⊗ ρ̃R(0), where ρ̃(t) is
the reduced density operator for the dressed QD, ρ̃R(0)
is the initial reservoir operator, and TrR denotes trac-
ing over the reservoir variables. The bath is described
by TrR[f̂(r,ω)f̂†(r′,ω′)] = [n̄(ω) + 1]δ(r − r′)δ(ω − ω′) and
TrR[f̂†(r,ω)f̂(r′,ω′)] = n̄(ω)δ(r − r′)δ(ω − ω′), where n̄(ω) =
1/(e�ω/kBT − 1) represents the average excitation number of
the reservoir. After straightforward calculation, the master
equation for the reduced density operator of the driven QD
proves to be

dρ

dt
= 1

i�
[HDS,ρ] +

∫ ∞

0
dωγ n̄+1(rd ,ω)

∫ t

0
dτ {e−i(ω−ωl )τ

× [σ̂−(−τ )ρσ̂+ − σ̂+σ̂−(−τ )ρ] + H.c.}

+
∫ ∞

0
dωγ n̄(rd ,ω)

∫ t

0
dτ {ei(ω−ωl )τ [σ̂+(−τ )ρσ̂−

− σ̂−σ̂+(−τ )ρ] + H.c.} + Lp. (10)

In the above equation the first term interprets the coherent evo-
lution of the driven QD, whereas the remaining terms represent
the reservoir-induced decay processes. It should be pointed
out that the damping coefficients, denoted γ n̄+1(rd ,ω) =
[n̄(ω) + 1]p · Im

↔
G (rd ,rd ,ω) · pω2/c2π�ε0 and γ n̄(rd ,ω) =

n̄(ω)p · Im
↔
G (rd ,rd ,ω) · pω2/c2π�ε0, represent the reservoir-

assisted decay rates of the QD. Since we focus on the THz
operation, in the far-infrared frequency region (0.3–6 THz)
the thermal average excitation number may be large at a
nonzero environmental temperature, thus we do not neglect the
contribution of n̄(ω) as usually done. Practically, the dephasing
process has been simply taken into account by introducing
the damping termLp = γ0(2σ̂eeρσ̂ee − σ̂eeσ̂eeρ − ρσ̂eeσ̂ee)/2,
where γ0 is the dephasing rate of the QD [48,66]. The
time-dependent QD operators can be expressed as σ̂±(τ ) =
α2σ̃±e±i�̄τ − β2σ̃∓e∓i�̄τ + αβσ̃z, where �̄ = √

�2 + �2 is
the energy difference between the upper dressed state |+〉 =
α|g〉 + β|e〉 and the lower dressed state |−〉 = β|g〉 + α|e〉,
with α =

√
(1 + �/�̄)/2 and β =

√
(1 − �/�̄)/2. In the

dressed-state basis |±〉, the Pauli operators are defined as

σ̃+ = |+〉〈−|,σ̃− = |−〉〈+|, (11)

σ̃z = |+〉〈+| − |−〉〈−| = σ̃++ − σ̃−−. (12)

III. SQUEEZING SPECTRUM OF RESONANCE
FLUORESCENCE RADIATED BY A DRIVEN

QUANTUM DOT

The in-phase quadrature of a normally ordered noise
spectrum emitted by a driven QD can be expressed in terms
of two-time correlations of the QD operators, which have the
form [67]

Sx(ω) =Re
∫ ∞

0
dτ cos(�ωτ ) lim

t→∞[〈σ+(t + τ ),σ−(t)〉

+ 〈σ−(t + τ ),σ−(t)〉]. (13)

The squeezing spectrum of resonance fluorescence takes
place only when Sx(ω) is negative. In Fig. 4 we study the
spectrum of the driven system at zero temperature for different
dephasing rates, QD-laser detunings, and QD-graphene dis-
tances. The Fermi energy of graphene and the Rabi frequency
are taken to be 90 and 20 meV, respectively. It is shown that
when the QD is placed 20 nm above the graphene sheet and the
detuning is 25 meV, squeezing of the spectrum only occurs for
the lower dephasing rate, which is depicted by the solid purple
line in Fig. 4(a). Figure 4(b) displays the stronger coupling
case where the QD-graphene distance decreases to 10 nm;
apparently, squeezing can be produced even for an extremely
high dephasing rate (γ0 = 0.1 meV). However, the dephasing
process has a destructive effect on squeezing (dashed green
line). For smaller QD-graphene distances, the increase in the
coupling strength between the QD and the SPF leads to an
enhancement of squeezing, which is directly shown by the
discrepancy in the amplitudes between the sidebands and the
central peak.

The physics associated with the coherent driven transition
system can be clearly explored by working in the dressed-state
basis [68]. Moreover, when the pump field is strong enough
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FIG. 4. Noise spectrum of the fluorescence field for μf = 90
meV, � = 20 meV, T = 0 K, and (a) d = 20 nm and � = 25 meV
or (b) d = 10 nm and � = 20 meV. The solid purple line represents
the weaker-dephasing-rate case (γ0 = 5 μeV) and the dashed green
line represents the stronger-dephasing case (γ0 = 0.1 meV).

(�̄ � γ n̄+1,γ0), the secular approximation is valid. Then the
simplified Bloch equations appear to be

〈 ˙̃σ+〉 = (i�̄ − �p)〈σ̃+〉, (14)

〈 ˙̃σ−〉 = −(i�̄ + �p)〈σ̃−〉, (15)

〈 ˙̃σz〉 = −�i〈σ̃z〉 + �′. (16)

Here �i and �p represent the decay rates of population
inversion and polarization in the dressed state. The relations
�i = �− + �+ and �′ = �− − �+ have been used in the
derivation of the above equations, where �+ represents the
transition rate from the upper dressed state |+〉 to the lower
dressed state |−〉 and �− denotes the transition rate from |−〉 to
|+〉. Through the definitions ω+

l = ωl + �̄ and ω−
l = ωl − �̄,

detailed expressions of the decay rates have the following
forms:

�+ =2πα4γ n̄+1(ω+
l ) + 2πβ4γ n̄(ω−

l ) + α2β2γ0, (17)

�− =2πβ4γ n̄+1(ω−
l ) + 2πα4γ n̄(ω+

l ) + α2β2γ0, (18)

�p =πα4[γ n̄+1(ω+
l ) + γ n̄(ω+

l )] + πβ4[γ n̄+1(ω−
l )

+ γ n̄(ω−
l )] + 4πα2β2[γ n̄+1(ωl) + γ n̄(ωl)]

+ (α4 + β4)γ0/2. (19)

Starting from Eqs. (14)–(16), the analytical form of the
noise spectrum, which can be derived by means of the quantum

regression theory [69], turns out to be

Sx(ω) = �p

4�̄

[
�2

�̄
+ (〈σ̃++〉ss − 〈σ̃−−〉ss)�

]

×
[

1

�2
p + (δω + �̄)2

+ 1

�2
p + (δω − �̄)2

]

+
(

�

�̄

)2 2�i〈σ̃−−〉ss〈σ̃++〉ss
�2

i + δω2
, (20)

where 〈σ̃++〉ss and 〈σ̃−−〉ss represent the stationary population
distribution of the upper and lower dressed states, with the
detailed forms 〈σ̃−−〉ss = �+/�i and 〈σ̃++〉ss = �−/�i , and
〈σ̃z〉ss = 〈σ̃++〉ss − 〈σ̃−−〉ss = �′/�i represents the popula-
tion difference between the two dressed levels. Apparently,
the appearance of squeezing requires a stationary imbalanced
distribution between two dressed states |±〉. Through Eq. (20)
it is clear that the condition for squeezing lies at 〈σ̃z〉ss <

−�/�̄ for positive QD detuning or 〈σ̃z〉ss > −�/�̄ for
negative detuning. Thus according to the solution of the
population difference 〈σ̃z〉ss , it can be concluded that the
imbalanced transition process is the prominent factor in the
generation of squeezing. Morever, aside from the coupling
between the QD and the SPF, squeezing can also be modified
by tuning the pump laser.

In Fig. 5, we investigate the population difference of
the driven system for the same parameters used in Fig. 4.
Figure 5(a) displays the population difference versus the QD
detunings for d = 20 nm. It is shown that when the pump
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FIG. 5. Population difference 〈σ̃z〉 vs detuning for μf = 90
meV, � = 20 meV, T = 0 K, and (a) d = 20 nm or (b) d = 10
nm. Different dephasing rates, γ0 = 5 μeV (solid purple line) and
γ0 = 0.1 meV (solid green line), are considered; the dashed black
line denotes the values of −�/�̄.
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frequency is higher than the QD’s excitation frequency, i.e.,
the detuning is negative, squeezing can be generated at both
dephasing rates. The physics can be understood with the
help of Fig. 2 and the analytical solution of the spectrum.
Obviously the Purcell factor at frequency ωl + �̄ is much
smaller than the value at frequency ωl − �̄, which results in
a high decay rate γ n̄+1(ω−

l ).That is, the transition from |+〉
to |−〉 is enhanced, while the other channel, from |−〉 to |+〉,
is suppressed. As a result, the population difference has been
increased. The circumstance is different when the detuning is
positive. In this case, the LDOSs near the frequencies related to
both transition channels, |+〉 → |−〉 and |−〉 → |+〉, are low.
Therefore, the corresponding reservoir-assisted decay rates
are suppressed and the total decay rates become sensitive to
the dephasing process. As the figure depicts, the population
difference for a high dephasing rate is not huge enough to
produce squeezing, while the relevant spectrum is displayed by
the dashed green line in Fig. 4(a). When the dephasing process
is weak, squeezing can be generated by reasonably tuning the
frequency of the pump field. As the solid purple line indicates,
the population difference is huge enough to produce squeezing
when the detuning is larger than 20 meV. Thus for � = 25 meV
and γ0 = 5 μeV, squeezing of the resonance fluorescence can
be observed, as shown in Fig. 4(a). Figure 5(b) depicts the case
where d = 10 nm. Obviously the population difference shows
a prominent increase, and squeezing can be easily generated
in the strong-coupling region. The physics can be followed by
combining the results in Fig. 2. As it depicts, the Purcell factor
has a higher peak when the QD is closer to the graphene
sheet, and the imbalance of decay rates originates from
different transition channels becoming larger. It is obvious that
when the detuning is � = 20 meV, the population differences
for both dephasing rates are sufficiently large to generate
squeezing, and the corresponding spectrum is shown in
Fig. 4(b).

To summarize, it is shown that the generation of squeezing
depends on the dephasing rate, the detuning, and the distance
between the QD and the graphene sheet. The dephasing rate
has a distinct influence on squeezing since it is relevant to the
decay between two dressed levels, which can be illustrated
by Eqs. (17) and (18). When the dephasing process is much
weaker compared to the coupling strength between QD and
SPF, i.e., γ n̄+1(ω±

l ) � γ0, its influence can be neglected.
Otherwise, if the dephasing process is comparable to the
coupling strength, squeezing would strongly depend on the
value of the dephasing rate. For example, when the dephasing
process is strong enough that the QD-graphene coupling can be
neglected, it is obvious that different transition channels decay
at the same rate �+ ≈ �−. Thus the population would tend to
have a balanced distribution in the upper and lower dressed
states, and no squeezing could be produced. Practically, to
generate squeezed light for a high dephasing rate, enhancing
the coupling strength is an efficient method. As Fig. 5(b)
displays, the population difference is greatly increased in the
case where d = 10 nm, indicating that an enhancement in the
QD-graphene coupling could overcome the destructive effect
caused by the dephasing process. Moreover, since the LDOS
is much higher around the resonant frequency of the SPF, one
could modulate the transition rates of different decay channels
by tuning the pump field. When the decay channel corresponds
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FIG. 6. Noise spectrum of the driven system for μf = 90 meV,
� = 20 meV, d = 10 nm, and (a) γ0 = 5 μeV and � = 25 meV or (b)
γ0 = 0.1 meV and � = −15 meV. The solid blue line and the dashed
red line are used to highlight different environmental temperatures:
the former represents zero temperature; the latter, room temperature.

to the transition frequency ωl ± �̄ is enhanced, while the other
channel is deeply suppressed, and squeezing can be obtained.

In Fig. 6 we investigate the influence of the environmental
temperature on squeezing. The Fermi energy and Rabi fre-
quency are taken to be 90 and 20 meV, respectively. Figure 6(a)
displays the spectrum for the case where the dephasing rate is
γ0 = 5 μeV and the QD detuning is 25 meV. It is obvious that
squeezing at room temperature (dashed red line) is stronger
than that at zero temperature (solid blue line). The relative
illustrations are given below. First, for the parameters that we
choose, the population differences 〈σ̃z〉ss at both temperatures
are close to each other and approximately take the minimum
value −1. Then the main factor that influences the strength
of squeezing lies in the strength of the reservoir-assisted
decay process, which is proportioned to the LDOS around
the graphene’s surface. It is clear through Eq. (20) that
an increase in the decay rate will cause a decrease in the
squeezing amplitude, with the other parameters remaining
unchanged. Thus for such special circumstances, owing to
the destructive effect of an increase in the environmental
temperature on the QD-graphene coupling, squeezing at room
temperature will be stronger. Figure 6(b) displays the case
for γ0 = 0.1 meV and � = −15 meV. It is clearly shown
that as a response to the increase in the dephasing rate,
the central peak of the resonance fluorescence increases,
while the sidebands suffer a decrease, indicating that the
squeezing becomes weaker. Differently from the former case,
the imbalance in the population distribution is more prominent
for zero environmental temperature, thus strong squeezing can
be generated.
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IV. TOTAL NORMAL-ORDER VARIANCES OF THE
FLUORESCENCE FIELD

Measurement of the quadrature squeezing spectrum re-
quires the emitted field to be first frequency filtered and
then homodyned with a strong local oscillator field [70].
Practically, squeezing can also be detected in terms of the
total normal-ordered variances of the phase quadratures in
an alternative experimental scheme, where the total radiation
field and the local oscillator are directly homodyned without
first frequency filtering [71]. In the following we focus on
the quadrature fluctuation of the radiation field, which can be
derived by integrating the noise spectrum over all frequencies,
yielding [72]

〈: (�Es)
2 :〉 =

〈
:
(
�Ex

)2
:
〉

ψ
= 1 + 〈σ̂z〉ss − 4〈σ̂−〉2

ss , (21)

where the quantity 〈: (�Es)2 :〉 represents the in-phase
quadrature fluctuation scaled by the normalizing con-
stant [73] ψ , while negative values indicate squeez-
ing in the fluorescence field. Especially, the maximum
squeezing can be achieved when it takes the value
−1/4. Starting from Eq. (21), after transforming the QD
operators into dressed-state formations, one can obtain
the squeezing conditions: (〈σ̃−−〉ss − α2)/〈σ̃−−〉ss(〈σ̃−−〉ss −
1) < 8β2α2/(β2 − α2) for positive detuning and (〈σ̃−−〉ss −
α2)/〈σ̃−−〉ss(〈σ̃−−〉ss − 1) > 8β2α2/(β2 − α2) for negative
detuning. As suggested by the steady-state solutions, the
appearance of squeezing will give rise to features controlled by
�+ � �− (or �− � �+). That is, the driven system should be
mostly populated in the upper or lower dressed state. It has been
previously shown that this imbalanced population distribution
originates from a discrepancy in the LDOSs at different
frequencies, which is characterized by a Lorentzian-like curve.
Thus the total normal-order variances of the phase quadrature
can be modified by tuning the experimental parameters.

Figure 7 shows the scaled quadrature fluctuation as a
function of the chemical potential for pump conditions � = 10
meV and � = 20 meV. The dephasing rate is taken to be
5 μeV and the QD-graphene distance is 10 nm. It is clear
that for both temperatures, squeezing of the fluorescence field
appears when the Fermi energy is around 0.1 eV. Then the
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FIG. 7. Scaled quadrature fluctuation of resonance fluorescence
vs the Fermi energy of graphene, for d = 10 nm, � = 20 meV, � =
10 meV, and γ0 = 5 μeV; both the zero-temperature (solid blue line)
and the room-temperature (dashed red line) cases are considered.

squeezing reaches its maximum value and gradually declines,
finally disappearing at a Fermi energy near 0.39 eV. Note that
squeezing can be generated for some energy values below
0.05 eV at zero temperature, whereas no squeezing occurs at
room temperature. This phenomenon can be understood by
analyzing the modes of the graphene-supported SPF, which
has been done by Mikhailov et al. [74]. It was pointed out
that in the low-THz frequency region where the interband
transition is blocked, graphene can support both s-polarized
and p-polarized surface modes. However, only one kind of
surface mode can be excited for a specific excitation frequency.
In the present system, the dipole momentum is assumed
to be perpendicular to the graphene sheet, which indicates
that only the p-polarized mode can be excited. When one
transition channel is located in the frequency region where
only the s-polarized mode can be supported (corresponding
to the transition frequency ωl ± �̄), the population will be
distributed unevenly between the two dressed states owing to
the suppression of the transition channel, and thus squeezing
can be observed. With increasing Fermi energy, the resonant
frequency of the SPF suffers blue shifts and gradually moves
towards the frequency ωl + �̄. In this circumstance, the
driven system couples much more strongly with the SPF
modes around frequency ωl + �̄ rather than the modes around
ωl − �̄, and there exists a huge discrepancy between the decay
rates �+ and �−. Squeezing of the fluorescence radiation
field can be observed when the Fermi energy is higher than
0.09 eV, while the maximum squeezing reaches −0.2 at zero
environmental temperature. In the meantime, for the room-
temperature case the enhanced intraband scattering broadens
the SPF dispersion curve, which indicates a decline in the
strength of QD-graphene coupling. Thus the difference in
decay rates between two transition channels is decreased, and
the maximum squeezing suffers a decrease. Additionally, the
difference between decay rates shows a sharp decline for Fermi
energies higher than 0.39 eV. As a result, squeezing disappears
due to the destruction of the imbalanced populations.

It is obvious in Fig. 7 that squeezing of the resonance
fluorescence can be achieved by tuning the Fermi energy of
graphene. However, squeezing can also be adjusted by tuning
the pump field. Figure 8 provides a global view of the variation
of 〈: (�Es)2 :〉 with the detuning � and Rabi frequency � at
room temperature, and the decay rates of two symmetrical
transition channels are also plotted to gain insight into the
generation of squeezing. The Fermi energy and dephasing
rate are chosen to be 0.1 eV and 5 μeV, respectively. As
Figs. 8(a) and 8(b) depict, the decay rates vary with the laser
intensity and the QD detuning, and the maximum values can
be obtained when one transition channel of the dressed QD is
resonantly coupled to the SPF. For negative QD detunings and
high Rabi frequencies, the transition frequencies of the dressed
QD tend to be distributed symmetrically on both sides of the
resonant SPF frequency, which results in a diminishment of the
population difference. When the pump frequency is lower than
the excitation frequency, the transition corresponding to the
frequency ωl + �̄ can be resonantly tuned with the SPF while
the other channel is off-resonant, and thus a large discrepancy
in the decay rates can be generated. As predicted, it is easy
to produce strong squeezing with positive detunings, with the
maximum squeezing reaching −0.2. Morever, it is also shown
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FIG. 8. Reservoir-assisted decay rates and the scaled quadrature
fluctuation vs the QD detuning and Rabi frequency, for μf = 120
meV, γ0 = 5 μeV, and T = 300 K. (a) The decay rate γ n̄+1(ω+

l ),
which corresponds to the transition channel |+〉 → |−〉. (b) The
decay rate γ n̄+1(ω−

l ), which corresponds to the symmetrical transition
channel |−〉 → |+〉. (c) Total normal-order invariance of in-phase
quadrature.

in the figures that although a large discrepancy in the decay
rates exists, squeezing cannot be generated when the Rabi fre-
quency is much lower than the detuning. It can be understood
that for low Rabi frequencies, the QD decouples from the pump
laser and interacts only with the SPF modes on the graphene.

So far, the basic mechanism for the generation of squeezing
in resonance fluorescence has been investigated. It has been

shown that squeezing of the radiation field can be adjusted by
tuning the parameters of either the graphene or the pump laser.
The dispersion relation of the SPF on the surface of graphene
has been illustrated by introduction of the Purcell factor. It is
clear that an imbalanced decay process corresponding to the
transition frequencies ωl ± �̄ is important in the generation of
squeezing. However, dephasing may have a destructive effect
on the squeezing. Then it is found that by placing the QD closer
to the graphene sheet, the increase in the coupling strength can
overcome this issue, where squeezing can also be obtained
for a high dephasing rate. Finally, the influences of the Fermi
energy, QD detuning, and Rabi frequency on squeezing are
studied. The results indicate that squeezing can be enhanced
by tuning the intensity or the central frequency of the pump
laser. Generally, a rising environmental temperature requires
more restricted conditions for the generation of squeezing.

V. CONCLUSION

In this paper, we study the squeezing properties of the
spectrum emitted by a laser-driven QD coupled to the SPF
mode on the surface of graphene. The Lorentzian-shaped
response of surface modes is shown through investigation of
the Purcell factor. We find that the coupling strength between
the QD and the SPF can be affected by the position of
the QD and the environmental temperature. Then the master
equation is derived and the noise spectrum is investigated.
For off-resonant excitation (� = 0), the noise spectrum of
the in-phase quadrature exhibits two-mode squeezing at the
Rabi sideband frequencies. The influences of dephasing,
QD-graphene distance, and environmental temperature on
squeezing are also studied. According to the analytical form
of the noise spectrum and the steady-state solutions of the QD
operators, the numerical results can be understood physically.
It is shown that an increase in the dephasing rate precludes
the generation of squeezing, while squeezing can be enhanced
by placing the QD closer to the graphene sheet. Research on
the total normal-ordered invariance indicates that in the strong
QD-SPF coupling region, even at room temperature, squeezing
can be produced and greatly enhanced by reasonably tuning
the intensity and central frequency of the pump laser.
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APPENDIX A: THE MASTER EQUATION AND OPTICAL BLOCH EQUATIONS FOR THE QUANTUM DOT

The master equation for the reduced density operator, in the frame of rotation with the pump frequency and transformation
into the dressed-state basis, turns out to be

dρ

dt
= 1

i�
[H̃0,ρ] + 1

2
�−L+− + 1

2
�+L−+ + 1

8
(2�p − �i)Lzz + 1

4
αβ(β2 − α2)γ0(Lz− + L−z + H.c.)

+ i[β4P n̄+1(ω−
l ) − α4P n̄(ω+

l )][σ̃−σ̃+,ρ] + i[α4P n̄+1(ω+
l ) − β4P n̄(ω−

l )][σ̃+σ̃−,ρ] − [M(�̄)σ̃+ρσ̃+ + H.c.]

+
[ ∑

j=1,2

(
F 0

j

[
σ̃−,σ̃ (j−1)

z ρσ̃ (2−j )
z

] + Fj [(−1)j−1�̄][σ̃ (2−j )
− ρσ̃

(j−1)
− ,σ̃z]

) + H.c.

]
. (A1)
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In the above equation, H̃0 = ��̄
2 σ̃z is the Hamiltonian of the driven QD in the dressed-state basis, the operator Lmn = 2σ̃mρσ̃n −

σ̃nσ̃mρ − ρσ̃nσ̃m (m,n = +, − ,z), the dephasing process of the QD has been taken into account, and the coefficients in the
master equation can be derived through the functions given below:

F 0
j = παβ

{
α2(2−j )β2(j−1)γ n̄+1(ωl) − α2(j−1)β2(2−j )γ n̄(ωl) + i(−1)j−1

π
[P n̄+1(ωl) + P n̄(ωl)]

}
, (A2)

Fj (η) = παβ

{
α2(2−j )β2(j−1)

[
γ n̄+1(ωl + η) + i(−1)2−j

π
P n̄+1(ωl + η)

]
− α2(j−1)β2(2−j )

[
γ n̄(ωl − η)

+ i(−1)j−1

π
P n̄(ωl − η)

]}
, (A3)

M(�̄) = πα2β2

{
γ n̄+1(ω+

l ) + γ n̄+1(ω−
l ) + γ n̄(ω+

l ) + γ n̄(ω−
l ) + i

π
[P n̄+1(ω+

l ) − P n̄+1(ω−
l ) + P n̄(ω+

l )

− P n̄(ω−
l )]

}
. (A4)

It can be seen through Eq. (A1) that both the reservoir
and the dephasing processes have impacts on the dynamics
of the dressed QD, and the terms 1

2�−L+−, 1
2�+L−+, and

1
8 (2�p − �i)Lzz contribute to the Bloch equations under the
secular approximation. Additionally, the other terms in the
master equation, which are modulated by the pump laser and
the reservoir, revise the behavior of the dressed QD when
the secular approximation becomes illegal. Aside from the
reservoir-assisted decay rates [γ n̄+1(ω) or γ n̄(ω); ω = ω−

l , ωl ,
and ω+

l ], the coefficients P n̄+1(ω) and P n̄(ω) will also exist as
the principal parts of integrals, which denote the energy shifts
of the corresponding QD levels and have the following forms:

P n̄(η) = P
∫ ∞

0

γ n̄(ω)

ω − η
dω,

P n̄+1(η) = P
∫ ∞

0

γ n̄+1(ω)

ω − η
dω. (A5)

The principal parts, which are shown in Eq. (A5), can be
calculated numerically by use of the Kramers-Kronig relation
of the Green function [51]. Through the master equation
above, the corresponding Bloch equations can be derived after
straightforward calculations, with explicit expressions

〈 ˙̃σ+〉 = c1〈σ̃+〉 + c2〈σ̃−〉 + c3〈σ̃z〉 + d1, (A6)

〈 ˙̃σ−〉 = c∗
1〈σ̃−〉 + c∗

2〈σ̃+〉 + c∗
3〈σ̃z〉 + d∗

1 , (A7)

〈 ˙̃σz〉 = c4〈σ̃+〉 + c∗
4〈σ̃−〉 + c5〈σ̃z〉 + d2, (A8)

where the parameters in the above Bloch equations can be
expressed with the combinations of QD decay rates and
coefficients defined in Eqs. (A2)–(A4), and take the forms

c1 = − �p + i�p, (A9)

c2 = − M(�̄)∗ + α2β2γ0, (A10)

c3 = F1(�̄) − F2(−�̄) + αβ(β2 − α2)γ0/2, (A11)

c4 = 2
(
F 0

1 − F 0
2

)∗ + αβ(β2 − α2)γ0, (A12)

c5 = − �i, (A13)

d1 = F1(�̄) + F2(−�̄) + F 0
1 + F 0

2 , (A14)

d2 = �′. (A15)

It is clear through Eqs. (A6)–(A8) that the expectation values
〈σ̃+〉, 〈σ̃−〉, and 〈σ̃z〉 relate to each other during the evolution.
In the strong-pump limit where the secular approximation is
valid, the analytical form of Bloch equations can be deduced
through the simplified master equation [dropping the rapidly
varying terms and neglecting the principal parts in Eq. (A1)]. In
this circumstance, the energy shifts �p ≈ �̄ and the dynamical
properties of the expectation values are determined only by the
polarization decay rate �p or population inversion decay rate
�i . As a result, the expectation values decouple from each
other and evolve separately, where the analytical expressions
are given in Eqs. (14)–(16) and summarized to further our
understanding of the behavior of the dressed QD.

APPENDIX B: NUMERICAL APPROACH OF THE NOISE
SPECTRUM RADIATED BY THE DRESSED

QUANTUM DOT

The noise spectrum of the dressed QD, after transformation
into the dressed-state basis, can be rewritten as

Sx(ω) = Re
∫ ∞

0
dτ cos(�ωτ ) lim

t→∞
[
2α2β2〈σ̃z(t + τ ),σ̃z(t)〉

+ 2βα3〈σ̃z(t + τ ),σ̃−(t)〉 − 2β3α〈σ̃z(t + τ ),σ̃+(t)〉
+ (α4 − α2β2)〈σ̃+(t + τ ),σ̃−(t)〉 + (β4 − β2α2)

×〈σ̃+(t + τ ),σ̃+(t)〉 + (βα3 − β3α)

×〈σ̃+(t + τ ),σ̃z(t)〉 + (β4 − α2β2)

×〈σ̃−(t + τ ),σ̃+(t)〉 + (α4 − α2β2)

×〈σ̃−(t + τ ),σ̃−(t)〉 + (βα3 − β3α)

×〈σ̃−(t + τ ),σ̃z(t)〉
]
. (B1)

In the strong-pump region where the Bloch equations can be
described by Eqs. (14)–(16), most of the correlation functions
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in Eq. (B1) vanish and do not contribute to the spectrum. In this
circumstance, the steady-state solutions of the QD operators
are easy to derive and the explicit expression of the noise
spectrum is given in Eq. (20). Generally, in order to make
our result confidential, we use Eqs. (A6)–(A8) to evaluate the
radiation spectrum of the dressed QD. Then by use of the
quantum regression theory, the noise spectrum can be derived
and represented in terms of the sum of steady-state fluctuations
of the QD operators,

Sx(ω) = 1

2
Re

∑
s=s1,s2

{A[(β4 − β2α2)〈σ̃+,σ̃+〉ss + (α4 − α2β2)

×〈σ̃+,σ̃−〉ss + (βα3 − β3α)〈σ̃+,σ̃z〉ss]
+B[(β4 − α2β2)〈σ̃−,σ̃+〉ss + (α4 − α2β2)

×〈σ̃−,σ̃−〉ss + (βα3 − β3α)〈σ̃−,σ̃z〉ss]
+C[2α2β2〈σ̃z,σ̃z〉ss + 2βα3〈σ̃z,σ̃−〉ss − 2β3α

×〈σ̃z,σ̃+〉ss]}/D2, (B2)

A = c4c
∗
3 + c∗

1c5 + c∗
2c

∗
4 − c∗

2c5 − c∗
4c

∗
3 − c4c

∗
1

+ (c∗
2 + c4 − c∗

1 − c5)s + s2, (B3)

B = c1c5 + c∗
4c3 + c4c2 − c4c3 − c2c5 − c1c

∗
4

+ (c2 + c∗
4 − c1 − c5)s + s2, (B4)

C = c∗
2c3 + c2c

∗
3 + c1c

∗
1 − c1c

∗
3 − c∗

1c3 − c∗
2c2

+ (c∗
3 + c3 − c1 − c∗

1)s + s2, (B5)

D2 = c4c
∗
1c3 + c1c

∗
4c

∗
3 + c∗

2c2c5 − c∗
2c

∗
4c3 − c4c2c

∗
3

− c1c
∗
1c5 + (c1c

∗
1 + c1c5 + c∗

1c5 − c∗
2c2 − c4c3

− c∗
4c

∗
3)s − (c1 + c∗

1 + c5)s2 + s3, (B6)

where s1 = i(ω − ωl) and s2 = −i(ω − ωl), and the defini-
tions of elements in the coefficients are given in Eqs. (A9)–
(A15). Morever, the steady-state fluctuations in Eq. (B2) can
be rewritten in the form of the steady-state solutions of the
expectation values, which appears to be

〈σ̃+,σ̃+〉ss = −〈σ̃+〉2
ss ,

〈σ̃+,σ̃−〉ss = (1 + 〈σ̃z〉ss − 2〈σ̃+〉ss〈σ̃−〉ss)/2,

〈σ̃+,σ̃z〉ss = −〈σ̃+〉ss(1 + 〈σ̃z〉ss),
〈σ̃−,σ̃+〉ss = (1 − 〈σ̃z〉ss − 2〈σ̃+〉ss〈σ̃−〉ss)/2,

〈σ̃−,σ̃−〉ss = −〈σ̃−〉2
ss ,

〈σ̃−,σ̃z〉ss = 〈σ̃−〉ss(1 − 〈σ̃z〉ss),
〈σ̃z,σ̃+〉ss = 〈σ̃+〉ss(1 − 〈σ̃z〉ss),
〈σ̃z,σ̃−〉ss = −〈σ̃−〉ss(1 + 〈σ̃z〉ss),
〈σ̃z,σ̃z〉ss = 1 − 〈σ̃z〉2

ss . (B7)

The steady-state expectation values of the QD operators
〈σ̃+〉ss , 〈σ̃−〉ss , and 〈σ̃z〉ss , which determine the steady-state
fluctuations as shown in Eq. (B7), can be easily obtained from
Eqs. (A6)–(A8).
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