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Role of stationary invariant manifolds in the spatiotemporal dynamics of a nonlinear-wave system of
finite extension: Application to polarization attraction in optical fibers
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The study of the spatiotemporal dynamics of two counterpropagating beams in optical fibers has recently been
the subject of a growing renewed interest. This system has been shown to exhibit a phenomenon of polarization
attraction which can be used to achieve a complete polarization of an initially unpolarized beam, almost without
any loss of energy. In previous works, a theoretical description of this phenomenon has been developed in the par-
ticular case where the underlying stationary system exhibits the important property of integrability. Our aim here is
to provide a generalization of the theoretical description to nonintegrable stationary systems. The analysis reveals
that the spatiotemporal dynamics of the system relaxes towards a stationary trajectory whose geometric structure is
revealed by the stable and unstable manifolds of some singular fixed points of the stationary system. We illustrate
the theory by considering the representative and concrete example of a weakly birefringent optical fiber system.
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I. INTRODUCTION

Recent theoretical and computational studies of the spa-
tiotemporal dynamics of counterpropagating waves in nonlin-
ear media of finite spatial extension have brought forward
the relevance of classical Hamiltonian approaches of the
associated stationary dynamical system for the understanding
of the system ruled by partial differential equations (PDEs)
[1–8]. In particular, under rather general conditions, it has
been shown that the wave systems can exhibit a process of
relaxation characterized by an evolution towards a stationary
state. Such a stationary state can be identified and described
through the dynamics of the spatial system, which is governed
by a set of ordinary differential equations (ODEs) [3]. So far,
most of the works have considered specific cases for which the
stationary system is an integrable system, i.e., it has as many
constants of motion as degrees of freedom [2,3,9–23]. In this
framework, Hamiltonian singularities associated with singular
tori [24,25] in the phase space of the stationary system [14,15]
allowed us to identify the corresponding “attractors” of the
phenomenon of relaxation of the PDE system. More precisely,
it has been shown that the PDE system converges exponentially
towards a trajectory lying on the singular torus in the limit of
an infinite medium; the singular torus thus plays the role of an
attractor for the PDE system of infinite degrees of freedom. In
this way, singular tori were shown to be the “precursors” of this
dynamical process of relaxation for a series of PDE systems,
such as the three- and four-wave interaction equations, or
the Thirring-like model which is known to describe, e.g., the
dynamics of nonlinear waves in periodic lattices [14,15].

This phenomenon of spatiotemporal relaxation has been
the subject of a recent growing interest in the particular
context of nonlinear fiber optics, from both the theoretical
and experimental points of view [3]. In this framework, the
relaxation process finds an important application, namely, the
possibility to achieve an all-optical control of the state of
polarization (SOP) of a forward wave by adjusting the injected
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SOP of the backward wave [2,3,9,11–23]. This phenomenon
of “polarization attraction” has been demonstrated in many
different types of optical fiber systems, such as isotropic fibers,
spun fibers, and highly birefringent or even randomly birefrin-
gent fibers used in optical telecommunications. In addition, the
effect of polarization attraction has been also demonstrated in
the absence of the injected backward wave—the forward beam
interacting in this case with its own counterpropagating replica
produced by means of a backreflection Bragg mirror at the fiber
output [26–28]. Besides its fundamental interest, we would
like to stress the importance of this effect from the applicative
point of view. Polarization attraction can be used to achieve a
complete repolarization of an initially unpolarized signal beam
with almost 100% efficiency, a feature which contrasts with
standard polarizers that unavoidably waste 50% of the incom-
ing light [29,30]. This effect is particularly appealing since it
finds natural important applications as a polarization device in
optical telecommunication transmission lines [20,21,31].

Most of the theoretical studies of polarization attraction
discussed above have a common important property: the
underlying stationary ODE system is an integrable Hamil-
tonian system. This is indeed a key property required by the
applicability of the geometric approach discussed above, since
a proper characterization of the singularities of the stationary
system (singular tori) can only be accomplished for integrable
systems. Our aim in this article is to extend the geometric
approach of the phenomenon of polarization attraction to more
general systems where the associated stationary ODE does not
need to satisfy the severe constraint of integrability. We address
this issue by considering the representative example of an
optical fiber with a weak birefringence [8,32], a property which
is known to break the integrability of the associated stationary
ODE system [8]. Furthermore, this issue is typically relevant
for optical fibers that are not short enough to be considered
as isotropic, i.e., in fibers whose length scale is of the same
order as the birefringence beat length, so that birefringence
can strongly impact the polarization dynamics. The numerical
simulations reveal that the process of polarization attraction
can still occur efficiently when the birefringence is a perturba-
tive effect. The theoretical analysis remarkably shows that the
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invariant manifolds (stable and unstable manifolds) of some
specific fixed points of the stationary system [33,34] play an
attracting role for the PDE system, in a way analogous to the
role played by singular tori in the integrable case. In addition,
we show that the geometric structure of the final state of the
spatiotemporal system can be revealed and understood through
the analysis of the dynamics on these invariant sets. This work
then also reveals the unexpected fundamental role of attractors
that play the invariant manifolds of the associated ODE system
in the whole spatiotemporal PDE system.

The remainder of this article is organized as follows. The
principal properties of the model are summarized in Sec. II.
A geometric analysis of the stationary ODE system and of its
fixed points is the focus of Sec. III. The numerical results are
presented in Sec. IV. A conclusion and prospective views are
given in Sec. V. Some technical computations are reported in
Appendixes A and B.

II. THE MODEL SYSTEM

We consider the one-dimensional counterpropagating con-
figuration of four-wave interaction. This model has been
widely used in the past to describe counterpropagating beams
in optical fiber systems [1–3,9–21,26–28]. In this paper we
consider the specific case of the polarization dynamics in an
optical fiber with a weak birefringence, because this latter
property will be shown to break the integrability of the corre-
sponding stationary ODE system. We recall that birefringence
in optical fibers refers to the dependence of the refractive index
on light polarization. It is usually quantified by the maximum
difference �n = nS − nF between the refractive indices of
the principal axes of the fiber, where nF and nS are the
indices along the fast and slow birefringence axes, respectively.
Propagation constants of light traveling along such two axes
read, respectively, kF = 2πnF /λ and kS = 2πnS/λ, λ being
the light wavelength. Therefore the electric field components
along the birefringence axes experience a phase shift of 2π

every beat length Lb = λ/�n, which also defines the length
scale of the linear coupling between the rectilinear polarization
components. Here we address the case in which Lb is of
the same order as the fiber length, which in turn is much
shorter than the typical correlation length Lc of random
birefringence fluctuations that are known to impact kilometers-
long telecommunication fibers (see Ref. [21]). Therefore,
the birefringence considered in this work is assumed to be
fully deterministic. For completeness, we briefly sketch in
Appendix A the derivation of the model from basic propagation
equations in optical fiber systems.

It proves convenient to use the Stokes formalism, in which
the dynamics of polarization of the counterpropagating beams
can be shown to be governed by the following equations (see
Appendix A):

∂ �S
∂t

+ ∂ �S
∂z

= �S × (I �S) + 2�S × (I �J ) + ��S × �e1, (1)

∂ �J
∂t

− ∂ �J
∂z

= �J × (I �J ) + 2 �J × (I �S) + � �J × �e1, (2)

where the Stokes vectors �S = (S1,S2,S3) and �J = (J1,J2,J3)
describe, respectively, the SOPs of the forward and backward

waves on the Poincaré sphere. The vector �e1 denotes the
unit vector along the 1 direction, and � = kS − kF is the
birefringence parameter defined above. The diagonal matrix I
reads I = diag(−1,−1,0). With these notations, the circular
SOPs are located on the 3 axis. We also introduce the radii
S0 and J0 of the forward and backward spheres, which are
directly related to the conserved signal and pump powers [2].
For convenience, Eqs. (1) and (2) have been normalized with
respect to the nonlinear interaction time τ0 = 1/(γ S0) and
length �0 = vτ0, where γ is the nonlinear coefficient and v the
group velocity of the waves. Note that the physical variables
can be recovered in standard units through the transformations
t → tτ0, z → z�0 and (�S, �J ) → (�S, �J )S0. We remark that
because of the counterpropagating configuration, the boundary
conditions are defined by the signal and pump SOPs �S(z = 0)
and �J (z = L) at the opposite fiber ends, respectively, at (z = 0)
and at (z = L), where L denotes the normalized fiber length.
For such fixed boundary conditions, the powers S0 and J0

are conserved during the propagation of the waves. For the
sake of simplicity, in the following we consider the case
where the counterpropagating beams have equal powers, i.e.,
S0 = J0 = 1 with our normalization. The same analysis can
easily be extended to the case of different powers.

III. GEOMETRICAL ANALYSIS OF THE
STATIONARY STATES

We consider the stationary system of equations by dropping
the time derivatives in Eqs. (1) and (2):

Ṡ1 = S3S2 + 2S3J2

Ṡ2 = −S3S1 − 2S3J1 + �S3 (3)

Ṡ3 = 2J1S2 − 2S1J2 − �S2

and

J̇1 = −J3J2 − 2J3S2

J̇2 = J3J1 + 2J3S1 − �J3 (4)

J̇3 = 2J1S2 − 2S1J2 + �J2

where the dots denote derivatives with respect to the spatial
variable z. These equations have a Hamiltonian structure
leading to the following Poisson brackets [24,33]:

{S1,S2} = S3; {J1,J2} = −J3. (5)

The other relations are obtained by a circular permutation of
the indices. The equations admit a single constant of motion,
the Hamiltonian of the system:

H = 2(S1J1 + S2J2) − 1
2

(
S2

3 + J 2
3

) − �(S1 + J1). (6)

It is important to note that birefringence [i.e., the term �(S1 +
J1)], breaks the integrability of the system. In the limit of a
vanishing birefringence, � = 0, the stationary system admits
a second constant of motion K = S3 − J3, which reestablishes
integrability.

A. Relation with the approach developed for the integrable limit

As mentioned in the Introduction, previous geometric
investigations of these types of dynamical systems were
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completely based on the integrability of the stationary system.
In this case, the Liouville-Arnold theorem states that all the
trajectories of the system lie on a torus. The tori are in general
regular, but some of them can be singular [24]. An example
is given by a pinched torus, which is a regular torus whose
radius has been pinched to zero in one point. A pinched torus
can also be defined as the union of the stable and unstable
manifolds [34] of the pinched point, which is a fixed point for
the dynamical system. More generally, the singular tori can
also be viewed as the higher-dimensional generalization of the
separatrices when the Hamiltonian system is integrable [2,24].
The relevance of these mathematical structures has been only
recently recognized in physics [25], and particularly for the
understanding and the description of the qualitative properties
of the dynamics of PDE systems [14,15].

In the case investigated in this paper, the integrable system,
i.e., the one for � = 0, has a doubly pinched torus character-
ized by the constants H = −1 and K = 0. We refer the reader
to Refs. [14,15] for a complete geometrical description of this
system and to Appendix B for a detailed computation of its
stable and unstable manifolds. This torus has two fixed points,
the two pinched points, of coordinates S3 = ±1 (forward-right
or left-circular polarizations) and J3 = ±1 (backward-right or
left-circular polarizations). When the parameter � is different
from 0, the integrability is lost and most of the tori, and in
particular the singular one, are destroyed [35,36]. However,
the singularity does not completely disappear, in the sense that
some of its dynamical features are still preserved. In particular,
in the presence of a weak perturbation that breaks the
integrability, the fixed points are preserved. This remark is at
the origin of the geometric analysis which is aimed at revealing
the crucial role of the fixed points and their corresponding
stable and unstable manifolds in the spatiotemporal dynamics
of the nonlinear-wave system.

B. Stationary fixed points and line of polarization attraction

The first step of the analysis consists in studying the nature
of the fixed points of the stationary system given by the
relations

− S3S1 − 2S3J1 + �S3 = 0
(7)

J3J1 + 2J3S1 − �J3 = 0.

For � = 0, the two fixed points of interest are the ones of
the doubly pinched torus, i.e., the points of coordinates (S3 =
1,J3 = 1) and (S3 = −1,J3 = −1). In the case � �= 0, we first
determine the position of the new fixed points. We consider a
perturbation around the standard solution S3 = ±1 and J3 =
±1. We deduce from the stationary equations that S2 + 2J2 =
0 and J2 + 2S2 = 0, which leads to S2 = J2 = 0. We arrive at

J 2
3 S2

3 (J1 − S1) = 0, (8)

which gives J1 = S1 and J3 = ±S3. We finally get that

S1 = J1 = �

3
; S3 = ±

√
1 − �2/9; J3 = ±

√
1 − �2/9,

(9)

and S2 = J2 = 0. The two fixed points for which S3 and J3

have different signs are stable (elliptic) and the ones with

equal signs are unstable (hyperbolic) and correspond to the
deformed pinched torus. Note that in the limit � = 0, these
fixed points correspond to the circular SOPs (the poles of
the Poincaré sphere). For such fixed points, the value of
the stationary Hamiltonian is given by H = −1 − �2

3 . Due
to the nonintegrability, only one constant of motion, the
Hamiltonian, is preserved in the stationary dynamics. The
singular trajectories of the Hamiltonian stationary system lie
on the surface defined by H = −1 − �2/3. This constraint
on the value of H leads to a line in the �S- Poincaré sphere at
z = L, which is completely given by the boundary value of
the pump SOP, �J (z = L). This line is defined implicitly by the
following equation:

−1 − �2

3
= 2[S1J1(L) + S2J2(L)]

− 1

2

[
S2

3 + J3(L)2
] − �[S1 + J1(L)], (10)

where we recall that the value of �J (L) is specified by the
boundary conditions. For instance, in the case where the
injected pump beam has a circular SOP, i.e., J3(L) = 1, we get

S2
3 + 2�S1 = 1 + 2

�2

3
. (11)

In the case J2(L) = 1, we obtain

2S2 − 1

2
S2

3 − �S1 = −1 − �2

3
. (12)

Figure 1 displays an example of this line for a “generic” pump
SOP, �J (L) = (1/

√
3,1/

√
3,1/

√
3).

Note that, in the integrable case (� = 0), the second
constant of the motion K defines another line in the �S-Poincaré
sphere. The intersection of the two lines is a point which com-
pletely defines the process of polarization attraction [2,16].
In the nonintegrable case (� �= 0), a supplementary work is
required to completely determine the attraction phenomenon.

IV. SPATIOTEMPORAL SIMULATIONS
OF POLARIZATION ATTRACTION

A. Numerical results

In this section, we investigate the relaxation and the
attraction effects in an optical fiber with a weak birefringence
through intensive numerical simulations of the spatiotemporal
dynamics governed by Eqs. (1) and (2). To assess the influence
of the birefringence, it is important to compare the length of
the fiber with the characteristic length associated with the bire-
fringence effect. In dimensionless units these two length scales
respectively read L and LB = 2π/�. The corresponding ratio
ρ = LB/L is then related to the birefringence parameter
by � = 2π/(ρL). The impact of birefringence becomes
important as ρ becomes small. Note that the parameter ρ

can easily be determined experimentally—it is typically of
the order of unity for a fiber length of a few meters.

In all the cases investigated below, 64 different initial
states of polarization of the signal �S(z = 0,t) have been
uniformly distributed over the surface of the Poincaré sphere
(see Fig. 1). On the other hand, the pump SOP is fixed,
�J (z = L). The boundary conditions are kept fixed in time,
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FIG. 1. Results of the numerical simulations of the spatiotem-
poral PDE system on the Poincaré sphere with ρ = 5. The red dots
denote the states of the signal at z = L when the stationary dynamics
is reached. The fiber lengths are set to L = 1 (a), L = 2 (b), L = 3
(c), and L = 4 (d). The yellow dot displays the boundary condition
of the pump SOP, �J (L) = (1/

√
3,1/

√
3,1/

√
3), and the green dots

the fixed points of the stationary ODE system. The blue solid line
depicts the curve of points (line of polarization attraction) with the
same energy H as the fixed point (see Sec. III for details). We recall
that S3 = ±1 denotes the right or left circular polarization states. The
different quantities are dimensionless.

�S(z = 0,t) and �J (z = L,t), and Fig. 2 reports the stationary
states of the signal SOP �S(z) reached after some sufficiently
long spatiotemporal transient (see [2] for more details on the
computation procedure). Typical results of the simulations are
reported in Figs. 1 and 2 for different values of the normalized
fiber length, L. Figure 2 displays the spatial profile of the
stationary state S3(z) that the system has reached after a
spatiotemporal transient relaxation process. Different values of
the fiber length have been considered in the different panels of
Fig. 2. Figure 1 reports the corresponding output signal SOPs,
�S(z = L), on the surface of the Poincaré sphere. In these first
series of numerical computations, the value of the parameter ρ

has been kept fixed. We observe that the process of polarization
attraction is more efficient as the fiber length L is increased.
Two attracting points, �S(z = L), exist according to the initial
SOP of the signal. It seems therefore that each attracting point
has a different basin of attraction. It is important to note that,
before being attracted, Fig. 2 clearly shows that the signal
passes through a point which is located close to either the
north pole or the south pole of the Poincaré sphere.

As illustrated by Figs. 1 and 2, the efficiency of the attraction
process increases as the fiber length L is increased, as revealed
by the reduction of the spreading of the signal SOPs at the
fiber output �S(z = L). Figure 1 shows that this latter point
of attraction belongs to the line of polarization attraction
predicted by the theoretical analysis in Sec. III B.

FIG. 2. Stationary solutions that the PDE system governed by
Eqs. (1) and (2) reaches after a transient spatiotemporal relaxation
process. The figure illustrates the particular coordinate S3 vs z. The
fiber lengths are set to L = 1 (a), L = 2 (b), L = 4 (c). The parameter
ρ is fixed to 5. The boundary condition of the pump SOP is fixed to
�J (z = L) = (1/

√
3,1/

√
3,1/

√
3). 64 different boundary conditions

of the signal SOP, �S(z = 0), are considered (see Fig. 1). We recall
that S3 = ±1 denotes the right or left circular polarization states. The
different quantities are dimensionless.

The reduction of the spreading of the signal SOPs �S(L)
when the fiber length increases constitutes a well-known
property of the polarization attraction effect. In the case under
consideration, the efficiency of the process can be evaluated
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L
1 2 3 4 5 6

d̃

0

0.5

1

FIG. 3. Evolution of the distance d , defined in Eq. (13), as
a function of the fiber length L for the input pump SOP �J (z =
L) = (1/

√
3,1/

√
3,1/

√
3), while the signal boundary conditions are

uniformly distributed on the surface of the Poincaré sphere. The
distance is normalized with respect to its value for L = 1 [d̃(L) =
d(L)/d(L = 1)] to improve the visualization of the convergence
toward the singular line of attraction. The parameter ρ is set to 5.
When L varies from 1 to 6, the range of variation of � is from 2π/5
to 2π/30. The different quantities are dimensionless.

by using a measure of the distance d to the singular line,

d(L) =
∑

i

√
(Hi − Hs)2, (13)

where the index i runs over all the initial SOPs of the
signal beam. Hi is the value of the constant of the motion
H of the corresponding stationary state i, and Hs is the
Hamiltonian of the fixed point of the stationary dynamics.
We have performed a systematic numerical study of the
attraction process for different fiber lengths L, as illustrated
in Fig. 3. The study reveals that the distance rapidly tends
to 0 as L increases. Note that this value of the distance to
the singular line is already remarkably small for a relatively
small value of L � 6. The same analysis is conducted in Fig. 4
to evaluate the impact of the birefringence parameter �. As
could be expected, we observe that the spreading increases as

Δ
0 5 10

d̃

0

10

20

30

40

FIG. 4. Same as in Fig. 3, except that now the birefringence
parameter � is varied while keeping the fiber length constant, L = 4.

� increases, a feature which clearly reveals the negative impact
of the nonintegrable birefringence effect on the phenomenon
of polarization attraction.

We conclude this paragraph by remarking that the normal-
ized values of ρ = 5 and L = 4 may correspond to a prop-
agation regime characterized by the following characteristic
length scales: L̂ = 4m, L̂b = 20m, and L̂nl = 1m, with L̂,
L̂b, and L̂nl the real (dimensional) fiber length, beat length,
and nonlinear length, respectively. This regime can be met in
practice in a spun fiber, where the underlying fiber spinning
process is known to substantially reduce the birefringence
strength, and by considering nanosecond pump pulses, whose
peak power may reach several tens of Watts, so as to make the
nonlinear length as short as a few meters [11]. Also notice
that in this short fiber experimental configuration, random
fluctuations of birefringence can be usually neglected.

B. Two-stage process of polarization attraction

A detailed analysis of the effect of polarization attraction
reveals that it occurs sequentially, in two distinct stages. This
becomes apparent when one analyzes the spatial dependence
of the stationary solutions on the Poincaré sphere representa-
tion. The two-stage process is illustrated in Fig. 5 (see also
the movie in the Supplemental Material [37]), which reports
the trajectory of the 64 SOPs discussed above in Figs. 1
and 2 for different values of the spatial coordinate z. In the first
stage [panels (a)–(e) in Fig. 5], we note that the signal SOPs
are contracted into the vicinity of one of the two fixed points
on the surface of the Poincaré sphere. A basin of attraction
can be associated with each fixed point. In a second stage, the
signal SOPs evolve together by following essentially the same
trajectory (one trajectory for each fixed point) to reach the
final point of polarization attraction. As predicted, this point
belongs to the attraction line define above in Sec. III B.

On the basis of these numerical observations, we now
formulate two conjectures on the dynamics.

Conjecture 1: Under general boundary conditions, the PDE
system relaxes towards a stationary solution.

Conjecture 2: In the limit where the length of the medium
goes to infinity, the stationary solution lies in the vicinity of
the invariant sets of one of the two fixed points. The signal and
the pump first approach the fixed point from a trajectory that
closely follows the stable manifold, and then they escape from
this fixed point to reach the final point of polarization attraction
by following a trajectory close to the unstable manifold.

It may appear counterintuitive that unstable manifolds may
play a role of attractors in this system. However, let us recall
that the invariant set is a structure of the ODE system, while
the attraction point is a feature of the PDE dynamics. In this
respect, we also note that homoclinic orbits of ODE systems
are known to play a crucial role for soliton solutions of the
corresponding PDE system.

C. Stable and unstable manifolds

The next step of the geometric study is based on the analysis
of the stability of the stationary dynamics with respect to a
small perturbation in a neighborhood of the fixed points. For
that purpose, we consider a linearization of the dynamical
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FIG. 5. Sequential Poincaré sphere evolution illustrating the two-
stage process of polarization attraction. The initial 64 signal SOPs
[red (dark gray) dots] are uniformly distributed on the Poincaré sphere
(from left to right and top to bottom). The eight panels show the
evolution of the SOPs for different values of the longitudinal variable
z. In the first stage of polarization attraction (panels 1–4, z = 0–2),
all signal SOPs are contracted in the neighborhood of the two fixed
points [green (light gray) points]. In the second stage (panels 5–8,
z = 2.5 to z = 4), the SOPs follow the unstable manifolds to reach
the final polarization attraction point. The blue (black), red (dark
gray), and yellow (light gray) lines respectively depict the attraction
line and the projection of a trajectory of the unstable manifold onto
the Poincaré sphere. (The red color is associated with the �S dynamics
and the yellow one with the �J dynamics.) The parameters are ρ = 5,
�J (L) = (1/

√
3,1/

√
3,1/

√
3), and L = 4. A movie corresponding to

this evolution is reported in the Supplemental Material [37]. The
different quantities are dimensionless.

system around one of the two fixed points:

S1 = �

3
+ s1; S2 = s2; J1 = �

3
+ j1; J2 = j2. (14)

We now determine the stable and unstable manifolds of the
linearized dynamical system around such fixed points [33,34].
By linearizing the initial differential systems (3) and (4), we
get the following relations:

ṡ1 = α(s2 + 2j2)

ṡ2 = −α(s1 + 2j1)
(15)

j̇1 = −α(j2 + 2s2)

j̇2 = α(j1 + 2s1),

where α =
√

1 − �2/9. We denote by M the 4 × 4 matrix:

M = α

⎛
⎜⎝

0 1 0 2
−1 0 −2 0
0 −2 0 −1
2 0 1 0

⎞
⎟⎠.

The matrix M has two eigenvectors uS
1 =

(−√
3,−1,0,2), uS

2 = (−1,
√

3,2,0) with eigenvalue −√
3α,

and two eigenvectors uI
1 = (

√
3,−1,0,2), uI

2 = (−1, −√
3,2,0) with eigenvalue

√
3α. In a neighborhood of the fixed

points, a basis of the two-dimensional stable and unstable man-
ifolds is given by the vectors (uS

1 ,uS
2 ) and (uI

1,u
I
2), respectively.

The unstable manifold can thus be parameterized by⎡
⎢⎣

s1

s2

j1

j2

⎤
⎥⎦ = c1u

I
1 + c2u

I
2.

We can represent the constants c1 and c2 in polar coordinates by

c1 = R sin η, c1 = R cos η, R =
√

c2
1 + c2

2, η ∈ [0,2π ).

This leads explicitly to the representation

S1 = �

3
+ R(

√
3 sin η − cos η)

S2 = −R(sin η +
√

3 cos η)

S3 =
√

1 − S2
1 − S2

2
(16)

J1 = �

3
+ 2R cos η

J2 = 2R sin η

J3 =
√

1 − J 2
1 − J 2

2

This shows that the linearized unstable manifold has the shape
of a cone parameterized by R and η, with the fixed point at its
vertex.

From Eqs. (16), we can express the parameters R,η in terms
of J1,J2:

R = 1
2

√
(J1 − �/3)2 + J 2

2

sin η = J2/2R

cos η = (J1 − �/3)/2R.
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Inserting these equalities into Eqs. (16) and replacing
√

3/2 =
sin(2π/3), −1/2 = cos(2π/3), we obtain the following rela-
tion between the coordinates �S and �J on the linearized unstable
manifold:

S1 = �

2
+ cos

(
2π

3

)
J1 + sin

(
2π

3

)
J2

S2 = �

2
√

3
− sin

(
2π

3

)
J1 + cos

(
2π

3

)
J2 (17)

S3 = ±
√

1 − S2
1 − S2

2 .

Equations (17) yield an approximate analytical formula for the
prediction of the polarization attraction. It is valid in particular
for values of the pump �JL that are close enough to the fixed
point, where the linearization gives a good approximation.

The parametrization (16) of the linearized unstable man-
ifold gives the starting point for a numerical algorithm to
determine the full (i.e., nonlinearized) unstable manifold. We
choose a set of initial conditions on the unstable manifold using
(16) with a small value of R and a set of values of the angle
η ∈ [0,2π ) and solve the system of differential equations (3)
and (4). All the trajectories calculated in this way lay on the
unstable manifold if R is small enough. This gives a method
to predict the value of the polarization attraction �SL for an
arbitrary pump �JL. We scan the one parameter set of initial
conditions η and integrate the differential equations (3) and (4)
until we find an initial angle η∗ and a z∗ such that �J (z∗) = �JL.
The prediction is that the polarization of the signal will be
attracted to the corresponding �S(z∗). A result of this calculation
is illustrated in Fig. 5.

We remark that, in the limit � = 0, Eqs. (17) recover
the standard coordinates of the attraction points (in both
the linear and nonlinear cases) which define an equilateral
triangle in the (S1,S2) plane with the pump SOP [12]. It is
well known that in nonintegrable systems the stable manifold
of one fixed point and the stable manifold of the other one
generically have transverse intersections, while in integrable
systems they merge into each other; in fact, they are the same
manifold (see Ref. [24] and Appendix B for details). For large
values of �, the transverse intersections of the stable and
unstable manifolds can be expected to modify the behavior
of the polarization attraction. This case, which goes beyond
the scope of this paper, will be treated in a forthcoming
work.

V. CONCLUSION AND PERSPECTIVES

We have proposed a general geometric approach to describe
both in qualitative and quantitative ways a counterpropagating
spatiotemporal wave dynamics in a medium of finite extension.
This approach, based on the structure of the stationary Hamil-
tonian dynamics, provides a nontrivial generalization of the
preceding works on this subject, because here the underlying
stationary ODE system does not need to be integrable. More
precisely, we have shown that the invariant sets of some
particular fixed points of the stationary dynamics play a role
of attraction for the PDE system. Such invariant manifolds can
be viewed as a trace reminiscent of the singular tori which
have been shown to exhibit a similar process of attraction in

the integrable case [2]. The method developed here has been
illustrated by considering the example of a weakly birefringent
optical fiber.

We believe that this result is of significant potential interest
in that it opens the door to a systematic investigation of the
nonlinear dynamics of this type of counterpropagating PDE
system, without requiring the severe constraint of integrability
of the associated stationary Hamiltonian system. We recall in
this respect that the Hamiltonian stationary dynamics of the
system considered in this work is nonintegrable and chaotic,
as it was discussed since the pioneering work [8]. On the
basis of the numerical computations presented here, it seems
crucial, however, that the Hamiltonian stationary dynamics
is relatively close to integrability in order to observe the
relaxation effect to a stationary state and the associated process
of polarization attraction. This aspect needs to be confirmed
by considering different examples of optical fiber systems,
as well as different forms of nonlinear-wave systems, e.g.,
counterpropagating waves interacting in nonlinear periodic
lattices [14]. In addition, we stress that the determination of
the position and of the structure of the singular tori requires a
heavy mathematical machinery, known as singular reduction
theory [24]. This latter approach can hardly be applied to
higher-dimensional dynamical systems, while the computation
of the invariant sets can easily be performed for such systems,
even in the integrable case. Work is in progress in order
to address these issues. Finally, we would like to mention
the possible nontrivial extension of the theoretical approach
developed here to non-Hamiltonian systems, in particular, in
relation to interesting studies in which repolarization phenom-
ena based on the nonconservative Raman effect have been
identified in optical fiber systems [38,39] (see also the recent
work [40]).

APPENDIX A: DERIVATION OF THE DYNAMICAL
EQUATIONS IN AN OPTICAL FIBER

WITH A LOW BIREFRINGENCE

We derive the equations governing the propagation of
the counterpropagating beams in the presence of a weak
birefringence [8]. Starting from the Maxwell’s equations
and following the standard procedure [32], we obtained the
following system of equations:

∂Ex

∂t
+ ν

∂Ex

∂z
= iγ

{(
|Ex |2 + 2

3
|Ey |2

)
Ex

+ 1

3
E2

yE
∗
x exp[i2�z]

+
(

2|Ēx |2 + 2

3
|Ēy |2

)
Ex

+ 2

3
EyĒyĒx

∗ + 2

3
EyĒy

∗
Ēx exp[i2�z]

}
,

∂Ey

∂t
+ ν

∂Ey

∂z
= iγ

{(
|Ey |2 + 2

3
|Ex |2

)
Ey

+ 1

3
E2

xE
∗
y exp[−i2�z]
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+
(

2|Ēy |2 + 2

3
|Ēx |2

)
Ey

+ 2

3
ExĒxĒy

∗ + 2

3
ExĒx

∗
Ēy exp[−i2�z]

}
,

∂Ēx

∂t
− ν

∂Ēx

∂z
= iγ

{(
|Ēx |2 + 2

3
|Ēy |2

)
Ēx

+ 1

3
Ēy

2
Ēx

∗ exp[i2�z]

+
(

2|Ex |2 + 2

3
|Ey |2

)
Ēx

+ 2

3
ĒyEyE

∗
x + 2

3
ĒyE

∗
yEx exp[i2�z]

}

∂Ēy

∂t
− ν

∂Ēy

∂z
= iγ

{(
|Ēy |2 + 2

3
|Ēx |2

)
Ēy

+ 1

3
Ēx

2
Ēy

∗ exp[−i2�z]

+
(

2|Ey |2 + 2

3
|Ex |2

)
Ēy

+ 2

3
ĒxExE

∗
y + 2

3
ĒxE

∗
xEy exp[−i2�z]

}
,

(A1)

where (Ex,Ey) and (Ēx,Ēy) are the components of the
electric fields respectively associated with the signal and pump
beams in the basis of rectilinear polarization, x and y being
the principal axes of the fiber. The parameter � = kx − ky

denotes the amount of birefringence, where kx,y are the wave
vectors of the fields. Using the change of variables Ex =
Ax exp[i �

2 z], Ey = Ay exp[−i �
2 z], Ēx = Āx exp[−i �

2 z], and
Ēy = Āy exp[i �

2 z], the dynamical system can be written in
terms of the A variables. If we then introduce the basis of
circular polarizations defined by u = (Ax+iAy )√

2
, v = (Ax−iAy )√

2
,

ū = (Āx+iĀy )√
2

, and v̄ = (Āx−iĀy )√
2

, the equations take the follow-
ing form:

(∂t + ν∂z)u = 2

3
iγ [(|u|2 + 2|v|2 + 2|ū|2 + 2|v̄|2)u

+ 2ūv̄∗v] − i
�

2
v,

(∂t + ν∂z)v = 2

3
iγ [(|v|2 + 2|u|2 + 2|ū|2 + 2|v̄|2)v

+ 2v̄ū∗u] − i
�

2
u,

(∂t − ν∂z)ū = 2

3
iγ [(|ū|2 + 2|v|2 + 2|ū|2 + 2|v̄|2)ū

+ 2uv∗v̄] − i
�

2
v̄,

(∂t − ν∂z)v̄ = 2

3
iγ [(|v̄|2 + 2|v|2 + 2|ū|2 + 2|v̄|2)v̄

+ 2vu∗ū] − i
�

2
ū. (A2)

Now it proves convenient to introduce the Stokes coordinates
defined by the relations

S1 = i(u∗v − uv∗)

S2 = u∗v + uv∗
(A3)

S3 = |u|2 − |v|2
S2

0 = (|u|2 + |v|2)2 = (
S2

1 + S2
2 + S2

3

)
and

J1 = i(ū∗v̄ − ūv̄∗)

J2 = ū∗v̄ + ūv̄∗
(A4)

J3 = |ū|2 − |v̄|2
J 2

0 = (|ū|2 + |v̄|2)2 = (
J 2

1 + J 2
2 + J 2

3

)
.

Next we normalize the problem with respect to the nonlinear
time τ0 = 1/(J0) and length L0 = ντ0, where  = 2

3γ , i.e.,
the variables in physical units, can be recovered through the
transformations z → zL0, t → tτ0, (Si,Ji) → (Si,Ji)J0, and
� → �L0. In dimensionless units, the Stokes variables are
governed by the following equations:

(∂t + ∂z)S1 = S3S2 + 2S3J2

(∂t + ∂z)S2 = −S3S1 − 2S3J1 + �S3 (A5)

(∂t + ∂z)S3 = 2J1S2 − 2S1J2 − �S2

and

(∂t − ∂z)J1 = J3J2 + 2J3S2

(∂t − ∂z)J2 = −J3J1 − 2J3S1 + �J3 (A6)

(∂t − ∂z)J3 = −2J1S2 + 2S1J2 − �J2.

APPENDIX B: STABLE AND UNSTABLE MANIFOLDS
IN THE INTEGRABLE CASE � = 0

The analysis of the stationary solutions in the absence
of birefringence (� = 0) has been studied from different
perspectives in recent years [1,2,9]. Here, we describe the
singular trajectories from the computation of the invariant
sets so as to relate them with the analysis discussed above in
the limit of vanishing birefringence. More precisely, we show
that for � = 0, the full unstable manifold can be determined
in explicit analytical form. Besides the Hamiltonian H =
2(S1J1 + S2J2) − (S2

3 + J 2
3 )/2, there is a a second invariant

K = S3 − J3. The hyperbolic fixed points are at S3 = 1,J3 =
1 and at S3 = −1,J3 = −1. Thus the values of these two
invariants on the stable and unstable manifolds are H = −1
and K = 0. The invariant sets are determined by the system of
equations

−1 = 2(S1J1 + S2J2) − (
S2

3 + J 2
3

)
/2

S3 = J3.

Inserting the second relation into the first one and using S2
3 =

1 − S2
1 − S2

2 , we obtain

S2
1 + S2

2 + 2(S1J1 + S2J2) = 0. (B1)
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In order to find the solution �S of this equation for a given �J ,
we use the spherical coordinates defined as follows:

J1 =
√

1 − J 2
3 cos ϕJ

J2 =
√

1 − J 2
3 sin ϕJ

S1 =
√

1 − J 2
3 cos ϕS, J3 ∈ (−1,1),

S2 =
√

1 − J 2
3 sin ϕS, ϕJ ,ϕS ∈ [0,2π ).

Equation (B1) then becomes

(
1 − J 2

3

)
[1 + 2 cos(ϕS − ϕJ )] = 0, (B2)

which has the two solutions

ϕS − ϕJ = ±2π

3
. (B3)

The stable and unstable manifolds can therefore be described
by

J1 =
√

1 − J 2
3 cos ϕJ

J2 =
√

1 − J 2
3 sin ϕJ

S1 =
√

1 − J 2
3 cos

(
ϕJ ± 2π

3

)

S2 =
√

1 − J 2
3 sin

(
ϕJ ± 2π

3

)

S3 = J3,

which can be rewritten as

S1 = cos

(
2π

3

)
J1 ± sin

(
2π

3

)
J2

S2 = ∓ sin

(
2π

3

)
J1 + cos

(
2π

3

)
J2 (B4)

S3 = J3.

This expression shows that the stable and unstable manifolds
can be parameterized by the sphere �J . More precisely, they are
a double cover of this sphere (because of the two signs ±) that
has two points of intersection at J3 = 1 and J3 = −1. These
two isolated points of contact give the manifold the topology
of a doubly pinched torus. The relations (B4) can be used to
predict the polarization attraction: For each value of the pump
�JL, Eqs. (B4) give the two possible values of the signal �SL at

the exit of the fiber. We remark that the structure of the exact
stable and unstable manifolds (B4) of the integrable case is
very close to that of the linearized nonintegrable model (17)
in the vicinity of the fixed points. The only difference is a shift
of the fixed points depending on the value of �.

The trajectories on the stable and unstable manifolds can be
calculated explicitly for this model. Indeed, using the spherical
coordinates, the equations of motion restricted to the stable and

unstable manifolds can be written as

dJ3

dz
= ±

√
3
(
1 − J 2

3

)
d cos ϕJ

dz
= 0,

and the solutions are

J3(z) = ± tanh[c0 ±
√

3(z − z0)],

c0 = artanhJ3(z0)

ϕJ (z) = ϕJ (z0) = constant

J1(z) = sech[c0 ±
√

3(z − z0)] cos(ϕJ )

J2(z) = sech[c0 ±
√

3(z − z0)] sin(ϕJ )

S1(z) = sech[c0 ±
√

3(z − z0)] cos

(
ϕJ ± 2π

3

)

S2(z) = sech[c0 ±
√

3(z − z0)] sin

(
ϕJ ± 2π

3

)

S3(z) = J3(z).

The knowledge of these trajectories for the integrable case can
be used to make more efficient the search of the attraction SOP
for the nonintegrable model, at least for small values of �.

The fact that the equations for the full stable and unstable
manifolds for the integrable model have the same structure as
those for the linearized nonintegrable model can be explained
by showing that the equations of motion of the integrable
model restricted to the stable and unstable manifold can
be transformed into linear equations. Indeed, they can be
written as

dJ3

dz
= ±

√
3
(
1 − J 2

3

)
dJ1

dz
= −J3(J2 + 2S2)

dJ2

dz
= J3(J1 + 2S1)

dS1

dz
= J3(S2 + 2J2)

dS2

dz
= −J3(S1 + 2J1)

S3 = J3.

Making the change of variables z′ := ∓ ∫
dzJ3(z), we obtain

dJ1

dz′ = (J2 + 2S2)

dJ2

dz′ = −(J1 + 2S1)

dS1

dz′ = −(S2 + 2J2)

dS2

dz′ = (S1 + 2J1),

which have exactly the same form as the linearized equations
(15).
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