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In this paper, we theoretically investigate the displacement and momentum fluctuations spectra of the movable
mirror in a standard optomechanical system driven by a finite-bandwidth squeezed vacuum light accompanying
a coherent laser field. Two cases in which the squeezed vacuum is generated by degenerate and nondegenerate
parametric oscillators (DPO and NDPO) are considered. We find that for the case of finite-bandwidth squeezed
vacuum injection, the two spectra exhibit unique features, which strongly differ from those of broadband squeezing
excitation. In particular, the spectra exhibit a three-peaked and a four-peaked structure, respectively, for the
squeezing injection from DPO and NDPO. Besides, some anomalous characteristics of the spectra such as
squeezing-induced pimple, hole burning, and dispersive profile are found to be highly sensitive to the squeezing
parameters and the temperature of the mirror. We also evaluate the mean-square fluctuations in position and
momentum quadratures of the movable mirror and analyze the influence of the squeezing parameters of the
input field on the mechanical squeezing. It will be shown that the parameters of driven squeezed vacuum affects
the squeezing. We find the optimal mechanical squeezing is achievable via finite-bandwidth squeezed vacuum
injection which is affected by the intensity of squeezed vacuum. We also show that the phase of incident squeezed
vacuum determines whether position or momentum squeezing occurs. Our proposed scheme not only provides
a feasible experimental method to detect and characterize squeezed light by optomechanical systems, but also
suggests a way for controllable transfer of squeezing from an optical field to a mechanical oscillator.
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I. INTRODUCTION

Over the past decade, we have witnessed enormous and
rapid progress in the field of cavity quantum optomechan-
ics, the field of research exploring the coupling of optical
radiation to mechanical motion from both theoretical and
experimental points of view (for a recent review, see, e.g.,
[1]). This field has emerged as an ideal platform to explore the
applicability of quantum mechanics to systems of much larger
sizes and masses than the atomic and particle scales thanks
to sophisticated experiments, including the cooling of the
mechanical motion down to the quantum ground state [2–4],
the detection of quantized mechanical motion [5,6], coherent
state transfer between cavity and mechanical modes [7,8], the
realization of squeezed light [9,10], and the preparation of
mechanical squeezed state [11–13]. Interestingly, the explo-
ration of quantum features in optomechanical systems has not
only led to the development of novel applications, but also
opened new insights into the fundamental properties of nature.
The examples include precision measurements [14–16], the
development of hybrid systems [17], probing open quantum
system dynamics [18], quantum information processing [19],
and probing the interface between quantum mechanics and
gravity [20].

Quantum squeezing of a mechanical oscillator, charac-
terized by an uncertainty of a single motional quadrature
(position or momentum) beyond the standard quantum limit,
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is one of the key macroscopic quantum effects that can be
utilized to investigate the quantum to classical transition and
to improve the precision of quantum measurements such as
the detection of gravitational waves [21,22]. Although only a
few experimental realizations have been reported very recently
[11–13,23–25], many proposals have been put forward to
generate and enhance mechanical squeezing in optomechan-
ical systems. Some examples include the conditional quan-
tum measurements [26,27], parametric amplification [28–35],
coupling a nanomechanical oscillator to an atomic gas [36],
quantum reservoir engineering [37–39], exploiting the peri-
odically modulated driving on the dissipative optomechanical
system [18,40], and squeezing via intracavity nonlinear crystal
[41,42].

Research on the interaction of squeezed light with matter
has been one of the most attractive issues in quantum optics
over the past many years. In particular, considerable attention
has been directed at modifying the radiative properties of
atom via interaction with a squeezed light. The basis for
this attention originates from the prediction of a subnatural
linewidth in the spontaneous emission spectrum of a two-level
atom in a broadband squeezed vacuum bath [43]. This effect
results from the quantum correlations between pairs of photons
in the squeezed vacuum, produced, e.g., by the process of
parametric down-conversion, which lead to reduced quantum
fluctuations in one quadrature of the field driving the atom.
Following from this prediction, a number of other interesting
and novel quantum effects, arising from quantum correlations
and noise reduction in the squeezed vacuum interacting with
an atom, have been studied. Some of these include subnatural
linewidth in resonance fluorescence spectrum [44] as well as in
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weak field absorption spectrum [45], population trapping [46],
anomalous resonance fluorescence [47,48,50], hole burning
and dispersive profiles in the probe absorption spectrum
[49], and linear two-photon excitation [51]. The above-cited
studies have been carried out assuming the squeezed vacuum
to be broadband, i.e., its width to be much larger than
the atomic linewidth and the Rabi frequency of the driving
field. However, experimental realizations of squeezed light by
subthreshold optical parametric oscillators [52–54] indicate
that the bandwidth of the squeezed light is typically of the
order of the atomic linewidth. In this sense, some other
studies have been performed to explore the response of a
two-level atom to a squeezed vacuum excitation with finite
bandwidth [45,55–59]. The results reveal that the atomic
dynamics, radiative properties, and photon statistics of the
emitted radiation exhibit unique features which do not appear
for a broadband excitation.

In comparison with atomic systems, the interaction of
mechanical oscillators with squeezed light has not been
investigated extensively. The relevant investigations are mainly
focused on the generation and enhancement of mechanical
squeezing in an optomechanical cavity by injecting finite-
bandwidth [60] or broadband [37,61] squeezed vacuum light
into the cavity. Aside from the generation of mechani-
cal squeezing, injecting the optomechanical systems with
squeezed light may lead to the entanglement between two
separate nanomechanical oscillators [62,63] and electromag-
netically induced transparency [64]. It should be noted that
in atomic systems, quantum coherent control of mechanical
motion is state of the art [65]. In contrast, the fabricated
nanomechanical and micromechanical resonators extend this
level of control to a different realm, of objects with large
masses and of devices with a great flexibility in design and the
possibility to integrate them in on-chip architectures.

In this paper, the response of a movable mirror in
an optomechanical cavity to degenerate and nondegenerate
parametric oscillators (DPO and NDPO) finite-bandwidth
squeezed vacuum states as input probe fields is investigated
and the results are compared to the case of broadband squeezed
vacuum injection. In particular, the effects of the bandwidth
and squeezing parameters of the squeezed vacuum input on the
displacement and momentum fluctuations spectra as well as
the mechanical squeezing of the movable mirror are analyzed.
We show that a squeezed vacuum of bandwidth smaller than
the cavity decay rate induces certain effects that are unique
to finite-bandwidth excitations and the quantum nature of
squeezed light. We show some anomalous features such as
pimple, hole burning, and dispersionlike profile in the spectra
of the movable mirror which has not yet been studied in
optomechanical systems.

We also study the role of mirror temperature in the
appearance or suppression of these features. We find that
when hole burning appears, the two-photon correlation of the
incident squeezed vacuum is transferred to the spectral density
of movable mirror, and accordingly one can use the optome-
chanical cavity for detecting the two-photon correlation in the
driving squeezed vacuum.

We also examine the squeezing of the position and
momentum quadratures of the movable mirror and analyze
how the mechanical squeezing is affected by the squeezing

FIG. 1. Schematic description of the system under consideration.
An oscillating mirror with frequency ωm is coupled via radiation
pressure to the cavity field of frequency ω0. The cavity is driven
by a laser of frequency ωc, accompanying a much weaker squeezed
vacuum field with central frequency ωs .

parameters as well as the type (DPO or NDPO) of the
squeezed vacuum input. The results reveal that the maximum
mechanical squeezing occurs for the case of finite-bandwidth
DPO squeezed vacuum input.

The remainder of the paper is structured as follows. In
Sec. II, we introduce the physical model of the system under
consideration, give the quantum Langevin equations, and
obtain the steady-state mean values of the relevant dynamical
variables. In Sec. III, we consider the spectra of small
fluctuations in the position and momentum quadratures of the
oscillating mirror and then, in Sec. IV, we derive the analytical
forms of the mirror displacement and momentum spectra for
both cases of DPO and NDPO squeezed vacuum input fields.
We devote Sec. V to analyze in detail the displacement and
momentum spectra as well as the mechanical squeezing of
the movable mirror. Finally, we summarize our conclusions in
Sec. VI.

II. PHYSICAL MODEL

As depicted in Fig. 1, we consider a standard optome-
chanical cavity where the cavity mode is an optical harmonic
oscillator with frequency ω0, coupled to an oscillating mirror
with frequency ωm and damping rate γm. The cavity mode
is driven by a strong pump laser field of frequency ωc and
amplitude εc through the fixed mirror. We further assume
that the cavity is fed with a weak squeezed vacuum field at
frequency ωs = ωc + ωm. The Hamiltonian of the system in a
reference frame rotating at the laser frequency can be written
as

H = ��0a
†a + �ωm

2
(p2 + q2) − �g0a

†aq + i�εc(a† − a).

(1)

In the above Hamiltonian, the first and the second terms,
respectively, indicate the cavity mode energy (described by
the creation and annihilation operators a† and a) and the
mechanical mode energy (described by the dimensionless
displacement and momentum operators q and p and mass
m). The third term describes the interaction between the
mechanical oscillator and the cavity mode with single-photon

coupling strength g0 = ω0
L

√
�

2mωm
. Here, L is the cavity

length in mechanical equilibrium. Finally, the fourth term
corresponds to the driving of the intracavity mode with the
input laser. We also introduce the amplitude of the pump field

εc =
√

2κP
�ωc

where κ is the cavity decay rate through its input
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port and P is the input laser power. Moreover, �0 = ω0 − ωc

denotes the cavity-pump detuning.
The full dynamics of the system is described by the set of

the following nonlinear quantum Langevin equations:

q̇ = ωmp, (2a)

ṗ = −ωmq + g0a
†a − γmp + ξ, (2b)

ȧ = −i�0a + ig0qa + εc − κa +
√

2κain, (2c)

where ξ is the Brownian noise operator which describes the
heating of the mirror by its thermal environment at temperature
T and ain is the optical input noise operator.

The steady-state solutions of the quantum Langevin equa-
tions in the classical limit can easily be found to be

as = κ − i�

�2 + κ2
εc, (3a)

qs = g0

ωm

|as |2, (3b)

ps = 0, (3c)

where � = �0 − g0qs is defined as the effective detuning
of the cavity.

III. SMALL FLUCTUATION DYNAMICS

Since we consider the pump laser field is strong and
the squeezed vacuum field is weak enough, the classical
solution is a strong value and the quantum mechanics acts
like a damped fluctuation (noise), therefore, we can use the
linearized description to examine the fluctuation dynamics of
the oscillating mirror under the influence of the input noises
and decompose each operator in Eqs. (2a)–(2c) as the sum of its
classical steady-state value, given by the set of Eqs. (3a)–(3c),
and a small fluctuation,

a = as + δa, q = qs + δq, p = ps + δp. (4)

In this manner, the linearized quantum Langevin equations for
the fluctuation operators can be written in the compact matrix
form

u̇ = Mu(t) + n(t), (5)

where the vector of fluctuation operators is u(t) =
(δq,δp,δx,δy)T , and the corresponding vector of noises is
given by n(t) = (0,ξ,

√
2κδxin,

√
2κδyin)T . Here, we have

defined the cavity-field quadratures as δx = (δa + δa†)/
√

2
and δy = i(δa† − δa)/

√
2 and the input noise quadratures as

δxin = (δain + δa
†
in)/

√
2 and δyin = i(δa†

in − δain)/
√

2. Fur-
thermore, the drift matrix M is given by

M =

⎛
⎜⎝

0 ωm 0 0
−ωm −γm g 0

0 0 −κ �

g 0 −� −κ

⎞
⎟⎠, (6)

where g = √
2g0as is the light-enhanced optomechanical

coupling for the linearized regime. The steady state associated
with Eq. (5) is reached when the system is stable, which
occurs if and only if all the eigenvalues of the matrix M

have a negative real part. These stability conditions can be

obtained, for example, by using the Routh-Hurwitz criteria
[66]. Since we are interested in the spectrum of fluctuations in
displacement and momentum of the movable mirror, it is more
convenient to work in the frequency domain. To this end, we
write Eq. (5) in the Fourier space by using

f (t) = 1

2π

∫ +∞

−∞
dω e−iωtf (ω), (7)

f †(t) = 1

2π

∫ +∞

−∞
dω e−iωtf †(−ω), (8)

and solve it to get the following expressions for the displace-
ment and momentum fluctuations of the movable mirror

δq(ω) = F1(ω)ξ (ω) + F2(ω)δa†
in(−ω) + F3(ω)δain(ω), (9a)

δp(ω) = E1(ω)ξ (ω) +E2(ω)δa†
in(−ω) + E3(ω)δain(ω), (9b)

where

F1(ω) = ωm

d(ω)
{(κ − iω)2 + �2}, (10a)

F2(ω) = gωm

√
κ

d(ω)
{κ + i(� − ω)}, (10b)

F3(ω) = F ∗
2 (−ω), (10c)

El(ω) = − iω

ωm

Fl(ω) (l = 1,2,3), (10d)

d(ω) = [�2 + (κ − iω)2]
(
ω2

m − ω2 − iωγm

) − g2ωm�.

(10e)

In each of Eqs. (9a) and (9b), the first term involving ξ (ω)
originates from the thermal noise of the movable mirror, while
the other two terms involving the contribution of the optical
input noise δain(ω) arise from the radiation pressure. In the
absence of the radiation pressure coupling, the moving mirror
undergoes pure Brownian motion with a Lorentzian shape
susceptibility with width γm centered about ωm. The optical
input noises cause changes in both the width and central
frequency of the susceptibility and imprint themselves on the
displacement and momentum spectra of the moving mirror.

The symmetrized spectrum of the displacement and mo-
mentum fluctuations of the movable mirror is given by [67]

SF (ω) = 1
2 [SFF (ω) + SFF (−ω)], F = p,q (11)

where SFF (ω) is the Fourier transform of the two time
correlation functions 〈δF (t)δF (0)〉:

SFF (ω) =
∫ +∞

−∞
dt eiωt 〈δF (t)δF (0)〉, F = p,q. (12)

To determine SF (ω), we require the correlation functions of the
noise sources in the frequency domain which will be calculated
in the next section.

IV. OPTOMECHANICAL SYSTEM DRIVEN
BY SQUEEZED VACUUM EXCITATION

To study the response of the optomechanical system to the
driving squeezed vacuum field, it is required to calculate two
physical outputs: the spectral density and the mean square
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of fluctuations of the displacement and momentum of the
movable mirror.

In the system under investigation, the squeezed vacuum
source is assumed to be either a DPO or a NDPO. The output
fields from DPO and NDPO are characterized by the following
correlation functions [68]:

〈δaout(ω)δaout(
)〉 = 2πM(ω)δ(2ωs − ω − 
), (13a)

〈δa†
out(−ω)δa†

out(−
)〉 = 2πM∗(−ω)δ(2ωs + ω + 
), (13b)

〈δa†
out(−ω)δaout(
)〉 = 2πN (−ω)δ(ω + 
), (13c)

〈δaout(ω)δa†
out(−
)〉 = 2π (N (ω) + 1)δ(ω + 
), (13d)

where N (ω) is related to the mean number of photons at
frequency ω, while M(ω) is characteristic of the squeezed
vacuum field and describes the correlation between the two
photons created in the down-conversion process. Furthermore,
the frequencies ω and 
 are measured with respect to a
certain given central frequency. The photon number and
two-photon correlation functions are not independent of each
other but can be shown to satisfy the inequality |M(ω)| �√

N (ω)[N (ω) + 1]. In the case of a coherent (ideal) squeezed
state, such as that produced by an optical parametric oscillator,
the equality holds. The frequency dependence of N (ω) and
M(ω) in the output of an optical parametric oscillator, below
of the threshold, for the ideal DPO is given by [68]

N (ω) = λ2 − μ2

4

[
1

(ω − ωs)2 +μ2
− 1

(ω − ωs)2 + λ2

]
, (14)

M(ω) = eiφ0
λ2 − μ2

4

[
1

(ω − ωs)2 + μ2
+ 1

(ω − ωs)2 + λ2

]
,

(15)

while for the NDPO we have [69]

N (ω) = λ2 − μ2

8

[
1

(ω − ωs − α)2 + μ2

+ 1

(ω − ωs + α)2 + μ2
− 1

(ω − ωs − α)2 + λ2

− 1

(ω − ωs + α)2 + λ2

]
, (16)

M(ω) = eiφ0
λ2 − μ2

8

[
1

(ω − ωs − α)2 + μ2

+ 1

(ω − ωs + α)2 + μ2
+ 1

(ω − ωs − α)2 + λ2

+ 1

(ω − ωs + α)2 + λ2

]
. (17)

The parameters λ and μ are related to the damping rate of
the parametric oscillator cavity κp and the effective pump
amplitude ε of the coherent field driving the parametric
oscillator

λ = κp

2
+ ε, μ = κp

2
− ε, (18)

and φ0 is the phase of the pump field and [70]

ε = E

Ec

κp

2
, (19)

where E is the amplitude of the pump coherent field and
Ec is its threshold value for parametric oscillator. In Optical
Parametric Oscillator (OPO), E is related to the power of
pumping (P ) [71], so the effective pump amplitude is related
to the main physical ratio of input pump power to the critical
power r = P/Pc, and we have ε = √

rκp/2. The observed
critical powers are in the range 10–15 mW (25–30 mW)
for nondegenerate (degenerate) oscillation [70]. The noise
spectrum and the squeezing level of the output light from
OPO is related to ε

κp/2 . When this ratio goes to 1 and therefore
r → 1, the threshold happens in OPO.

It is considerable that Eqs. (14)–(18) are found by applying
standard linearization to the OPO, and they are only valid
sufficiently below of the threshold, that is, when 0 < ε <

κp

2 ,
both λ and μ are positive and λ > μ, and the squeezing values
are not too large.

When the parameters λ and μ are much greater than all other
relaxation rates in the problem, the frequency dependence
of N (ω) and M(ω) can be neglected. This case is referred
to as broadband squeezed vacuum in which there is no
difference between the output fields from DPO and NDPO.
The parameter α = (ω1−ω2)

2 represents the displacement from
the central frequency of the squeezing at which the two-mode
squeezed vacuum is maximally squeezed.

The Brownian noise operator ξ associated with the coupling
of the movable mirror to its thermal environment obeys the
following correlation function [67]:

〈ξ (ω)ξ (ω′)〉 = 4π
γm

ωm

ω

[
coth

(
�ω

2kBT

)
+ 1

]
δ(ω + ω′). (20)

We are now in a position to determine the fluctuation
spectra of the displacement and momentum of the moving
mirror. Considering the parametric oscillator output field,
characterized by the correlation functions (13a)–(13d), as the
optical input noise to the optomechanical cavity and combining
Eqs. (11)–(20), we arrive at the results

Sq(ω) = |F1(ω)|2γm

ω

ωm

coth

(
�ω

2kBT

)

+ |F2(ω)|2N (−ω) + |F2(−ω)|2N (ω)

+ Re[M∗(−ω)F2(ω)F2(−2ωs − ω)

+M(ω)F3(ω)F3(2ωs − ω)]

+ 1

2
[|F2(ω)|2 + |F2(−ω)|2], (21)

Sp(ω) =
(

ω

ωm

)2

|F1(ω)|2γm

ω

ωm

coth

(
�ω

2kBT

)

+
(

ω

ωm

)2 1

2
[|F2(ω)|2N (−ω) + |F2(−ω|2N (ω)]

+ Re

[−ω(−2ωs − ω)

ω2
m

M∗(−ω)F2(ω)F2(−2ωs − ω)

+ ω(ω − 2ωs)

ω2
m

M(ω)F3(ω)F3(2ωs − ω)

]

+ 1

2

(
ω

ωm

)2

[|F2(ω)|2 + |F2(−ω)|2]. (22)
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FIG. 2. (a) The displacement and (b) the momentum spectrum (W/Hz) of the moving mirror for the case of DPO (blue line) and (c) the
displacement and (d) the momentum spectrum (W/Hz) of the moving mirror for the case of NDPO with α = 2κp (black line) versus the
normalized frequency ω/ωm when T = 100 mK and P = 5 mW. The spectrum (W/Hz) for the case of normal vacuum input is plotted for
comparison (red dashed line). The parameters of the squeezed vacuum input are κp = 0.1κ, ε = 0.4κp , and φ0 = 0.

In each of the above two equations, the first term results
from the thermal noise of the movable mirror, the next two
terms involving N (ω) and M(ω) originate from the squeezed
vacuum, and the last term is the contribution of the spontaneous
emission of the input vacuum noise.

In order to investigate the quadrature squeezing of the
moving mirror, we need to evaluate the variances of its
displacement and momentum operators. The mean square of
fluctuations of the displacement and momentum of the mirror
are, respectively, calculated as

〈δq2(t)〉 =
∫ +∞

−∞

dω

2π
Sq(ω), (23a)

〈δp2(t)〉 =
∫ +∞

−∞

dω

2π
Sp(ω). (23b)

The two quadratures q and p satisfy the commutation
relation [q,p] = i, which yields the uncertainty relation
〈δq2〉〈δp2〉 � 1

4 . The mirror motion is squeezed if either 〈δq2〉
or 〈δp2〉 is less than 1

2 .

V. RESULTS AND DISCUSSIONS

A. Displacement and momentum spectra of the moving mirror

In this section, by using Eqs. (10a)–(10e), (21), (22), and
(14)–(17), we numerically evaluate and analyze the spectra
Sq(ω) and Sp(ω) to explore the effects of various physical
parameters, such as the input laser power P , temperature T ,

as well as the parameters associated with the input squeezed
vacuum field, i.e., κp, φ0, and α on the mechanical response
of the moving mirror. As we shall find in the following,
by adjusting these parameters one can effectively control
the displacement and momentum fluctuation spectra. We
analyze our results based on the experimentally feasible
parameters given in [72]. We have, in particular, L = 25 mm,
m = 145 ng, κ = 2π × 215 kHz, ωm = 2π × 947 kHz, and
γm = 2π × 141 Hz. Moreover, the driving laser wavelength
is λ = 2πc

ωc
= 1064 nm and the mechanical quality factor is

Q = 6700. We also consider the resonant case � = ωm, i.e.,
when the optomechanical cooling generated by the laser. It
should be pointed out that depending on whether P/Pc < 1
or P/Pc > 1, where the critical pump power Pc is given

by [73,74] Pc = mωmωc(κ2+ω2
m)[κ−(γm/2)2]

4κg2
0

, the optomechanical

system works in the weak coupling regime of optomechan-
ically induced transparency (OIT) or in the strong coupling
regime of normal-mode splitting (NMS). For the above chosen
experimental parameters, the critical power is about Pc =
3.83 mW. For P = 5 mW and T = 100 mK, we plot the
displacement and momentum spectra of the moving mirror
versus the normalized frequency ω/ωm in Fig. 2 for the cases
when the finite-bandwidth squeezed vacuum input field is
generated by DPO and NDPO, respectively. In each figure, the
result for the case of normal vacuum input (M = 0, N = 0)
is also shown for comparison. As is seen from Fig. 2, in the
case of squeezed vacuum from DPO, the spectrum Sq(ω) has
three peaks while Sp(ω) has a single sharp peak centered at
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FIG. 3. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for DPO (blue line) with various
values of the pumping rate ε: (a) 0.1κp , (b) 0.2κp , (c) 0.3κp , (d) 0.4κp . Here, we set φ0 = π . The spectrum (W/Hz) for the case of normal
vacuum input is plotted for comparison (red dashed line). The other parameters are the same as those in Fig. 2.

ω = ωm. For the NDPO squeezed vacuum input noise, as
shown in Fig. 2(c), we can see a pimple and a hole in the
displacement spectrum of the mirror which are induced by the
two-photon correlation characteristic of the squeezed vacuum
input noise. The appearance of two peaks in the momentum
spectrum [Fig. 2(d)] is a manifestation of the two symmetric
peaks in the two-mode squeezed input noise that are separated
by α with respect to the carrier frequency ωs .

Another interesting feature appears for the same data as of
Fig. 2 but for φ0 = π . In Fig. 3, for a fixed value of the DPO
cavity decay rate (κp = 0.1κ), we change the pumping rate ε

which determines the intensity of the squeezed vacuum. As
is evident from Figs. 3(a) and 3(b), the spectrum displays a

visible dip at the line center; the larger the value of ε[N (ω)],
the deeper is the dip. The origin of the spectral hole burning
is the negative contribution of the third term in Eq. (22) which
is proportional to M(ω) and depends on φ0. This feature may
provide a way of detecting two-photon correlations in very
weak fields. For more explanation, in Fig. 4(a) we have plotted
M(ω) and N (ω) for the parameters given in Fig. 3(a). The
figure shows that the hole burning happens where M(ω) is
negative and has larger magnitude than N (ω). This means
that the correlation between two photons is more than the
correlation of one photon with itself, which is due to the
quantum nature of squeezed light. With increasing ε slightly
to 0.3κp in Fig. 3(c), we see that the hole is replaced by a

FIG. 4. M(ω) (dashed black line) and N (ω) (blue line) versus the normalized frequency ω/ωm for DPO with the parameters of (a) Fig. 3(a)
and (b) Fig. 3(d).
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FIG. 5. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for the NDPO squeezed vacuum
(black line) and the normal vacuum state (dashed red line) as input probe fields: (a) T = 100 mK, α = 5κp , (b) T = 1 mK, α = 5κp , (c)
T = 100 mK, α = 0.5κp . Other parameters are κp = 0.1κ, ε = 0.1κp, φ0 = π , and P = 5 mW.

small pimple. The reason for this change in the spectral line
is that as N (ω) increases, its value gets closer to the value
of M(ω) and the positive contribution of the second term of
Eq. (22) compensates the negative contribution (originated
from the two-photon correlation characteristic of the squeezed
vacuum input noise) or even becomes larger than it, as shown
in Fig. 3(d). Although for ε = 0.4κp Fig. 4(b) shows that
|M(ω)| = N (ω) over the range of considered frequencies, the
spectrum Sp(ω) has a pimple [see Fig. 3(d)]. The reason for
this is that due to the radiation pressure contribution, the
term involving N [the second term in Eq. (22)] becomes
predominant over the term involving M [the third term in
Eq. (22)]. In the other case, if we consider ε/κp = 0.2 [similar
to Fig. 4(b)], by increasing the bandwidth of input squeezed
field (from 0.1κ to 0.3κ), the width of dip increases and finally
the dip disappears.

It is worth pointing out that the hole and pimple profiles
of the spectrum are induced by the two-photon correlation
character of the squeezed vacuum. However, they are more
visible if the thermal noise is reduced. One can show that the
dip of the holes and the height of the pimples are modified
with changing the environment temperature T . As expected, if
we increase the environment temperature, the unusual profiles
disappear and, eventually, the spectral line becomes identical
to the case associated with the normal vacuum injection.

In Fig. 5, we can recognize the manifestation of unusual
shapes in the momentum spectral density for NDPO squeezed
vacuum. As is seen from Fig. 5(a), at T = 100 mK and for
α = 5κp, the two cases of normal vacuum and NDPO squeezed
vacuum inputs result in a completely identical spectrum
Sp(ω). In this situation, the radiation pressure coupling is
not so strong to overcome the effect of thermal noise of the
moving mirror. With decreasing the environment temperature
to T = 1 mK, the hole burning happens and two holes
appear around the central squeezing frequency ωs . Although
the thermal noise effectively prevents the hole burning,
with reducing the intermode frequency separation α, this
phenomenon appears even when the temperature T is raised
[see Fig. 5(d)].

By the above numerical results, we have shown that how
the quantum nature of finite-bandwidth squeezed vacuum
manifests itself in the unusual spectral features of the mirror.

At this point, it is interesting to address the question as to
whether or not such features persist for the infinite-bandwidth
case. For this purpose, we fix the maximum value of photon
number N (ω) (with ε = 0.01κ) and compare the spectral
features of the moving mirror for squeezed vacuum of finite
bandwidth (κp = 0.1κ) with those for infinite bandwidth
(κp = κ). In Fig. 6, the momentum spectrum of the moving
mirror is plotted for both cases of DPO and NDPO squeezed

FIG. 6. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for the case of finite-bandwidth
squeezed vacuum with κp = 0.1κ (blue line), infinite-bandwidth squeezed vacuum with κp = κ (black dashed-dotted line), and normal vacuum
(dashed red line) for (a) DPO and (b) NDPO. Here, we have set ε = 0.01κ , φ0 = π , α = 0.3κ , T = 1 mK, and P = 5 mW. Other parameters
are the same as those in Fig. 2.
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FIG. 7. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for the case of DPO squeezed
vacuum input with various values of the phase φ0: (a) 0.75π , (b) 0.85π , and (c) 0.95π (blue line). The spectrum (W/Hz) for the case of
normal vacuum input is plotted for comparison (red dashed line). Here, we have set κp = 0.1κ , ε = 0.3κp , T = 1 mK, and P = 1 mW. Other
parameters are the same as those in Fig. 2.

vacuum inputs. As is seen, the spectral hole burning is not
visible for the broadband squeezed vacuum input.

In the investigation of interaction between a two-level atom
and the squeezed vacuum, it has been shown [49,75,76] that
the fluorescence spectrum exhibits a dispersivelike profile
which is associated with nonclassical characteristic of the
squeezed vacuum. Here, we address the question as to whether
or not such an anomalous feature can be observed in the
spectra of the mechanical spectrum. The numerical analysis
reveals that in the strong coupling regime of NMS neither
the displacement nor momentum spectrum of the movable
mirror exhibits the dispersive profile. However, in the weak
coupling regime of OIT and when the thermal noise is small
and quite negligible, the nonclassical nature of the squeezed
vacuum can manifest itself in another anomalous spectral
feature, i.e., the phase-sensitive narrow dispersivelike profile
for the momentum spectrum of the mirror. This feature has
been shown in Fig. 7 where we have plotted Sp(ω) against
ω/ωm for the case of DPO squeezed vacuum input with
different values of φ0 and for P = 1 mW and T = 1 mK.
In Fig. 8, we illustrate how the amplitude of the squeezed
vacuum input affects the dispersive profile. In Fig. 8(a), we
do not see the unusual profile but with increasing |ε|, N

(the photon number of squeezed vacuum) increases and disper-
sive profile appears. Numerical analysis shows that unlike the
hole burning which is pronounced for small values of N , the

dispersive profile appears for N > 1. A similar result has been
obtained for the interaction of a two-level atom with squeezed
vacuum [75].

Now, we examine the response of the mechanical oscillator
when the pump laser power P increases. Figures 9 and 10 show
the effect of the damping rate of the parametric oscillator cavity
κp on the momentum spectrum of the movable mirror Sp(ω) for
DPO and NDPO squeezed vacuum inputs, respectively, when
P = 20 mW and ε = 0.1κp. For the case of normal vacuum
input (red dashed line), two-mode splitting is observed. This
is because with increasing P , the optomechanical coupling
is strengthened and the usual NMS into two modes appears.
Figure 9(a) shows that when the optomechanical cavity is
driven by a finite-bandwidth squeezed vacuum with small κp

(κp = 0.1κ), a pimple appears at ω = ωm in the momentum
spectrum for the case of DPO squeezed vacuum input (NMS
into three modes), while Fig. 10(a) indicates that for the NDPO
case the spectrum exhibits two pimples around ω = ωm (NMS
into four modes). The three-mode (four-mode) splitting is
associated with the mixing among the vibrational mode of
the moving mirror, fluctuations of the cavity field around
the steady state, and fluctuations of the single-mode DPO
(two-mode NDPO) squeezed vacuum. With increasing κp,
the squeezed vacuum bandwidth, and the width of pimple
increase and the pimples in both spectra associated with DPO
and NDPO are suppressed [Figs. 9(b) and 10(b)]. In the

FIG. 8. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for the case of DPO squeezed
vacuum with φ0 = 0.85π, κp = 0.1κ , and different values of |ε|: (a) 0.1κp , (b) 0.4κp (blue line). The red dashed line shows the spectrum
(W/Hz) for the case of normal squeezed vacuum input. Other parameters are the same as those in Fig. 2.
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FIG. 9. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for DPO squeezed vacuum (blue
line) as input probe field, with different values of κp: (a) 0.1κ , (b) 0.5κ , and (c) 10κ (broadband squeezed vacuum). Other parameters are
ε = 0.1κp, φ0 = 0, P = 20 mW, and T = 100 mK. The red dashed line shows the spectrum (W/Hz) for the case of normal squeezed vacuum
input.

broad-bandwidth limit (κp = 10κ), as is seen from Figs. 9(c)
and 10(c), the pimples completely disappear and, as expected,
the momentum spectra are identical for both cases of DPO and
NDPO squeezed vacuum inputs.

B. Mechanical squeezing

In this section, we consider the quantum fluctuations in the
momentum and displacement quadratures of the movable mir-
ror to investigate the mechanical squeezing and its dependence
on different parameters of the system under consideration.
In Fig. 11, we have plotted the variance 〈δp2〉 as a function
of normalized detuning �0/ωm for μ = 0.2κp with different
values of κp. As is seen from Fig. 11(a), in the case of
DPO squeezed vacuum input the momentum squeezing occurs
(〈δp2〉 < 1

2 ) for both finite- and infinite- (similar to results in
[61]) bandwidth cases. However, with increasing the squeezed
vacuum bandwidth (i.e., increasing κp), the maximum amount
of momentum squeezing increases, while the range of �0

over which the momentum squeezing appears is decreased.
Furthermore, the figure shows that the optimal momentum
squeezing is obtained via tuning �0 around ωm. Figure 11(b)
reveals that the same results hold for the case of NDPO
squeezed vacuum input with the only difference that there
is no momentum squeezing for finite-bandwidth squeezed

vacuum excitation. In Figs. 11(c) and 11(d), we have examined
the effect of the amplitude ε of the coherent field driving
the parametric oscillator on the momentum squeezing of the
movable mirror. Figures 11(c) and 11(d) illustrate the behavior
of 〈δp2〉 as a function of κp/κ for the DPO and NDPO squeezed
vacuum inputs, respectively, with different values of ε. As
can be seen, for a given value of ε, the optimal momentum
squeezing occurs for κp < 2κ and with increasing the ratio
κp/κ the momentum fluctuations increase (similar to results
in [60]). Moreover, the momentum squeezing is enhanced as
the squeezing level (ε/κp) increases.

In Fig. 12, the effect of the phase φ0 of squeezed vacuum
field on the mechanical squeezing of the movable mirror is il-
lustrated. In Fig. 12(a), we present the plots of 〈δp2〉 (solid line)
and 〈δq2〉 (dashed line) against φ0 when the optomechanical
cavity is driven by DPO squeezed vacuum light. We find that
the momentum squeezing appears for φ0 > 0.78π while the
displacement quadrature exhibits squeezing for φ0 < 0.12π .
Thus, controlling the phase φ0 provides the possibility of
squeezing transfer from the squeezed vacuum driving field
to the momentum or displacement quadratures of the moving
mirror. Figures 12(b) and 12(c) illustrate, respectively, 〈δp2〉
and 〈δq2〉 as functions of φ0 for the case of NDPO squeezed
vacuum input with different values of the parameter α. As can
be seen, for both momentum and displacement quadratures,

FIG. 10. The momentum spectrum (W/Hz) of the moving mirror versus the normalized frequency ω/ωm for NDPO squeezed vacuum
(black line) as input probe field for different values of κp: (a) 0.1κ , (b) 0.5κ , (c) 10κ (broadband squeezed vacuum). Other parameters
are ε = 0.1κp, α = 0.2κ, φ0 = 0, P = 20 mW, and T = 100 mK. The red dashed line shows the spectrum (W/Hz) for the case of normal
squeezed vacuum input.
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FIG. 11. The mean-square fluctuations in momentum of the movable mirror versus the normalized detuning �0/ωm for (a) DPO, and
(b) NDPO squeezed vacuum as input probe fields with different values of κp (with α = 0.5κ, ε = 0.3κp), and versus κp

κ
for (c) DPO (d) NDPO

squeezed vacuum inputs with different value of ε. Here, we have set α = 0.5κ, φ0 = π, P = 5 mW, T = 1 mK.

the optimal squeezing appears for small values of α; the
smaller is the intermode separation, the less is the minimum
value of mechanical fluctuations. In addition, similar to the
case of DPO squeezed vacuum input, the momentum and
displacement squeezing occur for small and large values of the
phase φ0, respectively. For the investigation of the squeezing
level of mechanical oscillator, one can obtain the mechanical
covariance matrix and find the variance of the maximally
squeezed and antisqueezed quadratures as its smallest and
largest eigenvalues [41].

Finally, we examine the effect of the pump laser power P on
the mechanical squeezing of the moving mirror. In Figs. 13(a)
and 13(b), we have plotted 〈δp2〉 versus the power P for the
DPO and NDPO finite-bandwidth squeezed vacuum inputs,
respectively. We find that with increasing the pump laser
power, the momentum fluctuations of the mirror decrease.
The optimal momentum squeezing for the case of DPO
(NDPO) squeezed vacuum is achieved around P = 10 mW
(P = 6 mW). The figures also show that unlike the case of
NDPO, the momentum squeezing persists at high powers of

FIG. 12. The mean-square fluctuations in (a) displacement and momentum of the movable mirror for the case of DPO squeezed vacuum
input with ε = 0.3κ , (b) momentum, and (c) displacement of the movable mirror for the case of NDPO squeezed vacuum input with
ε = 0.47κ, α = 0.5κ , and different values of α versus the squeezing phase φ0. Other parameters are κp = κ, P = 5 mW, T = 1 mK.
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FIG. 13. The mean-square fluctuations in momentum of the movable mirror versus pump laser power (P ) for (a) DPO and (b) NDPO
squeezed vacuum input. Here, we have set κp = κ , ε = 0.3κ, α = 0.3κ , φ0 = π , and T = 1 mK.

the pump laser when the optomechanical cavity is driven by
DPO squeezed vacuum.

VI. CONCLUSIONS

In conclusion, we have investigated the response of a
mechanical oscillator in an optomechanical cavity driven by
a finite-bandwidth squeezed vacuum excitation generated by
a DPO or a NDPO. By using the quantum noise approach,
we have analyzed the effects of the bandwidth and squeezing
parameters of the squeezed vacuum input on the displacement
and momentum fluctuations spectra as well as the mechanical
squeezing of the movable mirror. Our results interestingly
show that even for small squeezing bandwidths, the spectra
of the mechanical oscillator exhibit anomalous features that
are unique to the quantum nature of squeezed light. In this
respect, we have shown that pimple, hole burning, narrowing
of the spectral line and dispersive profile can be observed
in the mechanical spectra. These phenomena have previously
been observed in the spectra of a two-level atom interacting
with squeezed vacuum. We have found that the squeezing
parameters as well as the mirror temperature affect the hole
burning, and the phase of driving squeezed vacuum plays
a key role in the appearance of dispersive profile which
appears at high intensities of the squeezed vacuum input.

When the hole burning appears, the two-photon correlation of
the driving squeezed vacuum is transferred to the mechanical
spectra of the movable mirror. We have also found that
in the case of finite-bandwidth NDPO squeezed vacuum
input when the pump laser power increases two pimples
appear in the momentum spectrum around the squeezing
carrier frequency ωs , indicating the two-mode nature of the
driving squeezed vacuum. For the case of DPO squeezed
vacuum input, only one pimple appears at frequency ωs . These
features strongly depend on the squeezing bandwidth and do
not extend into the regime of broadband squeezed vacuum
excitation.

We have also studied the mean-square fluctuations in
displacement and momentum of the movable mirror. In certain
situations, the squeezing of the input probe field is transferred
to the mirror. We have investigated the effect of intrinsic
properties of squeezed light (κp,ε,α,φ0) on the squeezing
of the mechanical oscillator. It has been shown that the
optimal squeezing occurs in the finite-bandwidth regime. In
addition, the results show that depending on the value of the
squeezing phase φ0, the input squeezing can be transferred into
the momentum or displacement quadrature. To sum up, the
obtained results clearly show that an optomechanical system
can be potentially considered as a good candidate for detection
and characterization of squeezed light.
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