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Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion
quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with
interactions mapped onto a SU(2) ⊗ SU(2) group structure. Using the correspondence of the method of simulating
a 3 + 1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily
obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation
feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies
the SU(2) ⊗ SU(2) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an
adaptive platform for computing the quantum entanglement between the internal quantum subsystems which
define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum
entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to
its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters
simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which,
in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic
quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an
overall suppression of the quantum entanglement.
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I. INTRODUCTION

The experimental engineering of trapped ion platforms
adapted for detecting local quantum correlations, simulating
open-system dynamical maps, building microwave quantum
logic gates, and measuring quantum phase transitions [1–5]
have raised the state-of-the-art in producing nanotechnologies
up to a novel and challenging baseline.

Since it simulates several quantum effects as they were
driven by a Dirac-like Hamiltonian [6–9], on the theoretical
front, the trapped ion physics has also worked as a convenient
operational tool for testing the interface between the relativistic
quantum mechanics and the solid-state physics. Through the
map of a Jaynes-Cummings Hamiltonian dynamics onto a
SU(2) ⊗ SU(2) group structure, the ion-trap technology has
provided a novel routine to phenomenologically access and
manipulate the interface between the trapped ion physics
and the relativistic quantum mechanics of the Dirac equa-
tion [10–12]. For instance, trapped ion interacting Hamilto-
nians once mapped onto the structure of the Dirac equation
can straightforwardly reproduce typical quantum effects of
relativistic nature, such as the zitterbewegung or trembling
motion [6], the Klein paradox [7], or even the spinor-motion
correlation inherent to the tachyonic dynamics [13]. Moreover,
quantum correlations between SU(2) ⊗ SU(2) internal degrees
of freedom of intrinsic parity and spin polarization of Dirac
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particles [14,15] [corresponding to SU(2) ⊗ SU(2) bispinors]
can work as an efficient quantifier of two-qubit entanglement
of trapped ion structures.

The creation and manipulation of entanglement through
Jaynes-Cummings interactions can also be relevant for the
implementation of quantum algorithms [16] and for the
characterization of classical-to-quantum transitions [17]. For
instance, when a Dirac oscillator [18] is investigated, the
entanglement between intrinsic degrees of freedom of the
bispinor and its orbital angular momentum is identified by
the entanglement between discrete levels of the ion and their
vibrational degrees of freedom [19], which supports some
signatures of chiral quantum phase transitions [20].

Considering that the Dirac Hamiltonian may be written in
terms of the direct product of two-qubit operators [14,15], the
SU(2) ⊗ SU(2) group structure (cf. the Appendix) involving
such spin-parity internal degrees of freedom exhibits an
energy spectrum associated to two-qubit quantum correlated
states [14]. In particular, the inclusion of additional Dirac-like
global potentials driven by (pseudo)scalar, (pseudo)vector and
(pseudo)tensor interactions can also create novel patterns
of intrinsic SU(2) ⊗ SU(2) quantum correlations as well
as destroy the separability of an eventual free particle,
state [15].

The complete overview of the entanglement driven by
Poincaré classes of SU(2) ⊗ SU(2) coupling potentials [15]
can be specialized for more feasible ionic systems as, for
instance, those that simulate the behavior of the electric dipole
moment of a spin one-half particle in an electromagnetic
field [11,21]. In this case, the Hamiltonian for a neutral
Dirac particle with momentum p and mass m nonminimally
coupled to external electric and magnetic fields, E and B, is
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given by

Ĥ = c α̂ · p + β̂ mc2 + κ β̂ (�̂ · E + i c α̂ · B)

+μ β̂

(
i α̂ · E

c
− �̂ · B

)
, (1)

where κ and μ are, respectively, the electric and magnetic
dipole moments, with bold variables used to denote vectors,
a, with a = | a | = √

a · a, and hats “ˆ” used to denote Dirac
operators. In the above Hamiltonian, β̂ and α̂ ≡ (α̂1,α̂2,α̂3)
are the Dirac matrices that must satisfy the anticommuting
relations {α̂i ,α̂j } = 2 δij Î4, and {α̂i ,β̂} = 0, with i,j = 1,2,3,
and β̂2 = Î4 (where ÎN denotes the N × N identity operator).
Assuming that Dirac matrices are expressed through different
representations interconnected by unitary transformations, one
can consider a particular representation given by

α̂ = σ̂x ⊗ σ̂ ≡
[

0 σ̂

σ̂ 0

]
, and

(2)

β̂ = σ̂z ⊗ Î2 ≡
[
Î2 0
0 −Î2

]
,

where σ are the Pauli matrices, and one identifies the matrices
�̂ = Î2 ⊗ σ̂ as those related to the spin operator given by Ŝ =
�̂/2. For a neutral particle moving on an electrostatic field with
respect to the laboratory frame, B = 0 and the Hamiltonian
from (1) can be simplified into

Ĥ = c α̂ · p + β̂ mc2 + κ β̂ �̂ · E + iμ β̂ α̂ · E
c

, (3)

which can be effectively simulated by Jaynes-Cummings and
carrier interactions between internal ionic states [7]. The above
dynamics can be used to compute the quantum correlational
content of the corresponding two-qubit ionic states.

Given the above-mentioned baselines, the main purpose of
this work is concerned with identifying and quantifying the
entanglement and quantum correlations of internal ionic states
encoded by a Dirac-like bispinor structure. The Hamiltonian
dynamics from Eq. (3) can be reproduced by a suitable trapped
ion setup [11] such that its eigenstates are given in terms of
a superposition of four internal ionic states, which spans the
four-dimensional Hilbert space associated to the Dirac bispinor
discrete degrees of freedom. By suitably mapping the ionic
state basis onto the complete set of four eigenstates of (3) [15],
the dynamics of the ionic states can be entirely described
by the Dirac SU(2) ⊗ SU(2) structure. Then the transition
probabilities between the different internal ionic levels (once
driven by the Dirac-like dynamics) and the entanglement or
separability between states with different angular momenta
can be straightforwardly computed, as well as their origins
can be identified in terms of Dirac-like observables related to
the encoded quantum concurrence between spin polarization
and intrinsic parity. In addition, a connection between the
averaged chirality [22–24] defined as the average value of
the operator γ̂5 = −iα̂x α̂y α̂z, and the quantum concurrence
between spin polarization and intrinsic parity can be evaluated
and re-interpreted in terms of ionic state observables. The
averaged chirality can also be identified as a measurement of
the maximal superposition between two of the four internal
ionic levels. To summarize, a complete prospect of quantum

transitions and quantum entanglement, via quantum concur-
rence, for trapped ion systems driven by Jaynes-Cummings
interactions can be mapped and computed in terms of the
SU(2) ⊗ SU(2) Dirac-like structure, similarly as performed in
Refs. [15,21]. By construction, the SU(2) ⊗ SU(2) spin-parity
quantum correlational content can be interpreted in terms of the
quantum entanglement of two-qubit ionic states for which the
quantum numbers are related to the total angular momentum
and to its projection onto the direction of the trapping magnetic
field.

The paper is therefore organized as follows. In Sec. II,
the correspondence between trapped ion Jaynes-Cummings
interactions and some particular Poincaré classes of SU(2) ⊗
SU(2) coupling potentials is identified. The corresponding
trapped ion state parameters are mapped into a Dirac-like
system in the presence of an electric field, as driven by Eq. (3).
In Sec. III, the Dirac-like eigenstates of (3) are obtained, and
the bispinor entangling properties are preliminarily discussed.
The connection between chirality and measurements of a
maximal superposition between internal ionic states is also
identified. The main results of the paper are obtained along
Sec. IV. The transition probabilities between the internal levels
are calculated, an internal ionic dynamics is recovered, and the
corresponding intrinsic (Dirac-driven) quantum concurrence
as an entanglement quantifier for each time-evolving ionic
state is obtained and confronted with the quantum transition
profile. Our final conclusions are drawn in Sec. V.

II. JAYNES-CUMMINGS HAMILTONIAN INTERACTIONS
MAPPED ONTO THE SU(2) ⊗ SU(2) GROUP STRUCTURE

The simulation of the Dirac Hamiltonian dynamics requires
the confinement of an ion of mass m̃ by an electromagnetic
trap, as, for instance, through a radio-frequency potential in a
Paul trap [25]. The ion oscillates with frequencies νx, νy, νz

along the directions x, y, z such that four metastable internal
ionic states {|a〉, |b〉, |c〉, |d〉} are coupled pairwise with the
ionic motion by an auxiliary electromagnetic field. For a
strongly confined ion engendered by a suitable tuning between
the driven electromagnetic field and the trapping potential,
such a coupling between internal states and the ion motion
is described in the rotating wave approximation (i.e., by
neglecting rapidly oscillating terms) by the Jaynes-Cummings
(JC) and the anti-Jaynes-Cummings (AJC) interactions, re-
spectively, corresponding to red-sideband and blue-sideband
excitations, through the Hamiltonians [25]

Ĥ JC
j = �ηj 
̃j (σ̂+aj e

iφr + σ̂−a
†
j e

−iφr ) + �δj σ̂z (4)

and

ĤAJC
j = �ηj 
̃j (σ̂+a

†
j e

iφb + σ̂−aj e
−iφb ) + �δj σ̂z, (5)

with j = x, y, z, where φr (b) are the red(blue)-sideband
phases, 
̃j are the Rabi frequencies, σ̂+ (−) are the raising
and lowering ladder operators between the corresponding
two internal levels, and ηj = k

√
�/2m̃νj is the Lamb-Dicke

parameter (where k is the wave number of the driving field
and m̃ is the ion mass). The parameter δj is called the detuning
(frequency) between the field and the two-level system. The JC
interaction excites the vibrational level, whereas it de-excites
the internal state. On the other hand, the AJC interaction
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FIG. 1. Pragmatic scheme for the hyperfine levels and corre-
sponding JC (red sideband) and AJC (blue sideband) transitions from
ground states of the alkali ions, such as Mg+, Ca+, Sr+, and Ba+. The
energy levels are identified by atomic labels |F,M〉, where F is the
quantum number for total angular momentum and M is the analogous
for the projection of the angular momentum onto the trap magnetic
field direction. Such a configuration suggests the qubit assignment
introduced by (15).

promotes the excitation of both vibrational and internal levels.
A pictorial scheme for such interactions is shown in Fig. 1. A
third interaction that arises when one considers an ion in the
above trapping regime is the carrier interaction given by the
Hamiltonian [25]

ĤC
j = �
j (σ̂+eiφ + σ̂−e−iφ), (6)

which accomplishes an excitation of the internal levels and
does not change the vibrational state of the ion. The three
interactions—JC, AJC, and carrier ones—are resonances of an
interaction Hamiltonian that describes the coupling between
the external electromagnetic field and the trapped ion when one
considers the regime where the ion wave function extension
is much smaller than 1/k, that is, the so-called Lamb-Dicke
regime [25].

By suitable choices of the driving phases, the combination
of the above-introduced three interactions reproduces the
dynamics of a Dirac Hamiltonian including external fields [6–
8,10,11]. Depending on the dimension of the subjacent space-
time, on the representation of Dirac matrices, and on the
interacting external fields, a particular setup can be used to
engender the Dirac equation dynamics. To map the dynamics
driven by a nonminimal coupling with an electric field,
described by the Hamiltonian (3), the procedure introduced by
Ref. [11] can be straightforwardly evaluated. One first notices
that the Dirac mass term, β̂ mc2, can be mapped into

β̂mc2 → 2�δ
(
σ̂ ad

z + σ̂ bc
z

)
, (7)

where the upper script index denotes the internal levels
involved. As an example, for σ̂ ad

z and σ̂ bc
z , one has

σ̂ ad
z ≡ |a〉〈a| − |d〉〈d| =

⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎤
⎥⎦,

σ̂ bc
z ≡ |b〉〈b| − |c〉〈c| =

⎡
⎢⎣

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤
⎥⎦, (8)

such that σ̂ ad
z + σ̂ bc

z ≡ β̂. Analogously, the momentum term
c α̂ · p can be reproduced by

c α̂ · p → 2η�x
̃
(
σ̂ ad

x + σ̂ bc
x

)
px + 2η�y
̃

(
σ̂ ad

y − σ̂ bc
y

)
py

+ 2η�z
̃
(
σ̂ ac

x − σ̂ bd
x

)
pz, (9)

where, in the same sense of (8), for σ̂ ad
x and σ̂ bc

x , one has

σ̂ ad
x ≡ |a〉〈d| + |d〉〈a| =

⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎦,

(10)

σ̂ bc
x ≡ |b〉〈c| + |c〉〈b| =

⎡
⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎦,

with analogous notation for the additional interactions. The
j th component of the momentum is given in terms of the
vibrational state of the ion by the map

pj → i�

2�j

(a†
j − aj ), (11)

where �j = √
�/2m̃νj is the position spreading of the ion

ground-state wave function. For instance, to simulate the
px term of the Dirac equation one might choose φr =
−π/2 and φb = π/2 into Eqs. (4) and (5). By requiring
space homogeneity, the frequency parameters are constrained
by νx = νy = νz = ν; consequently, 
̃j = 
̃, �j = �, and
ηj = η for all directions (j = x, y, z), such that the free
particle terms of the Dirac equation c p · α̂ + β̂ mc2 shall be
reproduced by the sum of the JC and the AJC interactions,
Eqs. (7) and (9), respectively.

Through a convenient choice of the phase φ, the tensor
and pseudotensor potential terms, κ β̂ �̂ · E and iμ β̂ α̂ · E/c,
are then mapped through two carrier interactions (6) with
frequencies 


(1)
j and 


(2)
j :

β̂�̂ · (κE) → 2�
(1)
x

(
σ̂ ab

x − σ̂ cd
x

) + 2�
(1)
y

(
σ̂ ab

y − σ̂ cd
y

)
+ 2�
(1)

z (σ̂ ab
z − σ̂ cd

z ), (12a)

iβ̂α̂ ·
(

μ
E
c

)
→ 2�
(2)

x

( − σ̂ ad
y − σ̂ bc

y

) + 2�
(2)
y

(
σ̂ bc

x − σ̂ ad
x

)

+ 2�
(2)
z

(
σ̂ bd

y − σ̂ ac
y

)
. (12b)

To use the maps from Eqs. (7), (9), and (12) to reproduce
the Hamiltonian (3), the relations between the observable and
Dirac-like parameters are established by

μ Ej

c
= 2�


(2)
j , κ Ej = 2�


(1)
j ,

(13)
c = 2η�
̃, mc2 = 2�δ,
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through which one identifies a one-to-one correspondence
between the Hamiltonian from (3) and the sum of the
interactions (7), (9), and (12). The Dirac equation with tensor
and pseudotensor potentials is thus simulated by the four
internal levels of the trapped ion, and the eigenstates of (3),
|ψn,s〉 (n, s = 0, 1), are therefore encoded by the superposition
of the internal ionic states,

|ψn,s〉 → Ma
n,s |a〉 + Mb

n,s |b〉 + Mc
n,s |c〉 + Md

n,s |d〉. (14)

Alkali ions such as Mg+, Ca+, and Sr+ exhibit hyperfine
levels that can be used as a platform for the above described
setup. Figure 1 also pictorially illustrates typical hyperfine
levels of the 2s2 S1/2 ground state of such typical alkali ions.
Considering that two intrinsic degrees of freedom are strictly
related to the projection of the total angular momentum F onto
the trapping magnetic field M, one may adopt a two-qubit
assignment to the internal ionic states as

|a〉 ≡ |0 0〉, |b〉 ≡ |0 1〉,
(15)

|c〉 ≡ |1 0〉, |d〉 ≡ |1 1〉,
which shall be used in the following calculations.

III. EIGENSTATES OF THE DIRAC HAMILTONIAN

The systematic engineering of entangled structures involv-
ing the internal ionic levels (described through the corre-
spondence between Dirac-like and the trapped ion systems
introduced in the previous section) demands for a deeper
analysis of a larger class of bispinor interactions [15]. For
some classes of Poincaré invariant Dirac-like interactions,
the Hamiltonian eigenstates may exhibit a naturally entangled
structure which can be directly computed from stationary pure
states. That is not the case of Hamiltonian systems driven by
an electromagnetic field minimal coupling (via p → p − A).

In fact, the invariance of the Dirac equation under Poincaré
transformations restricts the inclusion of additional external
fields to the Dirac Hamiltonian by scalar, pseudoscalar,
vector, pseudovector, tensor, and pseudotensor potentials once
they are typified by their transformation properties [26].
The Hamiltonian (3) includes both tensor and pseudotensor
potentials that describe the nonminimal coupling with an
external constant electric field. In particular, it also exhibits
algebraic properties which allows for obtaining pure states as
Hamiltonian eigenstates [15]. By assuming from this point that
one has set c = � = 1 for simplifying reasons, from Eq. (3),
one has

Ĥ2 = g1 Î4 + 2Ô, (16)

where Ô is a traceless operator given by

Ô = m κ�̂ · E + μβ̂�̂ · ( p × E) − iκβ̂α̂ · ( p × E), (17)

with

Ô2 = 1
4 (Ĥ2 − g1 Î4)2 = g2 Î4 (18)

and

g1 = 1
4 Tr[Ĥ2] = p2 + m2 + (κ2 + μ2)E2,

g2 = 1
16 Tr

[(
Ĥ2 − 1

4 Tr[Ĥ2]
)2]

= m2κ2E2 + (μ2 + κ2)( p × E)2. (19)

By using a simple ansatz (cf. Ref. [15]), one constructs the
corresponding Hamiltonian eigenvalues through the density
operators,

�n,s = 1

4

[
Î4 + (−1)s√

g2
Ô

][
Î4 + (−1)n

| λn,s |Ĥ
]
, (20)

which indeed correspond to pure state solutions of the
stationary Liouville equation [�n,s,Ĥ] = 0. Once the states
from (20) are identified with the pure states that provide
solutions for the Dirac-like equation, i.e., their eigenspinor
solutions, the eigenvalue parameter, λ, can be evaluated by

λn,s = (−1)n
√

g1 + 2 (−1)s
√

g2, (21)

which therefore corresponds to the averaged energy En,s =
Tr[Ĥ �n,s] = λn,s .

By identifying the state given by (20) as a composite
quantum system, one can compute entanglement and addi-
tional quantum correlations between the pertinent subsystems.
For Dirac equation solutions, these quantum correlations are
related to spin polarization and intrinsic parity internal degrees
of freedom, as they have been identified in the context of the
above-mentioned Poicaré invariant external couplings [15].
Therefore, the spin-parity entanglement reflects the SU(2) ⊗
SU(2) bispinor structure of these solutions (cf. the Appendix).

The representation (A7) from the Appendix supports
the interface between relativistic quantum mechanics and
quantum information theory [27], where the discrete degrees
of freedom are associated to a system S composed by two
subsystems, S1 (spin system) and S2 (intrinsic parity system),
embedded into a composite Hilbert space H = H1 ⊗ H2 with
dimH1 = dimH2 = 2. The corresponding bipartite states are
indeed two-qubit states, for which, when external fields are
included into the Dirac dynamics, the correlation content of
bispinors changes. Through the ansatz from (20), the entire
entanglement or correlation content can be obtained.

Quantum entanglement can be read as consequence of
the superposition principle, and it is related to the concept
of separability [28]. A bipartite state described by a density
operator ρ is said to be separable if [28]

ρ =
∑

i

wi σ
(1)
i ⊗ τ

(2)
i , (22)

where σ
(1)
i ∈ H1, τ

(2)
i ∈ H2, and

∑
i wi = 1. If a state is not

separable, then it is entangled. For pure states, the quantum
entanglement can be quantified by the entanglement entropy
EV N [ρ] computed through the von Neumann entropy of a
subsystem [29],

EvN [ρ] = S[ρ2] = −Tr2[ρ2 log2 ρ2]

= S[ρ1] = − Tr1[ρ1 log2 ρ1], (23)
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where the above equality is guaranteed by the Schmidt
decomposition theorem, which asserts that, for pure states ρ,
the reduced density operators, ρ1 (2) = Tr2(1)[ρ], have identical
eigenvalues and, if the state is entangled, then either ρ1(2)

are mixed states [29]. Other entanglement quantifier often
considered is the quantum concurrence, C[ρ], whose definition
is primarily related to the calculation of entanglement of
formation of two-qubit mixed states [30]. For pure states,
concurrence has a simplified formula once it has been
demonstrated that any two-qubit system can be written in the
form of

ρ = 1

4

⎡
⎣I4 + (

σ̂ (1) ⊗ Î
(2)
2

) · a1 + (
Î

(1)
2 ⊗ σ̂ (2)) · a2

+
3∑

i,j=1

tij
(
σ̂

(1)
i ⊗ σ̂

(2)
j

)
⎤
⎦, (24)

where σ̂i are the Pauli matrices, [T ]ij = tij is the correlation
matrix, and a1 (2) are the Bloch vectors of the corresponding
subsystem. For pure states, a2

1 = a2
2 , and the concurrence is

given in terms of the Bloch vectors by

C[�] =
√

1 − a2
1 =

√
1 − a2

2 . (25)

For the correspondence established by (15), the Bloch vector
a2 for the state (20) is given by

a2 = Tr1[�̂�n,s] = (−1)s m√
g2

[
κ E + (−1)n μ ( p × E)

| λn,s |
]
,

(26)

from which the concurrence is evaluated through (25).
Finally, a suitable correspondence between the critical point

values of the averaged chirality and spin-parity entanglement
can be identified [22]. The chirality of an state �n,s is computed
through the average value of the operator γ̂5 = iγ̂0γ̂1γ̂2γ̂3 =
−iα̂x α̂y α̂z ≡ σ̂ (1)

x ⊗ Î
(2)
2 ,

〈 γ̂5 〉 = Tr[ γ̂5�n,s ]. (27)

By following the definitions from Eq. (2), and the corre-
spondence from Eqs. (7)–(10), in terms of the ionic states, one
obtains γ̂5 = |a〉〈d| + |d〉〈a| + |b〉〈c| + |c〉〈b|, such that the
averaged chirality for a pure state can be related to transition
probabilities. Since the probability of measuring a pure state
|ψ〉 in the maximal superposition (|a〉 + |d〉)/√2 is given by

Pad =
∣∣∣∣
( 〈a| + 〈d|√

2

)
|ψ〉

∣∣∣∣
2

(28)

(with an analogous definition for Pcb), after simple math
manipulations, and using the fact that

∑
i=a, ... d

|〈i|ψ〉|2 = 1, one

obtains the following relation:

〈 γ̂5 〉 = 2(Pad + Pcb) − 1. (29)

It means that the averaged chirality is related to the proba-
bilities of measuring the system in maximal superpositions
of {|a〉, |d〉} and {|b〉, |c〉}. In particular, if the quantum state
superposition results into 〈 γ̂5 〉 = −1, one has Pad = Pcb = 0

and one should have a quantum superposition between catlike
states, (|a〉 − |d〉)/√2, and Werner-like states, (|c〉 − |b〉)/√2
[cf. Eq. (15)].

Let one extends such an analysis to the particular configu-
ration of a one-dimensional propagation along the x axis, with
the electric field lying in the plane x-y, for which

E = E(cos θ i + sin θ j ), (30)

with p = p i , in the scenario where p × E = p E sin θ k and
i, j ,k are unitary vectors. In this case, simplified expressions
for g2, λn,s , and for the modulus of the Bloch vector are given
by

g2 = E2[ m2κ2 + (μ2 + κ2) p2 sin2 θ ], (31a)

λn,s = (−1)n[p2 + m2 + (κ2 + μ2)E2 + 2(−1)s

× E
√

m2κ2 + (μ2 + κ2) p2 sin2 θ ]1/2, (31b)

a2
2 = m2

m2κ2 + (μ2 + κ2) p2 sin2 θ

[
κ2 + μ2 p2 sin2 θ

λ2
n,s

]
,

(31c)

and the averaged chirality is given by

〈γ̂5〉 = (−1)n+sm p κ cos θ

| λn,s |
√

m2κ2 + (μ2 + κ2) p2 sin2 θ
. (32)
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FIG. 2. Quantum concurrence, C[ρ] (solid lines), and modulus
of the averaged chirality, |〈γ̂5〉| (dashed lines), for the density matrix
given by Eq. (20) [for one-dimensional propagation according to (30)]
as functions of m/p [in natural units ∼m(c)/p] for θ = π/4 (left
column) and of θ for m/p = 1 (right column). The first and second
rows correspond to s = 0 and 1, respectively. The plots are for
(κ, μ) = (0,1) (black), (1, 0) (dark gray), and (1, 1) (light gray).
Notice that the entanglement is a strictly decreasing function of m/p

that vanishes for m/p → ∞ (nonrelativistic limit). On the other hand,
if p � m, then the state is maximally entangled. For κ = 0, the state
averaged chirality vanishes and, in the converse case, the maximum
point of |〈γ̂5〉| corresponds to an inflection point for the concurrence.
As function of θ , the averaged chirality vanishes for θ = π/2, which
also corresponds to a local critical point for the concurrence. For
instance, the state is separable for κ = 1, μ = 1, and θ = π/2.
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The absolute value of (32) and the concurrence are depicted in
Fig. 2 as functions of m/p (left column) and θ (right column)
for (κ, μ) = (0,1), (1,0), and (1,1). Concurrence is a strictly
decreasing function of m/p and the state is separable in the
nonrelativistic limit, i.e., for m/p → ∞. On the other hand,
for m � p, i.e., in the ultrarelativistic regime, the state is
maximally entangled. The averaged chirality has a maximum
that corresponds to an inflection point of the concurrence. In
the absence of the pseudotensor interaction, i.e., for κ = 0,
〈γ̂5〉 vanishes. The concurrence has a local extreme value for
θ = π/2, such that for κ = 0 the state is separable. For this
value of θ , the chirality always vanishes, as can be directly
inferred from (32).

IV. RECOVERING THE INTERNAL
IONIC STATE DYNAMICS

Once entangling and chiral properties of the states �n,s have
been assigned, the straightforward connection to the dynamics

of the internal ionic states can now be obtained. By following
a step-by-step construction, the coefficients of the quantum
superposition from (14), Mi

n,s (i = a, b, c, d), compose a
matrix M that connects the Dirac bispinor basis, {| ψn,s 〉}
(n,s = 0,1), to the ionic state basis, {| i 〉}. The expressions for
|Mi

n,s | can be obtained by the diagonal elements of the density
operator �n,s , ∣∣Mi

n,s

∣∣ = √
Tr[�n,s |i〉〈i|]. (33)

In the same fashion, the relative phases between |i〉 and |j 〉,
ei�φ

ij
n,s , are extracted from the of-diagonal elements of the

density operator,

ei�φ
ij
n,s = Tr[�n,s |i〉〈j |]∣∣Mi

n,s

∣∣ ∣∣Mj
n,s

∣∣ . (34)

Apart from a global phase factor which has been assumed to be
eiφa , one thus determines the Hamiltonian eigenstates, |ψn,s〉,
as given by

|ψn,s〉 = eiφa
[∣∣Ma

n,s

∣∣ |a〉 + ∣∣Mb
n,s

∣∣ e−i�φab
n,s |b〉 + ∣∣Mc

n,s

∣∣ e−i�φac
n,s |c〉 + ∣∣Md

n,s

∣∣e−i�φad
n,s |d〉]. (35)

By introducing the constraints from Eqs. (30)–(32), the expressions for the superposition coefficients can be written as

∣∣Ma
n,s

∣∣ = 1

2

[
1 + (−1)nm

|λn,s | + (−1)spμ E sin θ√
g2

+ (−1)n+sm(p μ E sin θ + κ2E2)√
g2 |λn,s |

]1/2

, (36a)

∣∣Mb
n,s

∣∣ = 1

2

[
1 + (−1)nm

|λn,s | − (−1)spμ E sin θ√
g2

+ (−1)n+sm(p μ E sin θ + κ2E2)√
g2 |λn,s |

]1/2

, (36b)

∣∣Mc
n,s

∣∣ = 1

2

[
1 − (−1)nm

|λn,s | − (−1)spμ E sin θ√
g2

+ (−1)n+sm(p μ E sin θ + κ2E2)√
g2 |λn,s |

]1/2

, (36c)

∣∣Md
n,s

∣∣ = 1

2

[
1 − (−1)nm

|λn,s | + (−1)spμ E sin θ√
g2

+ (−1)n+sm(p μ E sin θ + κ2E2)√
g2 |λn,s |

]1/2

, (36d)

and the corresponding relative phases are thus given by

e−i�φab
n,s = κ E

4
∣∣Ma

n,s

∣∣ ∣∣Mb
n,s

∣∣
[

(−1)neiθ

| λn,s | + (−1)smeiθ

√
g2

+ (−1)n+s (p sin θ (μ Eeiθ + ip) + eiθ (m2 − p μ E sin θ ))√
g2 | λn,s |

]
, (37a)

e−i�φac
n,s = i κ E

4
√

g2

∣∣Ma
n,s

∣∣ ∣∣Mc
n,s

∣∣
[

(−1)sp sin θ + (−1)n+s m(p sin θ − e−iθ (μ Eeiθ + ip))
|λn,s |

]
, (37b)

e−i�φad
n,s = − i

4 | λn,s | ∣∣Ma
n,s

∣∣ ∣∣Md
n,s

∣∣
[

(−1)n(μ Eeiθ + ip) + (−1)n+sE(p κ2E sin θeiθ + p μ sin θ (μ Eeiθ + ip))√
g2 |λn,s |

]
. (37c)

As expected, from the above expressions, after such
exhaustive math manipulations, one verifies that

∑
i=a, ... ,d

∣∣Mi
n,s

∣∣2 = 1,

which ratifies that the states |ψn,s〉 are all normalized. Of
course, the spinor states are eigenstates of Ĥ, and therefore
their temporal evolution reads (for |ψn,s(t = 0)〉 ≡ |ψn,s〉)

|ψn,s(t)〉 = e−iĤt |ψn,s〉 = e−iλn,s t |ψn,s〉. (38)

Analogously, in order to describe the dynamics of an
internal ionic level, |j 〉, one may write it as a superposition

of bispinor states |ψn,s〉 as

|j 〉 =
∑

(n,s)=0,1

Wj
n,s |ψn,s〉, (39)

where the elements W
j
n,s compose the inverse matrix W =

M−1 such that ∑
(n,s)=0,1

|Wi
n,s |2 = 1.

Notice that the ionic states are not Hamiltonian eigenstates,
and their temporal evolution is given by

| j (t)〉 = e−iĤ | j 〉 =
∑

(n,s)=0,1

Wj
n,se

−iλn,s t |ψn,s〉, (40)
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FIG. 3. Transition probabilities, Pa→a,b,c,d as functions of a
dimensionless parameter p t [in natural units ∼p t(c/�)]. Thick lines
are for m = 0, and thin lines are for m = 1. The plots are for
(κ, μ) = (1,0) (solid lines), (0,1) (dashed lines), and (1,1) (dotted
lines). Since the transition probabilities depend on a combination of
harmonic functions with different frequencies, they do not generally
exhibit an identifiable periodicity. One also notice that for κ = 0
(dashed lines), the probabilities Pa→b and Pa→c are null [as it follows
from Eqs. (37a) and (37b)], and only |a〉 and |d〉 are relevant for the
dynamics.

which, for |j (t = 0)〉 ≡ |j 〉, gives a typical pattern of the
quantum oscillation phenomena for a four-level system. A state
initially prepared as |j 〉 oscillates and can be converted into
other states, |k〉 = |j 〉. By defining the projector P̂k = |k〉〈k|
onto a generic |k〉 ionic state, the probability of measuring the
trapped ion system in such a configurational state is given by

Pj→k(t)

= Tr[|j (t)〉〈j (t)| Pk]

=
∑

(n,s)=0,1

∑
(m,l)=0,1

Wj
n,s Wk

m,l

(
W

j

m,l

)∗(
Wk

n,s

)∗
e−i(λn,s−λm,l )t .

(41)

Figure 3 depicts the survivor probability Pa→a and the
transition probabilities Pa→b,c,d for the state |a(t)〉, as function
of a dimensionless parameter, p t (which in natural units
is p t(c/�)), for θ = π/4. The choice of θ is arbitrary and
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→
i

FIG. 4. Survivor probabilities, Pi→i , for initial states |i〉 = |a〉
(solid lines) and |i〉 = |d〉 (dash-dotted lines) as functions of p t . The
plots are for m = 0 (first plot), which corresponds to the suppression
of the detuning effect due to δ, and for m = 1 (second plot), with
κ = μ = 1.

it does not affect qualitatively the results. Since the ratio
between the self-energies of the Hamiltonian does not define
a rational number, the system oscillates in time without a
definite periodicity. In particular, one notices that for κ = 0
the relative phases e−i�φab

n,s and e−i�φac
n,s vanish [see Eqs. (37a)

and (37b)], thus Pa→c = Pa→d = 0. The survivor probabilities
Pb→b, Pc→c, and Pd→d have exactly the same value as
the survivor probability of |a(t)〉, with an exception for the
electric field interacting configuration where both tensor and
pseudotensor couplings, κ and μ, do not vanish. In this case,
Pa→a = Pb→b = Pc→c are depicted in Fig. 4.

Since Dirac bispinors are identified and quantified as spin-
parity entangled states, the ionic states |j 〉 shall also exhibit a
profile of quantum entanglement.

The energy levels depicted in Fig. 1 and the qubit assign-
ment from (15) suggest the identification of two subsystems:
the former one related to the total angular-momentum quantum
number, F (SF ), and the latter one associated to the projection
of the angular momentum onto the direction of the confining
magnetic field, M (SM ). The energy levels are identified in
agreement with the qubit assignment adopted in (15). Within
such a framework, an internal ionic state |j 〉 will evolve to a
superposition between the four ionic states and shall exhibit
quantum entanglement between SF and SMF

—which may be
detected even from its departing configuration. To quantify
the entanglement along the time evolution of the quantum
system, the ionic quantum state must be rewritten in terms of
the oscillating ionic basis,

| j (t)〉 =
∑

k=a, ..., d

[ ∑
(n,s)=0,1

Wj
n,sM

k
n,se

−iλn,s t

]
|k〉, (42)

such that the Bloch vector aj (t) = Tr[ |j (t)〉〈j (t)| (Î (1)
2 ⊗

σ̂ (2))] can be straightforwardly used to evaluate the quantum
concurrence, C[ρ], by means of (25). The spin-parity entan-
glement is thus translated into the entanglement between the
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FIG. 5. Quantum concurrence, C[ρ], and averaged chirality, 〈γ̂5〉,
as functions of p t for the same set of parameters considered
in Fig. 3 (with the same correspondence to the plotline styles).
As the state is initially prepared like |a〉, for t = 0, the state is
separable. Entanglement oscillates and then it vanishes for some
particular values of p t . For κ = 0 the state is a superposition
between |a〉 and |d〉, and the quantum concurrence varies between
0 and 1 (which indicates that the state is maximally entangled). The
averaged chirality also exhibits an oscillation pattern and it does not
reach its maximum value at unity. In this case, the quantum state
contains a survival component given either by (|a〉 + |d〉)/√2 or by
(|c〉 + |b〉)/√2.

total angular momentum and its projection onto the direction
of the trapping magnetic field.

Finally, the evaluation of the chiral operator γ̂5 is carried
out in the bispinor basis results into

γ̂5 =
∑

(n,s)=0,1

∑
(m,l)=0,1

[
Wa

n,s

(
Wd

m,l

)∗ + Wd
n,s

(
Wa

m,l

)∗

+Wb
n,s

(
Wc

m,l

)∗ + Wc
n,s

(
Wb

m,l

)∗ ] |ψn,s〉〈ψm,l |, (43)

and its average value is associated to measurements on super-
positions between |a〉 and |d〉 and between |b〉 and |c〉 states [cf.
Eq. (29)]. The averaged chirality 〈γ̂5〉(t) = Tr[γ̂5 |a(t)〉〈a(t)|]
and the quantum concurrence C[ρ(t)] are depicted in Fig. 5.
Entanglement oscillates and vanishes for some specific values
of p t . For the vanishing electric dipole moment, κ = 0 (dashed
lines), the state is a superposition between |a〉 and |d〉, and its
concurrence varies from zero, indicating a separable state,
either |a〉 or |d〉, to unity, indicating that the state is the
maximally entangled, |ψmax〉, given by

|ψmax〉 = |a〉 + eiϕ |d〉√
2

. (44)

Differently from transition probabilities, concurrence has
a well-defined oscillation frequency, since, for its evaluation,
one of the quantum system degrees of freedom was traced
out, leaving only the quantum state associated frequencies
that are multiples one of each other. Otherwise, the averaged
chirality also does not present a well-defined oscillation
pattern, vanishing for certain values of p t . It should be
noticed that the averaged chirality does not attain its maximum

value, such that the ionic state should have a component in
(|a〉 + |d〉)/√2 or in (|c〉 + |b〉)/√2. When compared to the
concurrence for electric dipole moment set equal to zero, the
points where concurrence vanishes are exactly the same points
where averaged chirality vanishes, since for such values of p t

the state is either |a〉 or |d〉, for which Pad = 1/2 [cf. Eq. (29)].
On the other hand, the extremum values of the averaged
chirality correspond to the points for which C[ρ] = 1, as for
this points the state has the form of (44), for which Pad has an
extremum.

The preparation and measurement of the setup discussed
above can be accomplished by widely used experimental
techniques. Once the ion vibrational ground state is prepared
by laser cooling, the internal ionic state can be initialized via
optical pumping with a probability larger than 99% [31]. The
optical pumping mechanism drives the atom up to reaching
states inaccessible by the optical driver. Circularly polarized
light is used to pump the atom into one of its levels, and the
initialization fidelity is limited by the quality of the driven
laser polarization [25]. Detection of internal ionic states can
be carried out by the electron shelving method, which consists
in detecting laser-induced fluorescence on an electric dipole
allowed transition [25]. This technique has been used, for
instance, to measure the mean value of the position operator
〈x̂〉 in a quantum simulation of the zitterbewegung effect with
trapped ions by mapping the position state to the internal levels
of the ion [9].

Quantum concurrence cannot be directly measured, since
its definition is given through unphysical operations. Although
entanglement can be detected through some suitable properties
of a given state [32,33], the dynamical evolution of the
degree of entanglement requires a complete knowledge of
the density matrix. This can by achieved by quantum state
tomography [34,35], i.e., the reconstruction of a density matrix
by performing measurements on a large number of copies
of the system. Quantum-state tomography was performed
for several configurations of trapped ions [16,36–42]. It
has included the measurement of ion motion states [38,39],
detection of multipartite entanglement [41], and characteriza-
tion of entanglement for quantum computation and quantum
information purposes [40,42]. Although the quantum-state
tomography allows for reconstructing all density matrix
elements, additional or partial information of state dynamics,
as required for the characterization of the evaluation of average
chirality, might be accomplished by quantum simulation
analogous to that used for measuring the mean value of the
position operator [9,43,44].

V. CONCLUSIONS

Single trapped ions with quantum states driven by Jaynes-
Cummings, anti-Jaynes-Cummings, and carrier interactions
have been treated as a suitable experimental platform for
simulating Dirac-like dynamics, in particular, for Dirac Hamil-
tonians which include external electrostatic potentials. This
simulation method has been used to identify and measure
relativistic-like quantum effects that, in high-energy physics,
are shown to be inaccessible by the current experimental
apparatus. After revealing and explaining how some features,
which are typical from bispinor Dirac-like systems, are related
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to trapped ion physics, some engendered ion configurations
have been prepared for supporting, for example, the detection
of local quantum correlations [1], the simulation of open
quantum systems [2,4], the construction of microwave quan-
tum logic gates [3], and the prediction of the existence of
mesoscopic cat states [45] as well as quantum phase transitions
[5,20].

Incremental issues related to such features, in particu-
lar, those related to the computation of quantum transition
probabilities and quantum entanglement, have been addressed
in this paper. The scenario considered here corresponds to
a Dirac-like system simulated by ion traps for which the
accessible experimental driving variables are mapped into a
relativistic system for Dirac particles nonminimally coupling
to an electrostatic field. Single and coupled effects of Dirac-
like tensor and pseudotensor potentials, as well as the influence
of masslike parameters of the relativistic bispinor, have been
considered at an analysis which was addressed to a one-
dimensional bi-spinor particle propagation in the x direction,
with the electrostatic field lying in the x-y plane. Once
mapped onto trapped ion states, four-level-system transition
probabilities due to typical quantum oscillations have been
analytically obtained, and an oscillation pattern similar to
those involving two- and three-level systems [46,47] has been
identified.

By interpreting each ionic state as a quantum superposition
of two-qubit states, i.e., one qubit associated to the total
angular momentum and the another one associated to the
projection of the angular momentum onto the direction of the
trapping magnetic field, the associated quantum entanglement
has been quantified by means of the quantum concurrence.
The results indicate that quantum entanglement measurements
should exhibit a time-dependent oscillating pattern, such that
it only attains a maximum value in the absence of electric
dipole coupling, i.e., when κ = 0. It has been noticed that an
internal ionic state oscillates between |a〉 and |d〉 states, being
maximally entangled for the state corresponding to a quantum
superposition written as (|a〉 + eiϕ|d〉)/√2. In addition, our
results indicate that carrier interactions associated to κ actively
drive the suppression of the quantum entanglement.

Likewise, the averaged chirality is tested as a quantifier of
the maximal superposition between |a〉 and |d〉 and between
|c〉 and |b〉 ionic levels. In particular, for the case of a vanishing
dipole moment, κ = 0, the modulus of the averaged chirality
and the quantum concurrence are concomitantly null as well
as they have coincident maximal point values. Such a quantum
correlational correspondence between averaged chirality and
quantum concurrence exhibits a similar connection to that
between the time-reversal quantum operator and quantum
entanglement, a point which deserves some subsequent in-
vestigation.

To summarize, measuring relativistic effects in tabletop
experiments has been identified as one of the main purposes
of the quantum simulation of the Dirac equation [6–11]. For
the Dirac dynamics which includes tensor and pseudotensor
potentials [cf. Eq. (3)], single trapped ion platforms work to
measure, for instance, spin precession and degeneracy lifting
in connection with CP violation (present at supersymmetric
models) [11]. A first step towards more complex quantum
simulations of Dirac-like systems has been given in Ref. [9].

Those outstanding results suggest that the entanglement struc-
ture of Dirac bispinors [14,21] can be probed via trapped ions
even if experimental techniques are still underestimated. In that
case, for the trapped ion platforms, the only observable that
can straightforwardly be measured by fluorescence techniques
is σ̂z [cf. Eqs. (4)–(7)]. Otherwise, extra laser pulses can be
used to map other observables onto σ̂z. To determine the
averaged values which are relevant for computing quantum
concurrence and chirality, a novel state-dependent displace-
ment operation has to be engendered, in order to connect
such (theoretical) averaged values with phenomenologically
detectable measures of σ̂z. From the theoretical construction,
the quantum entanglement encoded by the solutions of the
Dirac equation can be simulated even when the ion is prepared
in one of its internal levels. Despite following the above
statements, the connection of such entanglement quantifier
observables with the measurement techniques seems to be
not so trivial and deserves a more careful investigation.
Furthermore, environment effects [29] might be coupled to the
dynamics and simulated by JC interactions [48,49] in order to
include, for instance, decoherence effects.

Finally, the Dirac equation with external fields also de-
scribes low-energy excitation of mono and bilayer graphene
with imperfections [50], such that the formalism and pro-
cedures here discussed can also be employed for a com-
plete characterization of such excitations, which includes the
computation of survivor probabilities and electron-electron or
electron-hole entanglement quantifiers.
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APPENDIX

In terms of Lie algebras and Lie groups, the representations
of sl(2,C) ⊕ sl(2,C) algebra, which correspond to the Lie
algebra of the SL(2,C) ⊗ SL(2,C) group, are irreducible, i.e.,
these representations correspond to tensor products between
linear complex representations of sl(2,C), as observed by
considering the restriction to the subgroup SU(2) ⊗ SU(2) ⊂
SL(2,C) ⊗ SL(2,C). Unitary irreducible representations of
SU(2) ⊗ SU(2) are precisely tensor products between unitary
representations of SU(2). These representations establish
a one-to-one correspondence with the group SL(2,C) ⊗
SL(2,C), and, considering that it is a simply connected
group, a one-to-one correspondence with the algebra sl(2,C) ⊕
sl(2,C).

The existence of inequivalent representations of SU(2) ⊗
SU(2) follows from the above-mentioned one-to-one corre-
spondences. Such representations may not correspond to all
the representations of SL(2,C) ⊗ SL(2,C) [therefore, of the
proper Lorentz transformations that compose the SO(3,1)
group], and, instead, they describe a subset of SO(4) ≡
SO(3) ⊗ SO(3) transformations, for instance, those which
include the group of double covering rotations.
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As the transformations of SU(2) ⊗ SU(2) can be described
by a subset of SL(2,C) ⊗ SL(2,C), one may choose at
least two inequivalent subsets of SU(2) generators, such that
SU(2) ⊗ SU(2) ⊂ SL(2,C) ⊗ SL(2,C), with each generator
having its own irreducible representations (irrep) simbolicaly
described by irrep(suξ (2) ⊕ suχ (2)). Therefore, a spinor ξ

described by ( 1
2 , 0) transforms as a doublet—the object of the

fundamental representation—of SUξ (2) and as a singlet—the
object “transparent” to transformations—of the SUχ (2) group.
By adopting the notation (dim[SUξ (2)],dim[SUχ (2)]), the
spinor ξ is an object given by (2,1). Following the same idea,
the spinor χ , described by (0, 1

2 ), transforms as a singlet of
SUξ (2) and as a doublet of SUχ (2).

With respect to the representations of SL(2,C) one has the
following objects:

(1,1): a scalar or sinlget, with angular momentum projec-
tion j = 0;

(2,1): a spinor ( 1
2 , 0), commonly referred as left-handed,

with angular momentum projection j = 1/2;
(1,2): a spinor (0, 1

2 ), commonly referred as right-handed,
with angular momentum projection j = 1/2;

(2,2): a vector or doublet, with angular momentum projec-
tion j = 0 and j = 1.

The fundamental objects of an irrep can be used to construct
more complex objects. With respect to the representations
of SL(2,C) one may construct, for example, (1,2) ⊗ (1,2) ≡
(1,1) ⊕ (1,3), a representation that composes Lorentz tensors
like

Cαβ(x) = εαβD(x) + Gαβ(x), (A1)

where D(x) is a scalar, and Gαβ = Gβα is totally symmetric, or
even (2,1) ⊗ (1,2) ≡ (2,2), such that (2,2) ⊗ (2,2) ≡ (1,1) ⊕
(1,3) ⊕ (3,1) ⊕ (3,3), which composes Lorentz tensors like

ϕμν(x) = Aμν(x) + Sμν(x) + 1
4gμν�(x), (A2)

which correspond to a decomposition into smaller irreps
related to the Poincaré classes quoted at Ref. [15], with
Aμν ≡ (1,3) ⊕ (3,1) totally antisymmetric by the index in-
terchange μ ↔ ν, Sμν ≡ (3,3) totally symmetric by the index
interchange μ ↔ ν, and � ≡ (1,1) as a Lorentz scalar, which
is multiplied by the metric tensor, gμν .

The above properties support the construction of the
Dirac Hamiltonian dynamics through a group representation
described by a direct product between two algebras which
compose a subset of the group SL(2,C) ⊗ SL(2,C), the group
SU(2) ⊗ SU(2). Majorana, Weyl, and some additional classes
of spinor equations can also be driven by other subsets of
SL(2,C) ⊗ SL(2,C).

In quantum mechanics, the free particle Dirac Hamiltonian
reads

ĤD = α̂ · p̂ + mβ̂, (A3)

where the Dirac operators, α̂ and β̂, have already been
identified by Eq. (2) (now given in natural units, c = � = 1).
For the corresponding state vectors, one writes ψ†(x) =
(ψ†

L(x),ψ†
R(x)) ≡ (2,2), with right-handed and left-handed

spinors,

(2,1) ≡ ψL(x) =
(

ψL1(x)
ψL2(x)

)
,

(A4)

(1,2) ≡ ψR(t) =
(

ψR1(x)
ψR2(x)

)
.

The free-particle Dirac equation is thus mapped by two
coupled differential equations for the ψL(x) and ψR(x),
respectively,

iσμ∂μψL(x) − mψR(x) = 0,

iσμ∂μψR(x) − mψL(x) = 0,

where, in the chiral representation, Î2 ⊗ σ̂ = σμ and Î2 ⊗
(−σ̂ ) = σμ, for which the Lagrangian density reads

L = iψ
†
Lσμ∂μψL + iψ

†
Rσμ∂μψR − m

(
ψ

†
LψR + ψ

†
RψL

)
,

(A5)

from which a correspondence with the spinor helicity is
identified.

An alternative interpretation for the spinors is obtained
when Dirac equation is written in terms of Kronecker products
between Pauli matrices. By the interpretation of quantum
mechanics as a special information theory for particles and
fields, one can identify the Dirac equation solutions as
described by two-qubits states encoded in a massive particle
whose dynamics is represented by continuous variables, which
can be the linear momentum or the position. The α̂ and β̂

matrices written in terms of Pauli matrices reads [14]

α̂ = σ̂ (1)
x ⊗ σ̂ (2),and β̂ = σ̂ (1)

z ⊗ Î
(2)
2 , (A6)

with the subscripts 1 and 2 referring to the qubits 1 and 2.
Within this framework, the SU(2) ⊗ SU(2) representation

of Dirac bispinors is generated by the free Hamiltonian given
in terms of two-qubit operators, HD = σ̂ (1)

x ⊗ ( p · σ̂ (2)) +
m σ̂ (1)

z ⊗ I
(2)
2 , for which the eigenstates are written in terms

of a sum of direct products describing spin-parity entangled
states,

|�s( p, t)〉 = ei(−1)s Ep t |ψs( p)〉

= ei(−1)s Ep tNs(p)

{
|+〉1 ⊗ |u( p)〉2

+
[

p

Ep + (−1)s+1m

]
|−〉1 ⊗ ( p · σ̂ (2)|u( p)〉2)

}
,

(A7)

where s = 0, 1 stands for particle or antiparticle associated fre-
quencies, and the spinor character is given by |u( p)〉s [14,15].
The state |u( p)〉2 is a bispinor that describes the dynamics of
a fermion (in momentum representation) coupled to its spin,
which describes a magnetic dipole moment in the case of a
coupling with an external magnetic field. The state (A7) is a
superposition between parity eigenstates and therefore it does
not exhibit a defined intrinsic parity. For the qubit 1, the kets
|+〉1 e |−〉1 are identified as the intrinsic parity eigenstates of
the fermion. These states are orthogonal, 〈±| ± (∓)〉1 = 1(0),
and one has 〈ψs( p, t)|ψs( p, t)〉 = 〈u( p)|u( p)〉2, where the
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normalization is given by

Ns(p) = 1√
2

(
1 + (−1)s+1 m

Ep

)1/2

, (A8)

such that the local probability distribution for the momenta
is normalized by

∫
d3p 〈u( p)|u( p)〉2 = 1. Thus, one notices

that spinors and Dirac matrices represent the direct product
between the internal degrees of freedom associated to a spin-
1/2 massive fermion, parameterized by its linear momentum.

The total parity operator P̂ acts on the direct product |±〉1 ⊗
|u( p)〉2 in the form of

P̂ (|±〉1 ⊗ |u( p)〉2) = ±(|±〉1 ⊗ |u(− p)〉2),

and, for instance, it corresponds to the product of two opera-
tors: intrinsic parity, P̂ int (with two eigenvalues, P̂ int|±〉 =
±|±〉), and spatial parity, P̂ s [with P̂ sϕ( p) = ϕ(− p)].

By applying P̂ int = β̂ = σ̂ (1)
z ⊗ Î

(2)
2 to |ψs( p, t)〉, following

Eq. (A7), it follows that P̂−1 = P̂ , and the spatial parity

resembles P̂ int, as well as (P̂ int)
2 = Î

(1)
2 ⊗ Î

(2)
2 ,

P̂ s

{
x
p

}
P̂ s = −

{
x
p

}
, and P̂ s

{
l
σ

}
P̂ s = +

{
l
σ

}
, (A9)

where the + and − signals are relative to the axial and polar
vectors, respectively.
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