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We report an alternate type of nonlinear waveguides, photorefractive surface nonlinearly chirped waveguide
arrays, which can be directly induced by photorefractive surface waves in virtue of diffusion and drift
nonlinearities. The amplitude of such nonlinearly chirped waveguide arrays has an apodized envelope owing to
the diffusion nonlinearity. The refractive-index change of the apodized tails converges to a nonzero value which
can be handily adjusted by an external electric field. Moreover, the chirp parameters such as amplitude, sign
(positive or negative), and initial position can be conveniently adjusted by an external electric field, background
illumination, incident beam, etc. Then the guided-wave properties of this type of waveguide arrays are analyzed
by using the transfer matrix method. Owing to the flexible tail and the nonlinear chirp, the dispersion curves of
the index-guided modes can be tailored by an external electric field and the dispersion curves of ordinary and
extraordinary Bragg guided modes couple, intertwine, and anticross with each other. Meanwhile, there is a clear
“competition” in the coupling hybrid mode near anticrossing.
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I. INTRODUCTION

The ability to mold the flow of light in photonic periodic
structures is a fundamental issue of scientific and practical
importance [1]. Optical waveguide arrays have attracted
considerable attention for their abundant physics and potential
engineering applications [2]. Among different approaches to
fabricate waveguide lattices, by the electro-optic properties
of photorefractive crystals such as high nonlinearity, recon-
figurability and tunability at very low power levels, optical
induction has received more attention in past years. In 2002,
Efremidis et al. theoretically suggested a new method of
creating lattices using optical induction [3]. Subsequently,
Fleischer et al. demonstrated the new method and reported a
waveguide array and a two-dimensional (2D) square photonic
lattice in SBN:75 [4,5]. In 2006, Freedman et al. induced
a 2D photonic quasicrystal in SBN:75 [6]. In 2007, Peleg
et al. induced a honeycomb lattice in SBN:75 [7]. In 2010,
a three-dimensional (3D) photonic quasicrystal was realized
in SBN:Ce by Xavier et al. [8]. These waveguide lattices
offer tunable platforms for studying discrete light behaviors
and emulating the intriguing phenomena in quantum systems
[1,9]. It worth noting that the special defects and modulations
of waveguide arrays have vast potential applications in
optimizing the beam dynamics performance such as improving
beam steering resolution, enhancing the soliton mobility, and
tailoring diffraction properties [10–12]. However, introducing
expected defects and modulations handily is still a major
problem.

Photorefractive surface waves (PR SWs), taking advantage
of the balance between the reflection from the surface and the
self-deflection induced by nonlocal nonlinearity, can propagate
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along the surface of a nonlinear medium without diffraction
[13]. Besides enhancing surface second harmonic generation
and surface Raman scattering and exciting long-range surface
plasmon et al. [14–16], PR SWs can be applied to inducing
surface modulated waveguide arrays. In 2015 we suggested a
unique apodized waveguide array (AWGA), which is directly
induced by photorefractive surface waves. There were lots of
intriguing phenomena such as the anticrossings between the
dispersion curves of index-guided modes (IGMs) and Bragg-
guided modes (BGMs), the extraordinary BGMs constituted
by the splice of IGMs and BGMs [17].

At the same time, we also noted that the frequency
of photorefractive surface apodized waveguide arrays (PR
SAWGAs) can be tuned conveniently, in that the frequency
of PR SWs can be adjusted by an external electric field,
background illumination, etc. [18]. Another type of waveg-
uides, nonlinearly chirped waveguide arrays, can be handily
fabricated by utilizing PR SWs. The chirp is an optimization
technology, which is as important as the apodization in
waveguide grating. What is more, the chirped or/and apodized
waveguide arrays have also been extensively applied in soli-
ton controlling, diffraction management, quasi-phase-matched
and optical diode, etc. [19–25]. Undoubtedly, the amplitude
or/and frequency modulation of such interesting waveguide
arrays will provide opportunities for various applications.

In this paper we report a different type of waveguide
arrays induced by PR SWs in virtue of diffusion and drift
nonlinearities. Both amplitude and local spatial frequency of
such waveguide arrays can be modulated, and the refractive-
index change �n of the apodized tail converges to a nonzero
value which can be handily adjusted by an external electric
field. In consequence, it can be recognized as a photorefractive
surface nonlinearly chirped waveguide arrays (PR SNCW-
GAs) with apodized envelopes. Meanwhile, we find that the
chirp parameters such as amplitude, sign (positive or negative),
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and initial position can be adjusted conveniently. Owing to the
nonlinear chirp and flexible tail of such waveguide arrays, we
find lots of interesting phenomena besides the guided wave
properties in AWGAs, such as the dispersion relation of IGMs
can be tailored by an external electric field and the anticrossing
between the ordinary and extraordinary BGMs.

II. THE INDUCTION OF NONLINEARLY
CHIRPED WAVEGUIDE ARRAYS

A. Theoretical model

Considering a slit e-polarized laser beam (transverse extent
of the beam along the y axis greatly exceeds that along the
x axis) propagating along the interface between air and a PR
crystal (PRC), with optical c axis oriented along the x axis, as
shown in Fig. 1. The complex amplitude E(x,z) satisfies the
nonlinear scalar wave equation

∇2E(x,z) + k2E(x,z) = 0. (1)

In the air (x < 0), k = k0n0 = 2π/λ0, n0 = 1, and λ0 is the
wavelength in vacuum. In a PRC (x > 0), k = k0(n + �n),
n is the refractive index of an e-polarized beam in the PRC,
�n is the refractive-index change induced by nonlinearity,
(n + �n)2 = n2 − n4reffEsc, reff = r33 is the effective electro-
optical coefficient, and Esc is the space-charge field. With an
o-polarized coherent uniform background illumination and an
applied external electric field, Esc can be written as

Esc(x) = kBT

q

d

dx
ln[I ′(x)+1]+E0

I ′∞ + 1

I ′(x) + 1
, (2)

where kB is Boltzmann constant, T is the temperature, q is the
charge of carriers (negative for the electrons and positive for the
holes), and E0 = Esc(x → ∞) is the applied external electric
field. I ′(x) = I (x)/(Ib + Id ) is the normalized intensity of
light beam, I (x) is the light intensity of the PR surface
waves, Ib is the intensity of the background illumination, Id

is the equivalent dark irradiance, and I ′
∞ = I ′(x → ∞) = 0

for bright surface waves. The first and the second terms on the

right side of Eq. (2) describe the effects of the diffusion and
drift components of PR nonlinearity, respectively.

We look for the stationary surface wave solution as
E(x,z) = A′(x)(Ib + Id )1/2 exp(iβz), where β is the propa-
gating constant and A′(x) = I ′(x)1/2 is the normalized real
amplitude of PR SWs. Then Eq. (1) can be rewritten as

d2A′(x)

dx2
− γ

A′2(x)

A′2(x) + 1

dA′(x)

dx
− aA′(x)

A′2(x) + 1
+gA′(x) = 0,

(3)
where γ = 2k0

2n4reffkBT /q, a = k0
2n4reffE0, and g =

k0
2n2 − β2.
Obviously Eq. (3) is a nonlinear damped oscillator equation,

where the second term, the third term, and the fourth term on
the left side of Eq. (3) can be regarded as the damping force,
the external force, and the restoring force, respectively. The
effective restoring force F and the local spatial frequency
K(x) of PR SWs can be written as

F (x) = (a − g) − gA′2(x)

A′2(x) + 1
A′(x), (4)

K(x) =
√

g − a

A′2(x) + 1
− γ 2A′4(x)

4[A′2(x) + 1]
2 . (5)

According to (n + �n)2 = n2 − n4reffEsc, the refractive-
index change of the waveguide induced by PR SWs can be
written as

�n = −1

2
n3reff

[
kBT

q

dI ′(x)

[I ′(x) + 1]dx
+E0

1

I ′(x) + 1

]
. (6)

B. Simulation and discussion

Taking SBN:75 as a sample, based on Eq. (3) and
continuity boundary conditions, the surface waves can be
numerically found by the Runge-Kutta method, the pa-
rameters used in the calculation are λ = 532 nm, n =
2.3117, reff = 1340×10−12 m/V, q = −1.6×10−19 C, kB =
1.38×10−23 J/K, T = 300 K, and β = 2.730118×107 m−1.

FIG. 1. (a1) and (b1) The PR SWs modes with E0 = −104 and 104 V/m, respectively. (a2) and (b2) The distributions of refractive-index
change corresponding to (a1) and (b1), respectively. (a3) and (b3) The distributions of the local spatial frequency K(x) of PR SWs corresponding
to (a1) and (b1) and the distributions of the channel width �i corresponding to (a2) and (b2), respectively.
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The modes of PR SWs are determined by the propagation
constant and an external electric field. Figures 1(a1) and
1(b1) show the stationary PR SWs solutions with different
E0 = −104 and 104 V/m, respectively. From Eq. (6), the
distributions of refractive-index change corresponding to the
PR SWs in Figs. 1(a1) and 1(b1) are sketched in Figs. 1(a2) and
1(b2), respectively. The black dotted lines in the Figs. 1(a1) and
1(b1) and the red dotted lines in Figs. 1(a2) and 1(b2) represent
the zero-level lines and the steady value at infinity, respectively.
When these structures are fixed by the photofixation and
electrofixation method, or directly guide weaker light or
other light insensitive to the PR materials, the interesting
photorefractive surface nonlinearly chirped waveguide arrays
with apodized envelopes are induced. The first two channels
still retain the abrupt characteristic which ensures the existence
of extraordinary BGMs.

The width of each guided wave layer or channel of PR
SNCWGAs is defined as channel width �i , where i is the
order of the guided wave layer or channel. The channel
width �i corresponding to Figs. 1(a2) and 1(b2) is shown
as a green dotted histogram in Figs. 1(a3) and 1(b3). We
can find that the �i of PR SNCWGAs is characterized by
a nonlinear chirp, besides the amplitude is apodized by the
diffusion nonlinearity as Ref. [17]. The positive and negative
chirp are determined by an external electric field, the �i of
the PR SNCWGAs with E0 = −104 V/m [Fig. 1(a3)] and
104 V/m [Fig. 1(b3)] decrease (positive chirp) and increase
(negative chirp), respectively. It is the result of the nearly
saturated drift nonlinearity, and the saturation level can be fine
tuned by a background beam. It is worth noting that the �

of the second channel in Fig. 1(b3) slightly decreases owing
to the cooperation diffusion nonlinearity and the damped
amplitude of PR SWs. All the above phenomena can be
understood clearly from Eq. (5), in that the channel width
� decreases with the increase of the average frequency of
PR SWs in each channel and vice versa, the analytic local
spatial frequencies K(x) of PR SWs are shown as the gradient
solid lines in Figs. 1(a3) and 1(b3). Moreover, we can find
that the PR SNCWGAs have a apodized tail converging to
n − 1

2n3reffE0 which can be handily adjusted by an external
electric field from Eq. (6), as shown in Figs. 1(a2) and 1(b2).
That is very different from the case of only considering
the diffusion nonlinearity, where the tail fixedly converges
to 0.

III. THE REGULATION OF THE NONLINEAR
CHIRP STRUCTURE

As is well known, PR SWs can be adjusted by an
external electric field, background illumination, incident beam,
etc. [18], so that we can expect that the nonlinear chirp
structures of PR SNCWGAs can be regulated conveniently.

A. The condition for stable bright surface waves solutions

When an external electric field is applied to the SBN
crystal, effective restoring force F and local spatial frequency
K(x) can be described by Eqs. (4) and (5), respectively. The
equivalent force F as a function of amplitude A′(x) is sketched
in Fig. 2(a), and the influence of the external electric field on
F can be analyzed for two cases: a < g and a > g. When
a low external electric field E0 < g/k0

2n4reff (i.e., a < g) is
applied, F has only one point of intersection with the x axis
at A′(x) = 0, which always exhibits an attractive force around
A′(x) = 0 and corresponds to a stable balance position, as
shown by the green dotted line in Fig. 2(a). The oscillation
of PR SWs will converge at 0, corresponding to bright PR
SWs. When a high external electric field E0 > g/k0

2n4reff

(i.e., a > g) is applied, F has three points of intersection
with the x axis at A′

1(x) = 0 and A′
2,3(x) = ±(a/g − 1)1/2,

as shown by the red solid line in Fig. 2(a). F always exhibits
repulsive force around A′

1(x) while F always exhibits attractive
force around A′

2,3(x), thus A′
1(x) is not an equilibrium position

while A′
2,3(x) are two nonzero equilibrium positions. As a

result, A′(x) does not converge at A′
1(x)=0 but converges

at the couple of nonzero values A′
2,3(x) at x → ∞. It is

inconsistent with the precondition I ′
∞ = I ′(x → ∞) = 0 for

a bright surface wave. Thus there is no stable bright surface
wave solution when a higher external electric field is applied
to the SBN crystal, that is, the applied external electric field
has a threshold as Eth = g/k0

2n4reff , above which the bright
surface wave cannot exist steadily. Obviously Eth is mainly
determined by propagation constant β for a certain material,
which is sketched in the red oblique line in Fig. 2(b). The
green dotted line corresponds to β = 2.730118×107 m−1 and
the corresponding threshold electric field Eth = 12781 V/m.
It should be noted that the distribution of Eth to β/nk0 behaves
as a parabola, we select only a narrow range of β/nk0 so that
the parabola looks like a line.

FIG. 2. (a) Effective restoring force F as a function of normalized amplitude A′(x): solid and dotted curves correspond to E0 = 15 000 V/m
(a > g) and 5000 V/m (a < g), respectively; (b) threshold electric field Eth (red oblique line) and critical electric field Ec (green solid line) as
a function of propagation constant β/nk0, respectively, the green dotted line correspond to β = 2.730118×107 m−1; (c) and (d) the distribution
of channel width �i to channel order i for the PR SNCWGAs induced by the PR SWs with E0 = −2000, 0, 2000, 3574, 6000, 8000, and
10 000 V/m from bottom to top for lower I ′(x) and higher I ′(x) ∼ 105, respectively.
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B. The regulation of the nonlinear chirp structure

The amplitude of PR SWs shows an oscillatory decay
form from surface to bulk. Generally speaking, in the head
region that is near the surface, the amplitude A(x) of PR
SWs is much larger than Id + Ib [i.e., A′(x) � 1], so that
the period of PR SNCWGAs can be approximately written as
�h = π/

√
g − γ 2/4. In the tail region, the amplitude A(x) of

PR SWs approaches zero, so that the period of PR SNCWGAs
can be approximately written as �t = π/

√
g − a. Obviously

the applied external electric field has a critical value as
Ec = γ 2/(4k0

2n4reff), at which the period in the head region
and tail region of PR SNCWGAs is equal (i.e., �h = �t ). It
means that the chirp of PR SNCWGAs can be suppressed to
a minimum. Ec is not dependent on the propagation constant
and it is equal to 3574 V/m under the conditions mentioned
above, which is shown in the green solid line in Fig. 2(b). For
a grazing angle approaching π/2 (i.e., β/nk0 → 1), there is no
critical electric field Ec at which the chirp can be suppressed
since there the Ec exceeds the threshold electric field Eth.

For convenience, we adopt the relation between channel
width and channel order to describe the chirp structures of
PR SNCWGAs. The chirp structures of the PR SNCWGAs
induced by the PR SWs with E0 = −2000, 0, 2000, 3574,
6000, 8000, and 10 000 V/m are orderly sketched in Fig. 2(c)
from bottom to top, respectively. It is observed that the chirp
parameters such as amplitude and sign (positive or negative)
of PR SNCWGAs can be adjusted by an external electric field;
the chirp of PR SNCWGAs is suppressed to a minimum at
E = Ec = 3574 V/m, which is consistent with the theoretical
analysis above. Moreover, the chirp structures can also be
adjusted by background illumination and incident beam. Then
we consider the situation for a much larger normalized
intensity I ′(x), which can be adjusted by the intensity of
background illumination and incident beam. Similarly, the
chirp structures of PR SNCWGAs at E0 = −2000, 0, 2000,
3574, 6000, 8000, and 10 000 V/m are orderly sketched in
Fig. 2(d) from bottom to top. Compared with Fig. 2(c), the
initial position of chirp goes away from the surface and the
channels near the surface are characterized by fixed periodicity.
From Eq. (5), the emergence of the chirp for PR SNCWGAs
is essentially due to the normalized real amplitude A′(x) of
PR SWs is comparable to 1 so that the local spatial frequency
K(x) of PR SWs is modulated by A′(x). In consequence, with
the increase of I ′(x), the initial position of the chirp moves to
the bulk along with the decaying of A′(x).

IV. GUIDED WAVES

How do the nonlinear chirp and flexible tail influence the
guided-wave properties of such intriguing waveguides? We
then adopt the transfer matrix method to analyze the guided-
wave properties of such interesting PR SNCWGAs, taking the
TE modes for example. Considering a probe beam propagating
in the PR SNCWGAs, the amplitude of TE modes satisfies

∂2Ey(x)

∂x2
+ [

k2
0n

2(x) − β2
]
Ey(x) = 0, (7)

where Ey(x) is transverse electric polarized along the y

direction, n(x) = n + �n(x).
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FIG. 3. (a) and (b) Dispersion relation of the PR SNCWGAs
corresponding to PR SWs with E0 = −104 and 104 V/m, respec-
tively, the horizontal dotted line corresponds to Neff = −n2reffE0/2;
(c) the fine structure of the green box in the (b); (d) the scatterplot
of the anticrossing between the dispersion curves of TE21 and TE02,
corresponding to the green box in (c); and Neff = β/nk0 − 1 is the
normalized effective refractive index.

We depict the dispersion relation corresponding to
Figs. 1(a2) and 1(b2) in Figs. 3(a) and 3(b), respectively,
Fig. 3(c) shows the fine structure of the green box in Fig. 3(b).
Neff = β/nk0 − 1 is the normalized effective refractive index
and ω/ω0 is the normalized optical frequency, where ω0 is
the optical frequency of induction light. For convenience, the
modes are designated as TEmn with m as the mode index
and n as the bound mechanism index, where n = 0, 1, 2
stand for IGMs, first BGMs, and second BGMs, respectively;
furthermore, we label the dispersion curve of each mode by
the accordant color along the border in Figs. 3(a)–3(c). As
shown in Figs. 3(a)–3(c), the dispersion curves of IGMs and
BGMs couple, intertwine, and anticross with each other, so
that the dispersion curves of some modes are broken into many
segments along the original curves. Moreover, the normalized
mode for ω/ω0 = 2.66 with E0 = 104 V/m [the right edge
of graph border in Figs. 3(b) and 3(c)] are orderly plotted in
Figs. 4(a)–4(f) by using the same color as the corresponding
dispersion curves, except the high order (m � 2) IGMs.
Consistent with Ref. [17], the TE10 experienced anticrossing
has an additional node, as shown in Fig. 4(c); there are two
extraordinary BGMs (TE11 and TE21) constituted by the splice
of index-guided modes and Bragg-guided modes, as shown in
Figs. 4(d) and 4(f), whose boundaries (the green dotted line)
are located at x = 14.09 and 27.98 μm, corresponding to the
first to second boundaries of PR SNCWGAs from surface to
bulk, respectively.
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FIG. 4. The modes for ω/ω0 = 2.66. (a)–(f) Correspond to
intersections of dispersion curves and the right edge of picture box
in Figs. 3(b) and 3(c) from top to bottom except the high order
(m � 2) index-guided modes, respectively. Index-guided modes: (a)
TE00 with Neff = 7.611×10−5; (c) TE10 with Neff = 1.088×10−5.
First Bragg-guided modes: (b) TE01 with Neff = 5.228×10−5; (d)
TE11 with Neff = −1.571×10−5; (f) TE21 with Neff = −2.840×10−5.
Second Bragg-guided modes: (e) TE02 with Neff = −2.338×10−5.

A. Tailored dispersion curves of index-guided modes

Besides the anticrossing and extraordinary BGMs men-
tioned above, we have found lots of other intriguing phe-
nomena in the PR SNCWGAs. First, compared with the
dispersion relation with E0 = −104 V/m shown in Fig. 3(a),
the dispersion relation with E0 = 104 V/m shown in Fig. 3(b)
has more intertwined structure, which relates to the sharply
declined number of IGMs with E0 = −104 V/m. This drastic
change is the result of the apodized tail converging to n −
1
2n3reffE0, as depicted in Figs. 1(a2) and 1(b2). Considering
the quasiperiodic layered structures of PR SNCWGAs, we can
clearly understand such guided wave problems by using the
classical concept of multichannel waveguides.

Physically the multichannel waveguide can be considered
as a system of N interacting slab waveguides. Each confined
mode of the single slab waveguide will gives rise to N

nondegenerate modes as a result of the interacting between
the different channels [26]. For the PR SNCWGAs induced by
PR SWs, only fundamental IGMs can be excited owing to the
rather low modulation depth of the refractive-index change,
the numerous IGMs are the result of the fundamental mode
splitting. In consequence, the number of IGMs is equal to
the number of effective channels which are strong enough to
split a new mode through the interaction between channels.
Whether the channel is effective depends on the modulation
depth of each channel, that is, the difference of refractive-index
between each guided wave layer and substrate. The waveguide
arrays induced by PR SWs take the air and the crystal self
as the cladding and substrate layers, respectively. Owing to
the drift nonlinearity, the PR SNCWGAs have a tunable tail
converging to n − 1

2n3reffE0, that is, the refractive-index of
the substrate layer can be adjusted by an external electric field.
Compared with the PR SNCWGA with E0 = 104 V/m, the
PR SNCWGA with E0 = −104 V/m has a distinctly higher
substrate refractive index so that it has less effective channels

 

 

0

5

0 30 60

-3.227×10-5 

-3.368×10-5 

-3.374×10-5 

-3.377×10-5 

-3.439×10-5 

E(
ar

b.
 u

ni
ts

) 

 

0

5

0 30 60

0= 
2.2931 

0= 
2.3295 

0= 
2.3314 

0= 
2.3333 

0= 
2.3750 

-3.301×10-5 

-3.371×10-5 

-3.375×10-5 

-3.381×10-5 

-3.508×10-5 

E(
ar

b.
 u

ni
ts

) 

FIG. 5. The mode evolution of each dispersion branch associated
with the anticrossing between TE21 and TE02. Left-hand side: The
modes evolution from TE21 to TE02 corresponding to the upper and
lower branch in Fig. 3(d). Right-hand side: The modes evolution
from TE02 to TE21 corresponding to the lower branch in Fig. 3(d).
The green dotted lines show the boundary of IGM region and BGM
region for TE21.

and IGMs. This implies that the dispersion curves of the IGMs
can be tailored by an external electric field, which can help to
control the modes excitation conveniently.

B. The anticrossing between ordinary and extraordinary
Bragg guided modes

In general, the interesting phenomenon that the dispersion
curves couple, intertwine, and anticross with each other
happens where IGMs and BGMs intersect. However, we
are surprised to find that there is an identical anticrossing
phenomenon between the extraordinary BGMs TE21 and the
ordinary BGMs TE02, as shown in the green box of Fig. 3(c).
Figure 3(d) shows the local scatter plot of the anticrossing
between TE21 and TE02, and the scatter points are plotted in
the same color as the corresponding dispersion curves.

Meanwhile, in order to present the details of anticrossing
phenomenon between TE21 and TE02, the mode evolution of
each dispersion branch associated with such anticrossing are
sketched in Fig. 5, the green dotted lines show the second
boundary of PR SNCWGAs from surface to bulk, which is
also the boundary of IGM region and BGM region for TE21.
The left-hand side and right-hand side show the evolution
of the modes corresponding to the upper and lower branches,
respectively, and the upper branch stands for the evolution from
TE21 to TE02, and the lower branch stands for the evolution
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from TE02 to TE21. The modes for ω/ω0 = 2.2931, 2.3750
stand for the situation before and after such anticrossing and
the modes for ω/ω0 = 2.3295, 2.3314, and 2.3333 stand for
the situation near such anticrossing. Obviously there is a clear
“competition” between the TE21 and TE02 in the coupling
hybrid modes near anticrossing, which further display the
detail of coupling and anticrossing between the TE21 and TE02.
Compared with the TE21 for ω/ω0 = 2.2931, the TE21 for
ω/ω0 = 2.3750, which has experienced an anticrossing, has
an additional node in the left side of the boundary where the
mode presents the characteristic of IGMs. Such anticrossing
is due to the nonlinear chirp modulation of PR SNCWGAs.
In the PR SNCWGAs, the first two channel boundaries can be
regarded as abrupt interfaces, and the right region of boundary
can be seen as a new PR SNCWGA profile, the self-similarity
between the new and the original PR SNCWGA is broken
owing to the nonlinear chirp. Thus the dispersion curves of
TE02 and TE21 are no longer like AWGAs in which these
two dispersion curves evolve almost parallel along the optical
frequency, and such nonparallel evolution of dispersion curves
provides the possibility for anticrossing.

As is well known, the anticrossing opens up a mini gap
or mode gap in the dispersion relation and thus gives rise
to a mini stop band (MSB) in the transmission spectrum
of the corresponding mode [27]. Moreover, the MSBs have
vast potential applications in filter, sensor, group velocity
modulation or control, broadband switching and spectrometry,
etc. [28–32]. Owing to chirp, the MSBs can occur in the Bragg
band gap for the PR SNCWGAs, compared with the AWGAs;
meanwhile, the extraordinary BGMs localize the probe wave
within the confined layer. Such more abundant anticrossings
will have a greater prospect.

V. CONCLUSIONS

In summary, we have reported an alternate type of non-
linear waveguides, nonlinearly chirped waveguide arrays with
apodized envelopes, induced by PR SWs in virtue of the diffu-
sion and drift nonlinearities. Subsequently, we have studied the
regulation of the nonlinear chirp structure and found that the
chirp parameters such as amplitude, sign (positive or negative),
and initial position can be adjusted conveniently. Finally, we
have analyzed the guided-wave properties of such waveguide
arrays. The PR SNCWGAs are of many interesting guided-
wave properties, such as the dispersion relation of IGMs
tailored by an external electric field which can help to control
modes excitation and the anticrossing between the ordinary
and extraordinary BGMs which provides more abundant
anticrossings or mini gaps. The amplitude or/and frequency
modulation of waveguide arrays provide new opportunities for
soliton control, diffraction management, quasi-phase-matched
and optical diode, etc. The MSBs arising from anticrossing
have vast potential applications in filter, sensor, group velocity
modulating or controlling, broadband switching and spec-
trometry, etc. Moreover, owing to its convenience in fixing,
scrubbing, adjusting, and controlling, the PR SNCWGAs have
a great prospect for the developments and applications of
integrated optical components and optoelectronic devices.
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