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Vector-valued Lambertian fields and their sources
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The electromagnetic field within an aperture in the wall of a blackbody cavity is a known example of a
Lambertian source producing a far field which is unpolarized in all directions. In this work we show that in the
electromagnetic context other Lambertian sources exist whose far fields, while obeying the cosine law for the
radiant intensity, differ by their polarization states and degrees. For example, the far field may be azimuthally,
radially, or circularly polarized, or the polarization state may vary depending on the direction. For specific
Lambertian fields generated by quasihomogeneous sources it is possible to calculate explicitly the 3 × 3 electric
cross-spectral density matrix of the nonevanescent part of the source. This enables one to assess the source’s
spatial coherence and partial polarization properties. In all cases, the coherence length turns out to be roughly
half a wavelength, whereas the polarization characteristics of the sources may differ significantly. Our results
could find uses, for instance, in radiometry and photometry, lighting applications, and remote sensing.
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I. INTRODUCTION

In recent years many results of classical coherence the-
ory [1] have been extended from the approximate scalar
representation of electromagnetic fields to a rigorous vec-
torial description (see, e.g., [2–4]). While the extension is
straightforward in many cases, with expected results, there
are nonetheless situations in which the transition from a
one-component to a two- or even three-component description
has led to interesting results and enforced reinterpretations
and bifurcations of old concepts [5–8]. Here we shall examine
the concept of a random, planar Lambertian source [9,10]
in the true three-component vectorial setting. A Lambertian
source is a radiator that gives rise to a field, whose radiant
intensity in the observation half-space follows the cosine
law, or equivalently, the radiance is constant, independent
of the direction of propagation [11]. Lambertian sources are
extremely important in many applications and they can, for
instance, be used to model diffuse reflections successfully
as is exemplified by the central role these sources enjoy
in the assessment of surface roughness and scattering [12],
the interpretation of satellite imagery [13,14], and in three-
dimensional computer graphics [15]. There have not, however,
been many investigations in which the far-field polarization
state, i.e., the vectorial nature of the radiation, and its influence
on the electromagnetic source correlation properties have been
studied.

The archetypal Lambertian source, in both scalar and
electromagnetic theory, is a planar aperture in the wall of a
blackbody cavity [16–19]. The spatial coherence properties of
the aperture field are explicitly known and are described by a
3 × 3 electric cross-spectral density matrix with a sinc-form
trace. An analogous result in the scalar case states that the
cosine law of the radiant intensity only occurs if the source
correlations are of the sinc form [9]. We will show here that
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the situation is considerably more nuanced in the framework of
vector-valued fields. Specifically, we demonstrate that the co-
herence properties of a Lambertian source can be far removed
from those of a blackbody aperture. Indeed, the cosine-law
behavior of the radiant intensity imposes no restrictions on the
polarization properties of the radiation, implying that a large
number of distinct electromagnetic Lambertian sources may
exist. We specialize to quasihomogeneous electromagnetic
source fields, which physically are characterized by rapid
spatial correlation variations as compared to the intensity
profiles, and analyze in detail a few important Lambertian
special cases.

This paper is structured so that in Sec. II we recall, for
later purposes, the formalism of propagating a nonparaxial
electromagnetic field from a source plane to the far zone.
Next in Sec. III we present the key quantities of vector-
valued second-order coherence theory, including definitions
for the degrees of spatial coherence and polarization. In
Secs. IV and V we, respectively, introduce the electromagnetic
quasihomogeneous sources and display the equations that
identify and characterize Lambertian sources for vector-valued
electromagnetic fields. Some interesting special cases of such
sources, among them blackbody radiation from an aperture,
are considered in Sec. VI, where we in particular compare the
spatial coherence and polarization properties of the source
fields. In Sec. VII we present a summary of our results
and consider how they can be extended and built upon.
The mathematical details of the derivations of some key
expressions can be found in the two appendixes.

II. FAR FIELD PRODUCED BY A PLANAR,
MONOCHROMATIC, ELECTROMAGNETIC

SECONDARY SOURCE

The behavior of a monochromatic electromagnetic field
with angular frequency ω is at a point r in vacuum fully
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described by the vector wave equation

∇ × ∇ × E(r,ω) − k2E(r,ω) = 0, (1)

where E(r,ω) is the amplitude of the electric field and k = ω/c

is the wave number with c being the vacuum speed of light.
The corresponding magnetic field amplitude is given by

H(r,ω) = − i

k
∇ × E(r,ω). (2)

For our purposes it is useful to note that Eq. (1) is equivalent to
the pair of equations consisting of the vector-valued Helmholtz
equation

∇2E(r,ω) + k2E(r,ω) = 0, (3)

and the divergence condition

∇ · E(r,ω) = 0, (4)

which couples the components of the electric field vector.
The Poynting vector that describes the energy flux of the
electromagnetic field is defined by

P(r,ω) = c

2
Re{E(r,ω) × H∗(r,ω)}, (5)

where ∗ denotes complex conjugation.
We are interested in the electromagnetic field across a

source plane (at z = 0) and throughout the far zone in the
half-space z > 0. For a field propagating in vacuum, the scalar
components of these two representations are connected by the
Rayleigh diffraction formula [1], which extends to vectorial
fields as

E(∞)(r,ω) =
∫
A

G(r − ρ,ω)E(ρ,ω) dρ, (6)

where the superscript (∞) identifies a far-field expression and
the integration is over the planar source A. We have adopted
the convention that boldface Greek letters denote vectors
in the plane z = 0 and that the corresponding integrals are
two dimensional. We can remove the explicit dependence on
A in Eq. (6) if we define E(ρ,ω) = 0 when ρ �∈ A. We assume
that this has been done and omit all explicit references to A.
On physical grounds the integrals and operators on the source
are considered respectively convergent and permissible. We
emphasize further that in obtaining the representation (6) it
has implicitly been assumed that E(ρ,ω) in the integrand is a
true electric field, fully consistent with Maxwell’s equations;
E(∞)(r,ω) is guaranteed to correspond to the correct far-zone
electric field only when this assumption holds [20].

The Green’s function in Eq. (6) is given by

G(r,ω) = − 1

2π
∂z

exp(ikr)

r
= −i

k

2π
∂zh

(1)
0 (kr)

= i
k2

2π
(ẑ · r̂)h(1)

1 (kr), (7)

where r = |r|, r̂ = r/r , ẑ is the unit vector in the z direction
(perpendicular to the source plane), and h(1)

n (z) denotes the
spherical Hankel function of type 1 and order n. In the far
zone (r → ∞) we may use the approximation

|r − ρ| ≈ r − r̂ · ρ, (8)

whereby Eq. (7) together with the asymptotic properties of the
spherical Hankel function [h(1)

1 (z) ∼ − exp(iz)/z] yield the
far-field expression

G(r − ρ,ω) ∼ −i
k

2π
(ẑ · r̂)

exp(ikr)

r
exp(−ikr̂ · ρ). (9)

With this we may rewrite the representation (6) as [1,21]

E(∞)(r,ω) = −i(ẑ · r̂)1/2 exp(ikr)

r
a(r̂,ω), (10)

where ẑ · r̂ > 0. In addition, a(r̂,ω) is equal to

a(k̂,ω) = k

2π
(ẑ · k̂)1/2

∫
E(ρ,ω) exp(−ikk̂ · ρ) dρ. (11)

Here we have replaced r̂ with k̂, since a(k̂,ω) directly relates
to the angular spectrum of the field E(ρ,ω).

On using Eq. (6) in Eq. (2) and exchanging the order of
integration and differentiation, we get the expression

H(∞)(r,ω) = − i

k

∫
[∇G(r − ρ,ω)] × E(ρ,ω) dρ (12)

for the magnetic field. From Eqs. (7) and (8), we find

∇G(r − ρ,ω) ∼ k2

2π
(ẑ · r̂)

exp(ikr)

r
exp(−ikr̂ · ρ)r̂, (13)

so that Eq. (12) yields the representation

H(∞)(r,ω) = −i(ẑ · r̂)1/2 exp(ikr)

r
r̂ × a(r̂,ω), (14)

where we have also made use of Eq. (11). Starting from the
Rayleigh integral (6) and using the asymptotic expression (13),
we completely analogously arrive at

∇ · E(∞)(r,ω) = k(ẑ · r̂)1/2 exp(ikr)

r
r̂ · a(r̂,ω), (15)

which together with the divergence condition (4), which here
holds for r such that ẑ · r > 0, implies that

k̂ · a(k̂,ω) = 0, (16)

for all k̂ with ẑ · k̂ > 0.
Projection κ of vector k̂ onto the source plane z = 0 can be

expressed as

κ = (U − ẑẑ) · k̂, (17)

where U is the 3 × 3 unit matrix. Then, for ẑ · k̂ > 0, we have

k̂ = κ

k
κ̂ +

√
1 −

(
κ

k

)2

ẑ, (18)

where κ = |κ | and, in particular,

kk̂ · ρ = κ · ρ, (19)

since ẑ · ρ = 0. We can thus rewrite Eq. (11) as

a(k̂,ω) = k

2π
(ẑ · k̂)1/2

∫
E(ρ,ω) exp(−iκ · ρ) dρ, (20)

which represents a two-dimensional Fourier transform. Since
|k̂| = 1, Eq. (17) implies that κ � 1, and consequently from
the far field we can only recover a filtered version of E(ρ,ω).
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Specifically, we can obtain the propagating or nonevanescent
(NE) component of the field in the source plane, given by

ENE(ρ,ω) = 1

2πk

∫
κ�1

(ẑ · k̂)−1/2a(k̂,ω) exp(iκ · ρ) dκ,

= k

2π

∫
ẑ·k̂>0

(ẑ · k̂)1/2a(k̂,ω) exp(ikk̂ · ρ) dk̂,

(21)

where the second equality follows from the relations (17)–(19).
The first integral above is over the unit circle while the second
is over a solid angle 2π in the positive z direction. Inverting
Eq. (21) completes Eq. (20) by making explicit that a(k̂,ω)
only depends on the nonevanescent part of the field, i.e.,

a(k̂,ω) = k

2π
(ẑ · k̂)1/2

∫
ENE(ρ,ω) exp(−iκ · ρ) dρ. (22)

This relation connects the source and the far field it produces
and it will be used in the later sections.

III. ELECTROMAGNETIC SPATIAL COHERENCE
AND POLARIZATION

The second-order (classical) coherence properties of an
electromagnetic field are described by the correlation operator
(cross-spectral density matrix) of its electric field vector [1,22]

W(r,r′,ω) = 〈E(r,ω)E†(r′,ω)〉, (23)

where 〈· · · 〉 denotes an ensemble average over monochromatic
field realizations (as considered in the previous section) and
† stands for the Hermitian transpose. This definition is the
complex conjugate of what is typically employed in coherence
theory, but it is more natural in a functional analytic context.
The degree of coherence for electromagnetic fields is, in the
space-frequency domain, defined as [4,22–24]

μEM(r,r′,ω) = ‖W(r,r′,ω)‖F

{tr[W(r,r,ω)]}1/2{tr[W(r′,r′ω)]}1/2
, (24)

where ‖ · ‖F denotes the matrix Frobenius norm and tr
represents the matrix trace. The degree is bounded as 0 �
μEM(r,r′,ω) � 1 with the lower and upper limit corresponding
to complete incoherence and full coherence, respectively, at
points r and r′ and at frequency ω. The 3 × 3 polarization
matrix characterizing the polarization properties of the field is
obtained by setting r = r′ in Eq. (23), i.e.,

�(r,ω) = W(r,r,ω), (25)

and the related degree of polarization is [5]

P3(r,ω) =
{

3

2

[
tr �2(r,ω)

tr2 �(r,ω)
− 1

3

]}1/2

. (26)

This quantity obeys 0 � P3(r,ω) � 1 with the two limits
reflecting a fully unpolarized and a completely polarized field
at point r, at frequency ω.

The radiant intensity is defined as the power radiated by the
source per unit solid angle into the far zone [11]. For random
electromagnetic fields the radiant intensity in the direction r̂

can be expressed as [25]

J (r̂,ω) = lim
r→∞[r2|〈P(r,ω)〉|], (27)

where P(r,ω) is the Poynting vector given in Eq. (5).

IV. PLANAR, QUASIHOMOGENEOUS,
ELECTROMAGNETIC SECONDARY SOURCES

AND THEIR FAR FIELDS

Let us return to the electromagnetic source field in the
plane z = 0 and assume that it is quasihomogeneous. The
general representation of vector-valued quasihomogeneous
source distributions can be written as

W(�,�,ω) = S1/2(�,ω)M(�,ω)S1/2(�,ω), (28)

where we have introduced the average and difference vectors
� = (ρ + ρ ′)/2 and � = ρ − ρ ′, respectively, and the super-
script 1/2 denotes the positive matrix square root. The matrix
S(�,ω) is diagonal with the spectral densities of the Cartesian
components of the electromagnetic field on its diagonal,
whereas the elements of M(�,ω) are the correlation coeffi-
cients of the Cartesian field components. The matrix S(�,ω)
varies much more slowly with � than M(�,ω) does with
�, which is a characteristic of a quasihomogeneous source.
The representation (28) is consistent with (and an extension
into three-component electric fields of) the quasihomogeneous
beam-field sources presented, for instance, in [2,26–30]. To
simplify the notation, we write Eq. (28) in the form

vec[W(�,�,ω)] = S(�,ω) vec[M(�,ω)], (29)

where vec[F] denotes the 9 × 1 column vector whose elements
are the elements of a 3 × 3 matrix F taken in column-first order
[31], and

S(�,ω) = S1/2(�,ω) ⊗ S1/2(�,ω) (30)

is a 9 × 9 matrix, where ⊗ denotes the matrix Kronecker
product [31]. The diagonality of S(�,ω) is inherited by
S(�,ω).

Owing to the assumed quasihomogeneity of the source,
whereby S(�,ω) is a slowly varying function as compared to
M(�,ω), the spatial Fourier transform of S(�,ω) is sharply
peaked whereas the Fourier transform of M(�,ω) is broad
and slowly changing. Apart from possible pathological cases
the mixing of the evanescent components of M(�,ω) into
the nonevanescent part of W(�,�,ω), as caused by the
Fourier-plane convolution corresponding to Eq. (29), is hence
negligible and to a high degree of accuracy we have

vec[WNE(�,�,ω)] = vec[〈ENE(ρ,ω)E†
NE(ρ ′,ω)〉],

= S(�,ω) vec[MNE(�,ω)]. (31)

Next we introduce the far-field correlation matrix

A(k̂,ω) = 〈a(k̂,ω)a†(k̂,ω)〉, (32)

with a(k̂,ω) given in Eq. (22). This matrix specifies the
intensity and the polarization state of the far field in the
direction k̂. Employing Eqs. (22) and (31) we obtain for
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quasihomogeneous electromagnetic sources that

vec[A(k̂,ω)]

=
(

k

2π

)2

(ẑ · k̂)
∫∫

vec[〈ENE(ρ,ω)E†
NE(ρ ′,ω)〉]

× exp[−iκ · (ρ − ρ ′)] dρ dρ ′

=
(

k

2π

)2

(ẑ · k̂)
∫∫

S(�,ω) vec[MNE(�,ω)]

× exp(−iκ · �) d� d�

=
(

k

2π

)2

(ẑ · k̂) S̃(0,ω)
∫

vec[MNE(�,ω)]

× exp(−iκ · �) d�, (33)

where

S̃(ξ ,ω) =
∫

S(�,ω) exp(−iξ · �) d�. (34)

By inverting the transform in Eq. (33) we find

vec[MNE(�,ω)]

= 1

k2
[S̃(0,ω)]�

∫
κ�1

1

(ẑ · k̂)
vec[A(k̂,ω)] exp(iκ · �) dκ

= [S̃(0,ω)]� vec

[∫
ẑ·k̂>0

A(k̂,ω) exp(ikk̂ · �) dk̂
]
, (35)

where � denotes the matrix pseudoinverse and the last equality
follows as in Eq. (21). We will not here delve into the intricacies
associated with a singular S̃(0,ω), so for the present purposes �

can safely be interpreted simply as the ordinary matrix inverse.
On introducing the representation (35) into Eq. (31), we finally
obtain

vec[WNE(�,�,ω)]

= S(�,ω)[S̃(0,ω)]� vec

[∫
ẑ·k̂>0

A(k̂,ω) exp(ikk̂ · �) dk̂
]
.

(36)

This formula gives the nonevanescent part of the correlation
function of a planar, quasihomogeneous, electromagnetic
secondary source in terms of the matrix A(k̂,ω) which specifies
the far-field intensity and polarization state distributions.

V. ELECTROMAGNETIC LAMBERTIAN SOURCES

Let us now study the far-field correlation matrix defined
in Eq. (33) and its relation to the properties of the source
distribution in more detail. To begin with we note that
the definition (5), the expressions (10) and (14), and the
(divergence) condition (16) allow us to express the radiant
intensity of Eq. (27) in terms of a(r̂,ω) and, ultimately, in
terms of A(k̂,ω) as

J (r̂,ω) = c

2
(ẑ · r̂)〈|a(r̂,ω)|2〉 = c

2
(ẑ · r̂) tr[A(r̂,ω)], (37)

where the last step follows from the definition (32). For scalar
fields a Lambertian source is defined as a source whose radiant
intensity obeys Lambert’s law

J (r̂,ω) = (ẑ · r̂)J (ω). (38)

We may directly extend this definition to electromagnetic
fields, whereby Eq. (37) immediately implies that a vector-
valued source is Lambertian if, and only if, it satisfies the
condition

tr[A(k̂,ω)] = A(ω), (39)

for some constant A(ω) > 0 and all k̂ with ẑ · k̂ > 0.
However, besides the condition (39) amounting to the

Lambertian property, it follows from the definition (32) and the
condition (16) that A(k̂,ω), representing a far-field (or angular)
correlation matrix, also has to satisfy the relations

k̂ · A(k̂,ω) = 0, A(k̂,ω) · k̂ = 0, (40)

i.e., A(k̂,ω) is a 2 × 2 matrix in the space orthogonal to k̂.
As the matrix A(k̂,ω) is Hermitian and non-negative definite,
the most general form that the far-field correlation matrix of a
Lambertian source can have is, in view of the restrictions (39)
and (40), thus given by

A(k̂,ω) = A(ω)B†(k̂,ω)B(k̂,ω), (41)

where

B(k̂,ω) = βss(k̂,ω)ŝŝ + βsp(k̂,ω)ŝp̂

+βps(k̂,ω)p̂ŝ + βpp(k̂,ω)p̂p̂, (42)

and βuv(k̂,ω), with u,v ∈ {s,p}, are arbitrary complex func-
tions that satisfy the normalization condition∑

u,v

|βuv(k̂,ω)|2 = 1. (43)

In addition, the unit vectors ŝ and p̂ in Eq. (42), corresponding
to s- and p-polarized fields are defined in terms of the unit
vector k̂, so that these three vectors form an orthonormal basis
forR3. Specifically, if we represent the vector k̂ in the spherical
coordinates (r,θ,φ) as

k̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ, (44)

where x̂ and ŷ are the unit vectors along the x and y axes, we
explicitly have the representations

ŝ = k̂ × ẑ

|k̂ × ẑ| = sin φx̂ − cos φŷ, (45)

and

p̂ = k̂ × ŝ = cos θ cos φx̂ + cos θ sin φŷ − sin θ ẑ. (46)

We observe that the latter two vectors are well defined only
when k̂ is not parallel to ẑ, but since this special case
corresponds to a set of measure zero (the z axis), it can safely
be ignored.

VI. EXAMPLES OF VECTOR-VALUED
LAMBERTIAN SOURCES

We next consider specific examples of the far-field corre-
lation matrices A(k̂,ω) of the form (41) and determine the
nonevanescent parts of the corresponding source distributions.
For simplicity we only consider sources with

S(�,ω)[S̃(0,ω)]� ≈ σU, (47)
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for all � of interest. Here σ > 0 and U is the 9 × 9 unit
matrix. Physically the restriction (47) can be regarded to mean
that we analyze planar electromagnetic secondary sources for
which the spectral densities of the Cartesian components are
approximately constant over the region of interest. For our
purposes here, this is sufficient.

The condition (47) allows us to convert the representa-
tion (36) into the form

WNE(�,�,ω) ≈ WNE(�,ω)

= σ

∫
ẑ·k̂>0

A(k̂,ω) exp(ikk̂ · �) dk̂. (48)

Making use of Eq. (39) we find, for any quasihomogeneous
Lambertian source that obeys Eq. (47), that

tr[WNE(�,ω)] = σA(ω)
∫

ẑ·k̂>0
exp(ikk̂ · �) dk̂

= 2πσA(ω)
sin(k�)

k�
, (49)

indicating that the trace of the correlation function of the
nonevanescent part of the source is of a sinc form, and also

tr[WNE(0,ω)] = 2πσA(ω). (50)

In what follows, the far-field distributions have A(ω) = 1
so that without losing generality we can take σ = (2π )−1,
whereby the definition (24) gives the expression

μEM(�,ω) = ‖WNE(�,ω)‖F (51)

for the electromagnetic degree of coherence of the field.

A. Lambertian field I: Blackbody radiation

The far-field correlation matrix of blackbody radiation
emanating from an aperture in the cavity wall is given
by [16–18]

A(bb)(k̂,ω) = 1
2 (ŝŝ + p̂p̂). (52)

This form corresponds to a far field which in every direction
is composed of uncorrelated, equal-intensity, s-polarized and
p-polarized components, i.e., locally the field is an unpolarized
plane wave. The related cross-spectral density matrix of the
source, which is obtained by introducing the expression (52)
into the representation (48), has been determined elsewhere
[up to the multiplicative factor (2π )−1] and is given by [18]

W(bb)
NE (�,ω) = j1(k�)

k�
�̂�̂ + 1

2

[
j0(k�) − j1(k�)

k�

]

× [(ẑ × �̂)(ẑ × �̂) + ẑẑ]

− i

2

J2(k�)

k�
(�̂ẑ + ẑ�̂), (53)

where Jn(z) and jn(z) denote the Bessel function and spherical
Bessel function of order n, respectively, and � = |�|. For the
degree of coherence of this source field, we then find from

0 5 10 15 20 25 30
0
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0.3

0.4
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0.6

0.7

0.8

kΔ

μ 
   

  (Δ
, ω

)
ΕΜ

3.3

FIG. 1. Electromagnetic degree of coherence of the source for
various Lambertian fields: blackbody radiation (red solid), s-polarized
far field (blue dashed), p-polarized far field (green dash-dotted), and
circularly polarized far field (black dotted). Vertical line at k� = 3.3
marks the coherence length.

Eq. (51) the expression [18]

μ
(bb)
EM (�,ω) =

{[
j1(k�)

k�

]2

+ 1

2

[
j0(k�) − j1(k�)

k�

]2

+ 1

2

[
J2(k�)

k�

]2}1/2

. (54)

The behavior of μ
(bb)
EM (�,ω) as a function of � is shown

in Fig. 1 by the red solid curve. The first minimum is
approximately at k� ≈ 3.3, corresponding to � ≈ λ/2. We
may consider this distance to represent a coherence length of
the source. The polarization matrix of Eq. (25) becomes

�
(bb)
NE (r,ω) = 1

3 U, (55)

while for the degree of polarization across the source region
Eq. (26) implies that

P
(bb)
3 (r,ω) = 0. (56)

Thus the source, which is genuinely a three-component electric
field, is completely unpolarized.

B. Lambertian field II: s-polarized far field

The far-field correlation matrix corresponding to a com-
pletely s-polarized (or azimuthally polarized) Lambertian field
is given by

A(s)(k̂,ω) = ŝŝ. (57)

Unlike in the previous blackbody radiation example the far
field is now fully polarized in every direction. In Appendix A,
we derive for the corresponding source distribution the
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expression

W(s)
NE(�,ω) =

[
j0(k�) − h0(k�)

k�

]

× (ẑ × �̂)(ẑ × �̂) + h0(k�)

k�
�̂�̂. (58)

Here hn(z) denotes the spherical Struve function of order n,
which we define in terms of the Struve function Hn+1/2(z) as

hn(z) =
√

π

2z
Hn+1/2(z). (59)

Inserting Eq. (58) into Eq. (51), we readily obtain

μ
(s)
EM(�,ω) =

{[
j0(k�) − h0(k�)

k�

]2

+
[
h0(k�)

k�

]2}1/2

.

(60)
This degree of coherence is illustrated in Fig. 1 by the blue
dashed curve. As for a blackbody radiator, the coherence length
across the planar source is about λ/2. Using Eqs. (25) and (26),
the polarization matrix and the degree of polarization of the
source take on, respectively, the forms

�
(s)
NE(r,ω) = 1

2 (x̂x̂ + ŷŷ), (61)

P
(s)
3 (r,ω) = 1

2 . (62)

These equations show that the source has no z component
and it corresponds to an electric field which is unpolarized
in the sense of the traditional degree of polarization of two-
component fields [1].

C. Lambertian field III: p-polarized far field

The far-field matrix corresponding to a completely
p-polarized (or radially polarized) Lambertian field can be
expressed as

A(p)(k̂,ω) = p̂p̂ = 2A(bb)(k̂,ω) − A(s)(k̂,ω), (63)

with A(bb)(k̂,ω) and A(s)(k̂,ω) given in Eqs. (52) and (57),
respectively. The corresponding cross-spectral density matrix
of this source is computed as W(p)

NE(k̂,ω) = 2W(bb)
NE (k̂,ω) −

W(s)
NE(k̂,ω), where the two cross-spectral density matrices are

found from Eqs. (53) and (58), leading to

W(p)
NE(�,ω) =

[
2
j1(k�)

k�
− h0(k�)

k�

]
�̂�̂

+
[

− j1(k�)

k�
+ h0(k�)

k�

]
(ẑ × �̂)(ẑ × �̂)

+
[
j0(k�) − j1(k�)

k�

]
ẑẑ − i

J2(k�)

k�
(�̂ẑ + ẑ�̂).

(64)

In view of Eq. (51), the electromagnetic degree of coherence
of the source assumes the form

μ
(p)
EM(�,ω) =

{[
2
j1(k�)

k�
− h0(k�)

k�

]2

+
[

− j1(k�)

k�
+ h0(k�)

k�

]2

+
[
j0(k�) − j1(k�)

k�

]2

+ 2

[
J2(k�)

k�

]2}1/2

.

(65)

The degree of coherence is depicted in Fig. 1 with the green
dash-dotted line implying that, again, the coherence length is
roughly λ/2. The polarization quantities of Eqs. (25) and (26)
are found to be

�
(p)
NE(r,ω) = 1

6 U + 1
2 ẑẑ, (66)

P
(p)
3 (r,ω) = 1

2 . (67)

The polarization matrix is diagonal indicating that the orthog-
onal field components are uncorrelated. The intensities of the
x and y field components are the same and, in contrast to the
s-polarized Lambertian field, the source has a z component
with an intensity higher than that of the transverse components.

D. Lambertian field IV: Circularly polarized far field

The far-field matrix corresponding to a circularly polarized
Lambertian field is given by

A(±)(k̂,ω) = 1

2
[ŝŝ + p̂p̂ ± i(ŝp̂ − p̂ŝ)]

= A(bb)(k̂,ω) ± i

2
(ŝp̂ − p̂ŝ), (68)

where the two signs refer to handedness of the circular polar-
ization. The source correlation matrix, derived in Appendix B,
can be written as

W(±)
NE (�,ω) = j1(k�)

k�
�̂�̂ + 1

2

[
j0(k�) − j1(k�)

k�

]

× [(ẑ × �̂)(ẑ × �̂) + ẑẑ] − i

2

J2(k�)

k�

× (�̂ẑ+ẑ�̂)±1

2
j1(k�)[(ẑ×�̂)ẑ−ẑ(ẑ×�̂)]

± i

2

J1(k�)

k�
[�̂(ẑ × �̂) − (ẑ × �̂)�̂]. (69)

The electromagnetic degree of coherence function is now
obtained from Eq. (51) as

μ
(±)
EM(�,ω) =

{[
j1(k�)

k�

]2

+ 1

2

[
j0(k�) − j1(k�)

k�

]2

+ 1

2

[
J2(k�)

k�

]2

+ 1

2
[j1(k�)]2

+ 1

2

[
J1(k�)

k�

]2}1/2

, (70)
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which is the same for both left-hand and right-hand circular
polarizations. The degree of coherence as a function of � is
shown in Fig. 1 by the black dotted curve demonstrating that
the coherence length is about λ/2 in this case as well. From
Eqs. (25) and (26) we find

�
(±)
NE (r,ω) = 1

3
U ± i

4
(x̂ŷ − ŷx̂), (71)

P
(±)
3 (r,ω) =

√
3

4
, (72)

and we see that the source-field polarization matrix contains a
component which corresponds to a (fully) circularly polarized
field confined to the xy plane.

E. Lambertian field V: s- to p-polarization gradient

Next we consider a Lambertian far-field matrix of the form

A(s→p)(k̂,ω)

= cos2 θ ŝŝ + sin2 θ p̂p̂ = ŝŝ + sin2 θ (p̂p̂ − ŝŝ)

= A(s)(k̂,ω) + [1 − (ẑ · k̂)2][A(p)(k̂,ω) − A(s)(k̂,ω)], (73)

where cos θ = ẑ · k̂. Thus the far field is s-polarized when θ is
small and it changes gradually to p-polarized when θ increases.
The linearity of the representation (48), the finiteness of the
integration range, and the argument in the exponential within
the integral imply that the cross-spectral density matrix of the
source corresponding to the far-field matrix (73) can be written
as

W(s→p)
NE (�,ω)

= W(s)
NE(�,ω) − 1

k2

(
∂2
ξ + ∂2

η

)[
W(p)

NE(�,ω) − W(s)
NE(�,ω)

]
=

[
h0(k�)

k�
− 4

j2(k�)

(k�)2

]
�̂�̂

+
[

2
j1(k�)

k�
− h0(k�)

k�
+ j2(k�)

(k�)2

]
(ẑ × �̂)(ẑ × �̂)

+
[
j0(k�) − 2

j1(k�)

k�
+ 3

j2(k�)

(k�)2

]
ẑẑ

+ i

[
− J2(k�)

k�
+ 2

J3(k�)

(k�)2

]
(�̂ẑ + ẑ�̂), (74)

where the differentiations are straightforward but tedious
and we have written � = ξ x̂ + ηŷ, and used Eqs. (58)
and (64). The electromagnetic degree of coherence introduced
in Eq. (51) takes on the form

μ
(s→p)
EM (�,ω) =

{[
h0(k�)

k�
− 4

j2(k�)

(k�)2

]2

+
[

2
j1(k�)

k�
− h0(k�)

k�
+ j2(k�)

(k�)2

]2

+
[
j0(k�) − 2

j1(k�)

k�
+ 3

j2(k�)

(k�)2

]2

+
[
−J2(k�)

k�
+ 2

J3(k�)

(k�)2

]2
}1/2

. (75)

Although not explicitly shown, the coherence length is again
about λ/2. Using Eqs. (25) and (26), the polarization matrix
and the degree of polarization become

�
(s→p)
NE (ω) = 7

30 x̂x̂ + 7
30 ŷŷ + 16

30 ẑẑ, (76)

P
(s→p)
3 (r,ω) = 3

10 . (77)

At a single point the source field has three uncorrelated electric
field components of which the x and y components have the
same intensity while the intensity of the z component is about
twice as large. The degree of polarization indicates that the
field is weakly polarized.

F. Lambertian field VI: p- to s-polarization gradient

Symmetrically with the previous example we then consider
a Lambertian far-field matrix of the form

A(p→s)(k̂,ω) = sin2 θ ŝŝ + cos2 θ p̂p̂

= (ŝŝ + p̂p̂) − (cos2 θ ŝŝ + sin2 θ p̂p̂)

= 2A(bb)(k̂,ω) − A(s→p)(k̂,ω), (78)

with the corresponding cross-spectral density matrix of the
source given by

W(p→s)
NE (�,ω) = 2W(bb)

NE (�,ω) − W(s→p)
NE (�,ω)

=
[

2
j1(k�)

k�
− h0(k�)

k�
+ 4

j2(k�)

(k�)2

]
�̂�̂

+
[
j0(k�) − 3

j1(k�)

k�
+ h0(k�)

k�
− j2(k�)

(k�)2

]

× (ẑ × �̂)(ẑ × �̂) +
[
j1(k�)

k�
− 3

j2(k�)

(k�)2

]

× ẑẑ − i2
J3(k�)

(k�)2
(�̂ẑ + ẑ�̂). (79)

Using this representation it is straightforward to write the
degree-of-coherence function as

μ
(p→s)
EM (�,ω)

=
{[

2
j1(k�)

k�
− h0(k�)

k�
+ 4

j2(k�)

(k�)2

]2

+
[
j0(k�) − 3

j1(k�)

k�
+ h0(k�)

k�
− j2(k�)

(k�)2

]2

+
[
j1(k�)

k�
− 3

j2(k�)

(k�)2

]2

+
[

2
J3(k�)

(k�)2

]2}1/2

. (80)

The polarization matrix is

�
(s→p)
NE (r,ω) = 13

30 x̂x̂ + 13
30 ŷŷ + 4

30 ẑẑ, (81)

which yields

P
(p→s)
3 (r,ω) = 3

10 (82)

for the degree of polarization. The coherence length is again
λ/2 (not explicitly shown). As in the previous example the
source has three uncorrelated components but, in this case, the
intensity of the transverse components is higher than that of
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the z component. However, the degree of polarization is as in
the previous case.

VII. CONCLUSIONS

In this work we have theoretically investigated electromag-
netic Lambertian sources and demonstrated that in addition
to the known example of the field in an opening of a
blackbody cavity, other Lambertian sources exist whose far
fields differ by their polarization properties. In particular, we
considered quasihomogeneous Lambertian sources whose far
fields are in every direction azimuthally, radially, or circularly
polarized or whose far-field polarization varies in different
directions, changing gradually from azimuthal polarization to

radial polarization or vice versa. In all cases we were able
to compute the source correlation matrix pertaining to the
nonevanescent electric field components, and consequently,
also the electromagnetic degree of coherence, the polarization
matrix, and the degree of polarization. In every example that
we considered, the coherence length of the source was found
to be on the order of half a wavelength while the polarization
characteristics of the sources were different.
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APPENDIX A: DERIVATION OF EQ. (58)

On introducing the far-field matrix (57) corresponding to a completely s-polarized field into the expression (48) and using
Eq. (45), we obtain for the cross-spectral density matrix of the source the representation

W(s)
NE(�,ω) = 1

2π

∫ π/2

0

∫ 2π

0
sin θ

⎡
⎣ sin2 φ − sin φ cos φ 0

− sin φ cos φ cos2 φ 0
0 0 0

⎤
⎦ exp [ik sin θ (ξ cos φ + η sin φ)] dφ dθ

= 1

2π

∫ π/2

0

⎡
⎣−(k2 sin θ )−1∂2

η (k2 sin θ )−1∂ξ ∂η 0
(k2 sin θ )−1∂ξ ∂η −(k2 sin θ )−1∂2

ξ 0
0 0 0

⎤
⎦∫ 2π

0
exp [ik� sin θ cos(φ� − φ)] dφ dθ

=
∫ π/2

0

⎡
⎣−(k2 sin θ )−1∂2

η (k2 sin θ )−1∂ξ ∂η 0
(k2 sin θ )−1∂ξ ∂η −(k2 sin θ )−1∂2

ξ 0
0 0 0

⎤
⎦J0(k� sin θ ) dθ

=
∫ π/2

0

⎡
⎢⎣

∂η

[
η(k�)−1J1(k� sin θ )

] −∂ξ

[
η(k�)−1J1(k� sin θ )

]
0

−∂η

[
ξ (k�)−1J1(k� sin θ )

]
∂ξ

[
ξ (k�)−1J1(k� sin θ )

]
0

0 0 0

⎤
⎥⎦ dθ

=

⎡
⎢⎣

∂η

[
η(k�)−1h0(k�)

] −∂ξ

[
η(k�)−1h0(k�)

]
0

−∂η

[
ξ (k�)−1h0(k�)

]
∂ξ

[
ξ (k�)−1h0(k�)

]
0

0 0 0

⎤
⎥⎦

=
[
j0(k�) − h0(k�)

k�

]
(ẑ × �̂)(ẑ × �̂) + h0(k�)

k�
�̂�̂, (A1)

where the last equality is Eq. (58). In the derivation we have denoted � = ξ x̂ + ηŷ and φ� is the angle that the vector � makes
with respect to the x axis. Further, we have used the relations

∂zJ0(z) = −J1(z), (A2)∫ 2π

0
exp[iz cos(φ� − φ)] dφ = 2πJ0(z), (A3)∫ π/2

0
J1(z sin θ ) dθ = 1 − cos z

z
= h0(z), (A4)

where h0(z) is a spherical Struve function defined in Eq. (59).

APPENDIX B: DERIVATION OF EQ. (69)

When we consider the far-field matrix corresponding to a circularly polarized field as given by Eq. (68), we observe that the
source cross-spectral density matrix can be obtained from the blackbody cross-spectral density with an additional term. The term
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is the difference of a matrix with its own transpose and hence it is sufficient to determine that matrix, which is given by

W(sp)
NE (�,ω) = 1

2π

∫ π/2

0

∫ 2π

0

⎡
⎣sin θ cos θ sin φ cos φ sin θ cos θ sin2 φ − sin2 θ sin φ

− sin θ cos θ cos2 φ − sin θ cos θ sin φ cos φ sin2 θ cos φ

0 0 0

⎤
⎦

× exp[ik sin θ (ξ cos φ + η sin φ)] dφ dθ

= 1

2π

∫ π/2

0

∫ 2π

0

⎡
⎣−(k2 sin θ )−1 cos θ∂ξ ∂η −(k2 sin θ )−1 cos θ∂2

η ik−1 sin θ∂η

(k2 sin θ )−1 cos θ∂2
ξ (k2 sin θ )−1 cos θ∂ξ ∂η −ik−1 sin θ∂ξ

0 0 0

⎤
⎦

× exp [ik� sin θ cos(φ� − φ)] dφ dθ

=
∫ π/2

0

⎡
⎣−(k2 sin θ )−1 cos θ∂ξ ∂η −(k2 sin θ )−1 cos θ∂2

η ik−1 sin θ∂η

(k2 sin θ )−1 cos θ∂2
ξ (k2 sin θ )−1 cos θ∂ξ ∂η −ik−1 sin θ∂ξ

0 0 0

⎤
⎦J0(k� sin θ ) dθ

=
⎡
⎣ ∂ξ {η(k�)−2[1 − J0(k�)]} ∂η{η(k�)−2[1 − J0(k�)]} ik−1∂ηj0(k�)

−∂ξ {ξ (k�)−2[1 − J0(k�)]} −∂η{ξ (k�)−2[1 − J0(k�)]} −ik−1∂ξ j0(k�)
0 0 0

⎤
⎦

= −J1(k�)

k�
(ẑ × �̂)�̂ + 1 − J0(k�)

k�
[�̂(ẑ × �̂) + (ẑ × �̂)ẑ] + ij1(k�)(ẑ × �̂)ẑ, (B1)

where � is as in Appendix A, and we have used the relations∫ π/2

0
sin θJ0(z sin θ ) dθ = j0(z), (B2)∫ π/2

0
sin θ cos2 θJ0(z sin θ ) dθ = j1(z)

z
. (B3)

The source distribution for the circularly polarized far field can be written as

W(±)
NE (�,ω) = W(bb)

NE (�,ω) ± i

2

[
W(sp)

NE (�,ω) − W(sp)
NE

T
(�,ω)

]
, (B4)

where T denotes the matrix transpose. Substituting the two constituent matrices from Eqs. (B1) and (53) results in Eq. (69).
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