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High-order optical processes in intense laser field: Towards nonperturbative nonlinear optics
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We develop an approach describing nonlinear-optical processes in the strong-field domain characterized by the
nonperturbative field-with-matter interaction. The polarization of an isolated atom in the external field calculated
via the numerical solution of the time-dependent Schrödinger equation agrees with our analytical findings. For
the practically important case of one strong laser field and several weaker fields, we derive and analytically solve
propagation equations describing high-order (HO) wave mixing, HO parametric amplification, and HO stimulated
scattering. These processes provide a way of efficient coherent xuv generation. Some properties of HO processes
are new in nonlinear optics: essentially complex values of the coefficients in the propagation equations, the
superexponential (hyperbolic) growing solutions, etc. Finally, we suggest conditions for the practical realization
of these processes and discuss published numerical and experimental results where such processes could have
been observed.
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I. INTRODUCTION

Nonlinear optics usually deals with the laser field which
perturbatively interacts with matter. In this case, the matter
response is described with nonlinear susceptibilities χ (m).
This approach allows one to investigate numerous nonlinear-
optical effects involving few photons [1]. However, in the
case of intense laser field, the perturbation approach fails.
A number of multiphoton processes involving electronic
dynamics (ionization, electronic rescattering, etc.) are success-
fully described within nonperturbative approaches (such as
Keldysh approximation [2]), but the only fully optical process
which is well understood in this case is high-order harmonic
generation (HHG). The study of the other nonlinear optical
processes in the nonperturbative regime is limited, among
other factors, by poorly developed theoretical methods of
their description. For instance, experimental [3] observation
of the exponential growth of the high harmonic signal has
led to an active discussion [4–6]. The feasibility of high-
order optical processes was already discussed in the early
studies [7–10], but the theoretical methods were based on
using nonlinear susceptibilities and thus were limited to
processes of relatively low order. More recently, the xuv
amplification was obtained in simulations [11] based on direct
numerical integration of the propagation equation with the
nonlinear polarization calculated via numerical solution of the
time-dependent Schrödinger equation (TDSE).

In this paper, we suggest an approach to describe non-
linear optical processes in the presence of a given strong
laser field (denoted as E0). Processes involving other fields
(denoted as E1,2,...) are described with the susceptibilities,
nonperturbatively induced by the pump field. The remarkable
practical importance of the suggested approach is that even in
the strong-field domain, we write and in several cases solve
analytically the propagation equations for the fields E1,2,.... To
study the conditions for which such processes can be observed
experimentally, we calculate the induced susceptibilities for a
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model Xe atom using a numerical TDSE solution. Our results
show that efficient coherent xuv generation can be one of the
applications of the HO nonlinear processes.

II. EXPANSION OF THE MICROSCOPIC
NONLINEAR POLARIZATION

Let us consider the microscopic polarization introduced by
two external fields E0 and E1. Irrespective of the nature of
nonlinearity, the microscopic polarization P (t) is a functional
of the external field E = E0 + E1,

P (t) = �[E] = �[E0 + E1].

The functional can be expanded in the Taylor se-
ries [12] (for some physical applications of such expansion,
see [13,14]):

P (t) = P (0)(t) + P (1)(t) + P (2)(t) + · · · ,

where

P (0)(t) = �[E0], (1)

P (1)(t) =
∫ +∞

0
dτ

δ�

δE

∣∣∣∣
E=E0(t−τ )

E1(t − τ ) + c.c., (2)

P (2)(t) =
∫ +∞

0
dτ

∫ +∞

0
dτ ′ 1

2

δ2�

δE2

∣∣∣∣
E=E0(t−τ ′)

×E1(t − τ )E1(t − τ ′) + c.c., (3)

where δ�
δE

, δ2�
δE2 are the functional derivatives of the functional

� over the function E.
Let us consider fields

E0,1 = E0,1 exp(−iω0,1t) + c.c.

Periodicity of the field E0 allows the expansion of the
functional derivatives in Eqs. (2) and (3) in the Fourier
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series,

δ�

δE

∣∣∣∣
E=E0(t−τ )

=
∑

q

G(1)
q (E0,ω0,τ ) exp[−iqω0(t − τ )], (4)

1

2

δ2�

δE2

∣∣∣∣
E=E0(t−τ ′)

=
∑

q

G(2)
q (E0,ω0,τ

′) exp[−iqω0(t − τ ′)].

(5)

Substituting these expansions into Eqs. (2) and (3), we have

P (1)(t) =
∑

q

E1 exp[−i(qω0 + ω1)t]κ (+1)
q

+ E∗
1 exp[−i(qω0 − ω1)t]κ (−1)

q + c.c., (6)

P (2)(t) =
∑

q

E2
1 exp[−i(qω0 + 2ω1)t]κ (+2)

q

+ (E∗
1 )2 exp[−i(qω0 − 2ω1)t]κ (−2)

q

+ |E1|2 exp(−iqω0t)κ
(0,2)
q + c.c., (7)

where

κ (±1)
q (E0,ω0,ω1) =

∫ +∞

0
dτG(1)

q (E0,ω0,τ )

× exp(iqω0τ ± iω1τ ), (8)

κ (±2)
q (E0,ω0,ω1) =

∫ +∞

0
dτ

∫ +∞

0
dτ ′G(2)

q (E0,ω0,τ
′)

× exp[iqω0τ
′ ± iω1(τ + τ ′)], (9)

κ (0,2)
q (E0,ω0,ω1) =

∫ +∞

0
dτ

∫ +∞

0
dτ ′G(2)

q (E0,ω0,τ
′)

× exp(iqω0τ
′){exp[iω1(τ − τ ′)]

+ exp[−iω1(τ − τ ′)]}. (10)

Under certain conditions (see [15] and references therein),
the functional �[E0] in Eq. (1) can be expanded in Fourier
series according to the Floquet theorem,

P (0)(t) =
∑

q

κ (0)
q (E0,ω0) exp(−iqω0t) + c.c. (11)

Thus the Fourier expansion of the microscopic response P

can be written as

P (t) =
+∞∑

q=−∞

+∞∑
m=−∞

κ̃ (m)
q (E1)|m| exp{−iqω0t − imω1t} + c.c.,

(12)

where

κ̃ (m)
q (E0,E1,ω0,ω1) =

+∞∑
j=0,2,...

κ (m,j )
q (E0,ω0,ω1)|E1|j , (13)

κ (m,0)
q ≡ κ (m)

q .

From Eq. (13), one can see that terms with j = 2,4, . . . can be
understood as those describing processes where one, two, etc.
photons from the field E1 were absorbed and the same number
of photons of this field were emitted.

Now let us consider the fields

E0,1(r,t) = E0,1 exp(−iω0,1t + k0,1r + ϕ0,1) + c.c., (14)

with the real amplitudes E0,1.
Assuming the locality of the microscopic response and

substituting −ω0,1t → −ω0,1t + k0,1r + ϕ0,1 in Eq. (12), we
have

P (r,t) =
+∞∑

q=−∞

+∞∑
m=−∞

κ̃ (m)
q (E1)|m| exp{iq(−ω0t + k0r + ϕ0)

+ im(−ω1t + k1r + ϕ1)} + c.c., (15)

where the induced susceptibilities κ̃ (m)
q are given by Eq. (13).

Thus, the microscopic response is a sum of waves to which
q photons from the one field and |m| + j photons from the
other one contribute. For the case ω0 = ω1, k0 �= k1, a similar
equation was found in Ref. [16]. Note that up to here we never
supposed that the field E1 is small. Terms with j = 2,4, . . .

in Eq. (13) can be understood as those describing processes
where one, two, etc. photons from the field E1 were absorbed
and the same number of photons of this field were emitted.

The remarkable feature of Eq. (15) is the fact that κ

depends only on the real amplitudes of the fields, and the
dependence on the fields’ phases is only in the exponent.
At a first glance, this contradicts the fact that for the HHG
in the two-color field consisting of the fundamental and its
second harmonic, the high harmonic amplitude and phase
depend on the phase difference of the generating fields in a
complex way [17–19]. Note, however, that when ω0 and ω1

are multiple numbers (for instance, for ω1 = 2ω0), different q

and m can provide contributions with the same frequency; the
interference of these terms provides the complex dependence
on the dephasing. Below we consider only the case of linearly
polarized fields. However, for the case of two-color circularly
polarized fields [20–22], a corresponding generalization of our
approach could be useful. Moreover, the comparison with the
description of the nonlinear-optical effects in the strong-field
region suggested in [21,22] can be done.

When E1 � E0, the first term in Eq. (13) dominates, so we
have κ̃ (m)

q (E0,E1,ω0,ω1) ≈ κ (m,0)
q (E0,ω0,ω1). As κ (m,0)

q does not
depend on E1, in the expansion (15) the dependence on the field
E1 remains only in the term (E1)|m|. This makes this expansion
for the polarization similar to the one appearing in the usual
(“perturbative”) nonlinear optics [1]. Below, for brevity, we
write κ (m)

q ≡ κ (m,0)
q .

Note that in the case of absence of the pump field,
Eq. (15) turns into the well-known perturbative expansion of
the polarization [1]:

P per(t) =
+∞∑
m=1

χ (m)(E1)m exp{im(−ω1t + k1r + ϕ1)} + c.c.

As we mentioned in Sec. I, the practical importance of
Eq. (15) is that even in the strong-field domain, one can write
and sometimes solve analytically the propagation equation
with the right side given by Eq. (15). So there is no need
to calculate the nonperturbative response simultaneously with
the propagation equation solution. Instead, one should find
the polarization using an appropriate theoretical approach
(this can be the numerical TDSE solution, strong-field

053812-2



HIGH-ORDER OPTICAL PROCESSES IN INTENSE LASER . . . PHYSICAL REVIEW A 93, 053812 (2016)

FIG. 1. Spectra of the polarization induced by the weak field E1 in
the presence of the intense field E0 for different strengths of the weak
field; the spectra are calculated numerically via TDSE solution for a
model Xe atom (see text for more details). Arrows show the spectral
components generated due to different induced susceptibilities κ (m)

q .
The spectra are normalized with the intensity of the 13th harmonic
generated in the absence of the weak field.

approximation [16,23,24], or classical models [3,25] for an
isolated atom response, particle-in-cell simulations for plasma,
etc.), calculate its spectrum P (ω), and then find κ from
this spectrum using Eq. (15); alternatively, one can directly
calculate κ from Eqs. (8)–(10).

To check our analytical findings, we compare the found
properties of the polarization with numerical results. We
solve numerically the three-dimensional (3D) TDSE in the
single-active electron approximation for a model Xe atom in
an external laser field; the details of the TDSE solution are
presented in Refs. [26,27]. For the given strong field E0, we
calculate numerically the polarization P in the presence of
the weak field E1 and the polarization P (0) in the absence
of this field. Figure 1 presents the spectrum P̃ (ω,E1) =
P (ω,E1) − P (0)(ω) for the given E0 and different E1. The
strong-field wavelength is 800 nm and its intensity is 5 × 1013

W/cm2. The weak field has low frequency ω1 = 1
8ω0 and low

intensity, which differs in different calculations.
We can see that in agreement with the selection rule for a

central-inverse medium, only processes with an odd number
of photons q + |m| + j contribute to the process (for |m| � 2
and j = 0, this selection rule was demonstrated already in
the early experiment [28]). The strongest contributions are the
“doublet” around the even harmonic of the pump field q = 12
due to the |m| = 1, j = 0 processes [given by Eq. (6)], and the
“triplet” around the odd one q = 13 due to the |m| + j = 2
processes [given by Eq. (7)].

FIG. 2. Absolute values (upper panel) and phases (lower panel)
of spectral components of the response shown in Fig. 1 as a
function of the weak field strength. Several components with different
frequencies are shown; the induced susceptibility responsible for the
generation of every component is presented in square brackets. Dotted
lines show the power approximations.

Figure 2 shows the absolute value and the phase of the
response P̃ (ω,E1) as a function of the field E1. We can see
that in agreement with our analytical findings, the arguments
are approximately constant and the absolute values increase
approximately as E |m|+j

1 , with lowest possible j . However, the
deviation from these (weak E1 field) approximations increases
with E1 because terms with higher j should be taken into
account in the expansions (13) and (15). The role of terms
with j �= 0 can be seen in this figure from the component with
ω = 13ω0 (red line with circles) generated due to κ

(0,2)
13 . For

E1 = 0.1E0, we can see that |P̃ (13ω0)| ≈ |P (0)(13ω0)|, so this
contribution is not negligible for such E1. Below we deal with
lower fields E1, thus studying only the processes with j = 0.

Note that if we are really in the nonperturbative domain
(i.e., E1 � E0 is not valid), κ̃ should be calculated (for in-
stance, with the strong-field approximation or using numerical
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TDSE solution), and the propagation equation should be
integrated taking into account the dependence of κ̃ on the real
amplitude E1.

III. SOME PROPERTIES OF THE INDUCED
SUSCEPTIBILITIES

Below we consider only the centrally symmetric case (the
medium is centrally symmetric and the fields are linearly
polarized in the same plane). The following properties of the
induced susceptibilities are found:

(i) From the numerical TDSE solution, we find that while
q is in the plateau region, κ (m)

q are comparable for different
orders q.

(ii) For ω1 � qω0 and in the absence of resonances from
Eq. (8), one can see that

κ (1)
q (ω1) ≈ κ (−1)

q (ω1). (16)

From Eq. (9) for κ (2)
q and from similar equations for higher-

order induced susceptibilities, we have, under mω1 � qω0,

κ (m)
q (ω1) ≈ κ (−m)

q (ω1). (17)

For m = 1,2, this can be seen from Fig. 1. Moreover, for higher
m, the difference between κ (m)

q and κ (−m)
q is visible.

(iii) In the following studies, we shall write explicitly the
frequency of the response, using the following notations:

κ (1)(ω = qω0 ± ω1) ≡ κ (±1)
q (ω1),

κ (2)(ω = qω0 ± 2ω1) ≡ κ (±2)
q (ω1).

The permutation symmetry of the second-order nonlinear
susceptibilities is [1]

χ (2)∗(ω = ω1 + ω2) = χ (2)(ω1 = −ω2 + ω)

= χ (2)(ω2 = ω − ω1). (18)

In the approximation of the given pump field, the first equation
does not have its analog for the induced susceptibilities.
However, the second equation has the analog:

|κ (1)(ω2 = qω0 − ω1)| = |κ (1)(ω1 = −ω2 + qω0)|. (19)

Note that the equation takes place only for the absolute values.
We shall derive this equation in Appendix A. It can also be
derived directly from the Manley-Rowe relations, as is done
in [29] for χ .

IV. SOME HIGH-ORDER NONLINEAR PROCESSES

Below we study several high-order nonlinear processes,
illustrated in Fig. 3.

A. Wave mixing

The wave mixing is the process where q photons from
the intense field and m photons from the weaker field are
converted in one ω2 = qω0 + mω1 photon. In the plane-wave
approximation and slowly varying amplitude approximation,
directing the z axis along qk0 + mk1, we present the generated
field as

E2 = E2(z) exp{i(k2z − ω2t)}. (20)

FIG. 3. The schematic of several high-order processes involving
many photons from the pump field with frequency ω0 and few photons
from the weaker fields with frequencies ω1 and ω2.

The complex amplitude of the field E2 is described with the
following propagation equation:

∂E2

∂z
= i2πω2

2

k2c2
P NL(ω2,z) exp{−i(k2z − ω2t)}, (21)

where P NL is the nonlinear part of the polarization given by
Eq. (15). From Eqs. (21) and (15), one can see that the intensity
of the generated field E2 is proportional to the mth power of
the intensity of the field E1. This explains the experimental
findings of [30], where for xuv generation this behavior was
observed up to m = 6. Another example is generation of
THz radiation using a frequency-tunable half harmonic of a
femtosecond pulse [31]. This process can be understood as
difference-frequency generation (one fundamental photon plus
m = −2 half harmonic photons). The experimentally found
dependence of the THz yield on the fundamental intensity is
much stronger than linear (as it should be in the intense-field
domain), but the dependence on the weak half harmonic
intensity is quadratic, as it should be for the process with
|m| = 2.

From Eqs. (21) and (15), one can see that the detuning from
the phase matching for a process of mixing of q photons from
one beam and m photons from the other is, irrespective of the
intensity ratio,

�kq,m = qk0 + mk1 − k2, (22)

where k2 is the wave vector at the frequency ω2. In Ref. [16], the
phase matching for the noncollinear HHG (ω1 = ω0, k1 �= k0)
was considered. Here we assume ω1 �= ω0, codirected k1 and
k0, and plasma and/or capillary contribution to the dispersion
dominates. In this case, the refraction index for some frequency
ω̃ 
 ωpl is n = 1 − ω2

pl/(2ω̃2). Let us assume that the plasma
frequency ωpl � ω0, ω1. Then,

�kq,m = ω2
pl

2c

(
− q

ω0
− m

ω1
+ 1

qω0 + mω1

)
.

Omitting the last term, we find that for m = −ω1
ω2

, the
detuning is zero irrespective of the plasma frequency, and thus
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irrespective of its density. This is very important because the
medium ionization always accompanies processes in a strong
laser field and thus the plasma density is time varying. Note
that both q and m are integer numbers and the total number of
the involved photons |q| + |m| should be odd.

The possibility of the phase-matching optimization in
the difference-frequency mixing in plasma, involving few
photons from the two waves, was first shown in Refs. [32,33]
and further studied in Ref. [34]. For the case ω0 = 2ω1,
q = 6, m = −3, the phase matching was experimentally
demonstrated in Ref. [35]. However, the case of ω0 = 2ω1

is hardly perspective for solving the phase-matching problem
for really high harmonics because, along with the optimal
(m = −q/2) polarization wave, many other polarization waves
are generated. This is not the case when only a few waves with
different (small) m are generated. For |m| � |q|, it should
be ω1 � ω0, and that is why in Figs. 1 and 2 we present
the numerical results for this case. For ω1 = 1

8ω0, the phase
matching is achieved for q = 8 and m = −1, q = 24 and
m = −3, and so on. In general, to achieve phase-matched
generation of xuv using given number q and lowest |m|, for
the case of even q one should use frequency ω1 = ω0/q and
m = −1 process, and for odd q one should use frequency
ω1 = 2ω0/q and m = −2 process; see Fig. 3 (see also the
“duplet” near the even harmonic and the “triplet” near the odd
one in Fig. 1). Both of these cases will be considered below in
more detail.

B. Parametric amplification and generation

The process of the parametric amplification is described
with the same equations as the difference-frequency gener-
ation. The difference is in the input conditions: the former
assumes that initially there is one intense pump field and both
generated fields are initially weak, while the latter assumes
two initial intense fields [1].

1. Generation of two photons

Let us consider the process in which q photons from the
initial field are converted into one ω1 photon and one ω2

photon; see Fig. 3(a). In this case, q is an even number (note
that for q = 2, this is a well-known process of four-wave
mixing; however, for higher q, the analogy with the four-wave
mixing is hardly helpful). For m = −1, we have, from Eq. (15),

P NL(ω1,2,z) = κ (1)
q (ω1,2 = qω0 − ω2,1)

× exp{iq(k0z − ω0t + ϕ0)}E∗
2,1. (23)

Substituting this polarization into the propagation equation,
we have

∂E1,2/∂z = i2πk1,2κ
(1)
q (ω1,2)E∗

2,1 exp{i�kz + iqϕ0}, (24)

where �k given by Eq. (22) in the considered case is written
as �k = qk0 − k1 − k2.

These equations are similar to those describing the paramet-
ric amplification in the perturbative nonlinear optics (see [1],
part 9.1). In particular, the phase matching plays a critical
role in this process defining the frequencies ω1,2 (and, in the
case of the HO process, also the order q) which are generated
with significant efficiencies. However, an important difference

from the case of the perturbative nonlinear optics is that the
susceptibility κ (m)

q is complex and its phase is not negligible.
For instance, the phase of κ (0)

q is well understood within the
recollision picture (see [36] and references therein). The details
of the solution of the propagation equations (24) are presented
in Appendix A. For the phase-matched process, we obtain the
solution in which the exponential growth,

E1,2(z) ∝ exp{g±z},
where g± = 2π

√
k1k2|κ (1)

q | exp iψ±, α = √
ω1/ω2, ψ+ =

−�θ/2, ψ− = −�θ/2 + π , and �θ = arg[κ (1)
q (ω2)] −

arg[κ (1)
q (ω1)], dominates after a certain propagation distance.

To study the conditions for which the found exponential
growth can be observed experimentally, we consider below
a specific example. Namely, κ (1)

q is found for Xe in the
pump laser field with intensity of 5 × 1013 W/cm2 from the
numerical TDSE solution described above as the limit of
P (qω0 − ω1,E1)/E1 for weak E1:

κ (1)
q = lim

E1→0
P (qω0 − ω1,E1)/E1. (25)

Our numerical calculations show that within the plateau region,
|κ (1)

q | is almost independent of q. For the conditions of
Fig. 1, we find that for q = 12, |κ (1)

q | = 4.5 × 10−26ngas CGS
units, where ngas is the gas density (in cm−3). According to
Eq. (A12) (see Appendix A), this gives the exponential growth
of the intensity with the increment g = 1.35 cm−1 for the
atmospheric pressure. Figure 4(a) shows the fields’ intensities
calculated for these conditions, under zero incident intensity
of the first field. One can see that initially (z < 1 cm) the
intensity of the first field grows quadratically, so the solution
describes difference-frequency generation, and for z > 2 cm
it grows exponentially. Note that the solution in the transition
region can be less smooth depending on the initial phases of
the fields and phases of the induced susceptibilities.

The found values of increment g show that the high-order
parametric process can hardly be observed in atomic gas jets,
but it can be observed in larger targets (capillaries and cells)
especially under high gas pressure (pressures up to tens of
atmospheres were used in recent experiments [37]). Moreover,
this process can be very efficient in a parametric generator.

FIG. 4. Intensities of the fields E1 (dotted red line) and E2

(solid blue line) as a function of the propagation length for (a) two-
photon parametric amplification and (b),(c) three-photon parametric
amplification for different initial intensities of the fields.
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Such parametric generator can be only a singly resonant
one (i.e., the mirrors reflect the pump laser field E0 and the
weak low-frequency field E1) because of the extremely low
efficiency of optical elements in xuv. Note that the intracavity
HHG was demonstrated experimentally [38] and now it is
actively used [39,40].

Otherwise, the high-order parametric generation process
can provide two photons with comparable frequencies. The
phase-matching problem can be solved in noncollinear ge-
ometry. The other way is to utilize dispersion properties near
some resonance: when one of the generated frequencies is
close to the resonance, the phase matching can be achieved
and the parametric generation process would be effective for
these frequencies. For both cases, it is important that the
plasma density is approximately constant for a given “retarded
time” ξ = t − z/c, so the amplification for a given ξ takes
place approximately as in the stationary case described above;
however, the conditions providing phase matching (the angle
in the first case or the detuning from the resonance in the
second one) should be different for different ξ .

2. Generation of three photons

Another parametric process, which was not considered in
the perturbative nonlinear optics, is the one where q photons
from the pump field are split into more than two photons. Here
we shall study the process where there are two low-frequency
photons (ω1) and one xuv photon (ω2). Here, q should be odd,
so under ω1 � ω0 the generated xuv frequency ω2 is close
to the qth harmonic frequency. Thus, the naturally broadened
HH line can provide an effective seeding for this process,
and this determines its practical importance. In Appendix B,
we obtain the following propagation equations describing this
process:

∂E1/∂z = A1E∗
1E∗

2 exp{i�kz + iqϕ0},
∂E2/∂z = A2

(
E∗

1

)2
exp{i�kz + iqϕ0}, (26)

where �k = qk0 − 2k1 − k2. We solve it analytically for
�k = 0. The main property of the found analytical solution
is the hyperbolic growth after a certain propagation distance,
E1,2(z) ∝ 1/(1 − z/zc), where zc is the propagation distance
characterizing a catastrophe (this is a standard term used in the
Riccati equation solution; see Appendix B). Certainly, when
z is close to zc, the approximation of the given pump field
fails, but the efficiency of the process should be high for
such z.

Figure 4 shows the fields’ intensities calculated for zero
incident first field [Fig. 4(b)] and small (but not zero) incident
seeding second field [Fig. 4(c)]; in contrast to the generation of
two photons, here the propagation equations are not symmetric
with respect to the fields. In Fig. 4(b), one can see that initially
the intensity of the first field grows quadratically, so the
solution describes difference-frequency generation. For the
case presented in Fig. 4(c), initially the second field grows
exponentially from the seeding. The following hyperbolic
growth of the intensities is common for both cases. Again, the
solutions in the transition region can be less smooth depending
on the initial phases of the fields and phases of the induced
susceptibilities.

3. Discussion

Note that processes where q laser photons are split into three
photons with different frequencies are also possible, as well
as HO parametric processes where more than three photons
are generated. Such processes can be significant in specific
conditions when they are phase matched; they can be described
by the corresponding induced susceptibilities, but that study is
beyond the scope of this paper.

Finally, we would like to note that to find analytical
solutions of the system of Eqs. (24) or the system of Eqs. (26),
we assume that the induced susceptibilities do not depend
on the propagation distance. Thus we assume that the laser
intensity is constant. This assumption can fail due to the laser
beam focusing or defocusing, the pulse spreading, as well
as due to nonlinear optical effects. On the other hand, the
dependence of the induced susceptibility on the laser intensity
could be not very pronounced (similarly to the dependence
of the HHG efficiency on the laser intensity in certain cases).
Thus the study of this dependence is a nice outlook of this
research.

4. Stimulated scattering

The schematic of the Stokes wave generation due to the
high-order stimulated scattering is presented in Fig. 3. Similar
to the perturbative case (see [1], paragraph 10.3), nonlinear
polarization can be written as

P NL(ω1) = κ
(1)
R (ω1)E1(ω1), (27)

where κ
(1)
R (ω1) is the induced Raman susceptibility. Note that

here we do not specify the number of laser quanta q involved
in the process. Practically, κ

(1)
R can be calculated exactly in

the same way as it was done above, namely as the limit of
P (ω1,E1)/E1 for weak E1. The propagation equation for the
Stokes wave is(

∂

∂z
+ α

)
E1 = i2πk1κ

(1)
R (ω1)E1, (28)

where α is the linear absorption coefficient for frequency ω1.
Its solution is

E1 = E1(0) exp{gRz − αz},

where gR = i2πk1κ
(1)
R (ω1). The amplification takes place for

Im[κ (1)
R (ω1)] < −α/(2πk1). The main practical advantage of

this process for effective xuv generation is the absence of the
phase-matching problem. Our approach can be useful for de-
scribing xuv amplification found in numerical studies [11,41].
Note that the simplified picture presented in Fig. 3 assumes
that the excited state is not affected by the laser field, which
is a quite questionable approximation. In this connection, it
is remarkable that only high-order harmonics near plateau
cutoff were amplified in calculations [11,41]. According to
the recollision picture [24], these harmonics are emitted at
time instant, where the instantaneous laser field strength passes
zero, so the approximation of the unaffected excited state can
be reliable.
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V. CONCLUSIONS

In conclusion, in this paper we suggest the formalism of
the nonperturbatively induced susceptibilities, which allows
one to write the propagation equations in a form similar
(but not identical) to the one used in perturbative nonlinear
optics. Under some limitations, we derive the analytical
solutions for the propagation equations, describing several
high-order optical properties. In particular, the superexpo-
nential (hyperbolic) growing solutions are found for the
three-photon parametric amplification. The numerically found
susceptibilities are too low to make these processes observable
in small dilute targets such as gas jets, but in larger targets
with higher densities (high-pressure gas-filled capillaries)
such processes are feasible, opening a way for the efficient
generation of coherent xuv. Finally, we discuss published
numerical and experimental results where some processes
from the nonperturbative nonlinear optics might have already
been observed.
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APPENDIX A: PARAMETRIC GENERATION
OF TWO PHOTONS

Let us consider the process in which q photons from the ini-
tial field are converted into one ω1 photon and one ω2 photon;
see Fig. 3(a). In this case, q is an even number (note that for q =
2, this is a well-known process of four-wave mixing; however,
for higher q, the analogy with the four-wave mixing is hardly
helpful). In the plane-wave approximation and slowly varying
amplitude approximation, E1,2 = E1,2(z) exp{i(k1,2z − ω1,2t)}
and the complex amplitudes of the fields are described with
the following propagation equations:

∂E1,2

∂z
= i2πω2

1,2

k1,2c2
P NL(ω1,2,z) exp{−i(k1,2z − ω1,2t)}, (A1)

where P NL is the nonlinear part of the polarization. For m =
−1, we have, from Eq. (15),

P NL(ω1,2,z) = κ (1)
q (ω1,2 = qω0 − ω2,1)

× exp{iq(k0z − ω0t + ϕ0)}E∗
2,1. (A2)

Substituting this equation into Eq. (A1) and assuming in the
denominator k1,2 ≈ ω1,2/c, we have

∂E1,2

∂z
= i2πk1,2κ

(1)
q (ω1,2)E∗

2,1 exp{i�kz + iqϕ0}, (A3)

where �k in the considered case is �k = qk0 − k1 − k2.
Propagation equations (A3) are similar to those describing

the parametric amplification in the usual (perturbative) nonlin-
ear optics (see [1], part 9.1). Note that this similarity can also be
seen from the fact that the perturbative nonlinear response in
the presence of the pump field E3 with the frequency ω3 =
ω1 + ω2, P NL,per(ω1,2) = χ (2)E∗

2,1E3, can be converted in
Eq. (A2) substituting χ (2)E3 → κ (1)

q exp{iq(k0z − ω0t + ϕ0)}.
However, an important difference from the perturbative case

is that the susceptibility κ (m)
q is complex, and its phase is not

negligible.
Let us introduce

A1,2 = i2πk1,2κ
(1)
q (ω1,2). (A4)

Equations (A3) are rewritten as

∂E1,2

∂z
= A1,2E∗

2,1 exp{i�kz + iqϕ0}. (A5)

Below we shall consider the case of the exact phase
matching �k = 0. Let us introduce

E1,2 = u1,2 exp{iϕ1,2},
A1,2 = a1,2 exp{iθ1,2}, (A6)

where u1,2, ϕ1,2, a1,2, θ1,2 are real. Introducing

ψ = θ1 + qϕ0 − ϕ1 − ϕ2,

�θ = θ2 − θ1,

we have, from Eqs. (A5),

∂u1

∂z
= a1u2 cos(ψ),

∂u2

∂z
= a2u1 cos(ψ + �θ ),

u1
∂ϕ1

∂z
= a1u2 sin(ψ),

u2
∂ϕ2

∂z
= a2u1 sin(ψ + �θ ). (A7)

In the absence of resonances, the number of quanta
generated at frequencies ω1 and ω2 should be equal,

1

ω1

∂
(
u2

1

)
∂z

= 1

ω2

∂
(
u2

2

)
∂z

.

From this equation and the first pair of Eqs. (A7), we find

a1

ω1
cos(ψ) = a2

ω2
cos(ψ + �θ ). (A8)

Under �θ = 0, this gives

a1

ω1
= a2

ω2
. (A9)

Under �θ �= 0, Eq. (A8) can be satisfied only under ψ =
const [for every solution of the system of linear equations (A7);
for different solutions, ψ can be different]. Thus, ∂ψ

∂z
=

− ∂ϕ1

∂z
− ∂ϕ2

∂z
= 0 and, from the second pair of Eqs. (A7), we

find
a1

ω1
= a2

ω2
. (A10)

Thus, this equation is valid irrespectively on �θ . From
Eqs. (A4), (A6), and (A10), we have∣∣κ (1)

q (ω1)
∣∣ = ∣∣κ (1)

q (ω2)
∣∣. (A11)

This equation presents the permutation symmetry of induced
susceptibilities of the first order. Let us denote |κ (1)

q | =
|κ (1)

q (ω1,2)|, so a1,2 = 2πk1,2|κ (1)
q |.
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The solution of Eq. (A5) is

E1,2(z) = E+
1,2(z) + E−

1,2(z),

E±
1 (z) = E±

1 (0) exp{g±z + iϕ±
1 (0)},

E±
2 (z) = E±

2 (0) exp{(g±)∗z + iϕ±
2 (0)},

E±
1 (0) =

∣∣∣∣αE2(0) + E∗
1 (0) exp{i(θ1 + qϕ0 − ψ±)}

2

∣∣∣∣,
E±

2 (0) = E±
1 (0)/α,

ϕ±
2 (0) = arg

(
αE2(0) + E∗

1 (0) exp{i(θ1 + qϕ0 − ψ±)}
2

)
,

ϕ±
1 (0) = θ1 + qϕ0 − ψ± − ϕ±

2 (0),

where g± = 2π
√

k1k2|κ (1)
q | exp iψ±, α = √

ω1/ω2, ψ+ =
−�θ/2, and ψ− = −�θ/2 + π .

For the phase-matched process with ω1 = ω0/q, we have

|Re(g±)| = 2πk0

∣∣κ (1)
q

∣∣| cos(�θ/2)|. (A12)

APPENDIX B: PARAMETRIC GENERATION
OF THREE PHOTONS

The nonlinear polarizations for this process are

P NL(ω1) = κ (2)
q (ω1 = qω0 − ω1 − ω2)

× exp{iq(k0z − ω0t + ϕ0)}E∗
1E∗

2 , (B1)

P NL(ω2) = κ (2)
q (ω2 = qω0 − 2ω1)

× exp{iq(k0z − ω0t + ϕ0)}(E∗
1 )2. (B2)

Let us denote

A1 = i2πk1κ
(2)
q (ω1 = qω0 − ω1 − ω2), (B3)

A2 = i2πk2κ
(2)
q (ω2 = qω0 − 2ω1). (B4)

The propagation equations are written as

∂E1

∂z
= A1E∗

1E∗
2 exp{i�kz + iqϕ0}, (B5)

∂E2

∂z
= A2(E∗

1 )2 exp{i�kz + iqϕ0}, (B6)

where �k = qk0 − 2k1 − k2. Below we shall consider the case
of the exact phase-matching �k = 0.

Let us introduce

E1,2 = u1,2 exp{iϕ1,2},
A1,2 = a1,2 exp{iθ1,2}, (B7)

where u1,2, ϕ1,2, a1,2, θ1,2 are real. Introducing

ψ = θ1 + qϕ0 − 2ϕ1 − ϕ2,

�θ = θ2 − θ1,

we have, from Eqs. (B5) and (B6),

∂u1

∂z
= a1u1u2 cos(ψ),

∂u2

∂z
= a2u

2
1 cos(ψ + �θ ),

u1
∂ϕ1

∂z
= a1u1u2 sin(ψ),

u2
∂ϕ2

∂z
= a2u

2
1 sin(ψ + �θ ). (B8)

In the absence of resonances, the number of quanta
generated at the frequency ω1 should be twice that of quanta
at the frequency ω2,

1

ω1

∂
(
u2

1

)
∂z

= 2

ω2

∂
(
u2

2

)
∂z

.

From this equation and the first pair of Eqs. (B8), we find

a1

ω1
cos(ψ) = 2

a2

ω2
cos(ψ + �θ ). (B9)

Case 1: �θ �= 0. Equation (B9) can be satisfied only under
ψ = const:

tan(ψ) =
[

cos(�θ ) −
∣∣κ (2)

q (ω1)
∣∣

2
∣∣κ (2)

q (ω2)
∣∣
]

1

sin(�θ )
. (B10)

Thus,

∂ψ

∂z
= −2

∂ϕ1

∂z
− ∂ϕ2

∂z
= 0, (B11)

and from this equation and the second pair of Eqs. (B8), we
find

u1(z)/u2(z) = const. (B12)

The solution of the first pair of Eqs. (B8) satisfying (B12) is

u1,2(z) = u1,2(0)
1

1 − z/zc

, (B13)

where

zc = 1

u2(0)a1 cos(ψ)
(B14)

and

u1(z)

u2(z)
=

√
a1 cos(ψ)

a2 cos(ψ + �θ )
.

Taking into account equation (B9), this equation can be
rewritten as

u1(z)

u2(z)
=

√
2ω1

ω2
. (B15)

Thus, only if the initial conditions satisfy this equation, the
solution satisfies Eq. (B12). Finally, from Eqs. (B11), (B15),
and the second pair of Eqs. (B8), we find

cos(�θ ) =
∣∣κ (2)

q (ω1)
∣∣∣∣κ (2)

q (ω2)
∣∣ − 2

∣∣κ (2)
q (ω2)

∣∣∣∣κ (2)
q (ω1)

∣∣ . (B16)
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Thus we find the connection between phases and absolute
values of the second-order induced susceptibilities.

Case 2: �θ = 0. Equation (B9) is satisfied for every ψ ; it
is satisfied under

a1

ω1
= 2

a2

ω2
. (B17)

So, ∣∣κ (2)
q (ω1)

∣∣ = 2
∣∣κ (2)

q (ω2)
∣∣. (B18)

This equation presents the permutation symmetry of the
induced susceptibilities of the second order for �θ = 0. Note
that Eq. (B16) turns to (B18) when �θ = 0.

Let us denote

E1,2(z) = E ′
1,2(z) exp{iϕ1,2(0)},

so that E ′
1,2(0) are real. Then, Eqs. (B5) and (B6) can be written

as

∂E ′
1

∂z
= a1E ′∗

1 E ′∗
2 exp{iψ(0)}, (B19)

∂E ′
2

∂z
= a2(E ′∗

1 )2 exp{iψ(0)}, (B20)

where ψ(0) = θ1 + qϕ0 − 2ϕ1(0) − ϕ2(0) (note that θ1 = θ2

because we consider the case �θ = 0). If initial phases
ϕ1(0) and ϕ2(0) are chosen so that ψ(0) = 0, the solution of
Eqs. (B19) and (B20) remains real. Substituting

E ′
1(z) =

√
2ω1

ω2
[E ′

2(z)2 − Ẽ2], (B21)

where Ẽ =
√
E ′

2(0)2 − ω2
2ω1

E ′
1(0)2, the system of equa-

tions (B19) and (B20) is presented as a single equation [note
also Eq. (B17)]:

∂E ′
2

∂z
= a1

(
E ′2

2 − Ẽ2
)
. (B22)

Such equation is known as the Riccati equation. Its solu-
tion is

E ′
2(z) = Ẽ μ exp{−g̃z} + exp{g̃z}

μ exp{−g̃z} − exp{g̃z} , (B23)

where g̃ = a1Ẽ ,

μ = E ′
2(0) + Ẽ

E ′
2(0) − Ẽ

.

Thus, Eqs. (B21) and (B23) give the solution. The typical
feature of this solution is a hyperbolic growth after a certain
propagation distance,

E ′
1,2(z) ∝ 1

1 − z/zc

.

The solution goes to infinity at the “catastrophe” distance

zc = ln(μ)

2g̃
. (B24)

Thus, we can see that in both cases �θ �= 0 and �θ = 0,
there is a hyperbolic growth of the solution after a certain
propagation distance.
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