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The mesoscopic characteristics of a quantum dot (QD), which make the dipole approximation (DA) break
down, provide a new dimension to manipulate light-matter interaction [M. L. Andersen et al., Nat. Phys. 7, 215
(2011)]. Here we investigate the power spectrum and the second-order correlation property of the fluorescence
from a resonantly driven QD placed on a planar metal. It is revealed that due to the pronounced QD spatial
extension and the dramatic variation of the triggered surface plasmon near the metal, the fluorescence has
a notable contribution from the quadrupole moment. The π -rotation symmetry of the fluorescence to the
QD orientation under the DA is broken. By manipulating the QD orientation and quadrupole moment, the
spectrum can be switched between the Mollow triplet and a single peak, and the fluorescence characterized
by the antibunching in the second-order correlation function can be changed from the weak to the strong
radiation regime. Our result is instructive for utilizing the unique mesoscopic effects to develop nanophotonic
devices.
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I. INTRODUCTION

Quantum optics has advanced to the stage of experimental
measurement and manipulation of individual quantum systems
in single quanta level [1–6], where the light-matter interaction
plays an important role. Considerable interest has been
generated in exploring new mechanisms that enable efficient
control of the light-matter interaction. In past years, with
the sufficient reduction of the effective mode volume for
photons, strong and even ultrastrong light-matter interactions
have been experimentally realized [7–13]. Recently, a scheme
exploiting the mesoscopic characteristics of quantum dots
(QDs) was proposed [14], by means of which the plasmon-
matter interaction [15] can be strongly modified.

The light-matter interaction is generally described under
the dipole approximation (DA), which works well in atomic
systems where the variation of the field is negligible within
the atomic spatial extension [16–19]. However, once the
spatial variation of the field becomes pronounced, such as
the surface plasmons triggered by the radiation field of the
quantum emitter [20], and the emitter is spatially extended,
such as a QD several tens of nanometers in size [21,22], the
validity of the DA is not clear a priori. Experimentally, a large
deviation from the dipole theory was observed for QDs in
close proximity to a silver mirror [14]. The optical response
of quantum nanosystems beyond the long-wavelength approxi-
mation (equivalent to the DA) has been studied semiclassically
[23–26], which indicated that the nonlocal spatial interplay
between the wave functions of the QD exciton and the
electromagnetic field makes the DA invalid. Unconventional
phenomena exceeding the DA have been found, such as the
selection-rule breakdown of an isolated single-walled carbon
nanotube in a nanogap [27,28], entangled-photon generation
from biexcitons in a semiconductor film [29], and enhanced
up-conversion of entangled photons in nanostructures [30].
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In the fully quantum theory, making Taylor expansion of
the field spatial distribution function to the first order, it
is found that the nonlocal interaction is described by the
quadrupole moment, and a microscopic picture of it from a
circular quantum current density flowing along a curved path
inside the QD has been provided [31,32]. Furthermore, as the
quadrupole moment can be tuned by controlling the size and
shape of the QD [33,34], it has potential applications in the
development of nanophotonic devices. For the requirement
of developing a nanoplasmonic single-photon source, a study
on the fluorescence from a resonantly driven QD, especially
the second-order correlation property of the fluorescence,
modified by the mesoscopic characteristics is necessary and
important.

In this work, we study the resonance fluorescence of a
mesoscopic QD in different spatial orientations placed near a
plasmonic nanostructure. Going beyond the DA, a microscopic
description to the power spectrum and the second-order
correlation property of the QD fluorescence is established.
The substantial deviations from the dipole theory are found
when the QD is positioned within the penetration depth
of the plasmons into the dielectric. It is revealed that the
spatial rotation symmetry for the resonance fluorescence
spectrum over the QD orientation is changed from π under
the DA to 2π due to the interference of the emission from
the dipole and the quadrupole moments. The widths and
intensities of the spectral peaks differ dramatically from those
under the DA due to the cooperative actions of the dipole
and quadrupole moments. Explicitly, by exploiting the QD
mesoscopic effects, the spectrum can be switched between a
single peak and the Mollow triplet. The analysis on the second-
order correlation property indicates that, keeping the nonclas-
sical antibunching nature, the fluorescence can be changed
from the weak to the strong emission regime by increasing
the quadrupole moment. This opens an avenue to develop
nanophotonic single-photon devices by use of the QD meso-
scopic characters. Our parameter values are all experimentally
attainable.
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FIG. 1. Diagram of a QD with characteristic frequency ω0

embedded in gallium arsenide at a distance �z above a metal. ε1 and
εm are dielectric constants of the media. z and z′ represent different
orientations of the QD.

Our paper is organized as follows. In Sec. II, we show
the model and establish a microscopic description to the
QD–surface-plasmon interaction in arbitrary QD orientations
beyond the DA. In Sec. III, the fluorescence spectrum and the
second-order correlation property are numerically studied. In
Sec. IV, a summary is given.

II. QD–SURFACE-PLASMON INTERACTION
BEYOND THE DA

A. System and Green’s tensor

Our system is depicted in Fig. 1: a QD with frequency ω0

embedded in gallium arsenide (GaAs) media is placed on a
dissipative metal. The metal is characterized by a complex

Drude dielectric function εm(ω) = ε∞[1 − ω2
p

ω(ω+iγp) ], where
ωp is the bulk plasma frequency, ε∞ is the high-frequency limit
of the metal dielectric function, and γp represents the Ohmic
loss responsible for the dissipation of the electromagnetic
field in the metal. Here the metal is chosen as silver with
the parameters ωp = 3.76 eV, ε∞ = 9.6, γp = 0.03ωp in the
interested frequency range, and the dielectric permittivity of
GaAs is ε1 = 12.25 [35,36]. We assume that the layered media
are linear, isotropic, and nonmagnetic (μ1 = μm = 1).

The electromagnetic field in dispersive and absorbing
dielectrics is described by the Green’s tensor G(r,r′; ω)
[37,38], which is rendered as the field in frequency ω evaluated
at r due to a point source at r′. It can be obtained by solving
the Maxwell-Helmholtz wave equation [∇∇∇×∇∇∇× − ω2

c2 ε(ω)]
G(r,r′; ω) = Iδ(r − r′), where I is identity matrix. For general
geometries, the solving needs some numerical methods, such
as the finite difference time domain and the finite element
methods [39,40]. For symmetric geometries such as spheres,
cylinders, or planes, its analytical solution is achievable [41–
43]. In our configuration, G(r,r′; ω) in the upper half-space
of the metal-dielectric interface is calculated as the sum
of the free-space and reflected Green’s tensors G(r,r′,ω) =
G0(r,r′,ω) + GR(r,r′,ω). See more details in Appendix.

Three distinct modes are triggered by the emission of the
QD. The first one is the radiative modes propagating into
the free space. The second one is the damped nonradiative
mode due to the Ohmic loss in the metal. The last one is the
tightly confined field called surface plasmon propagating along
the metal surface [44]. The electromagnetic modes associated

with the surface plasmon enable strong confinement of light
on the surface and thus enhance the light-matter interaction,
which has inspired great interests in studying surface plasmon
subwavelength optics and quantum plasmonics [45–47]. In
addition, due to the exponential decay of the intensity of the
electromagnetic field perpendicular to the metal surface, its
variation along this direction is pronounced within the spatial
extension of the QDs. It causes the breakdown of the DA. Thus
a new theory in describing light-matter interaction beyond the
DA is necessary.

B. QD–surface-plasmon interaction beyond the DA

The QD-field interaction is described by the minimal
coupling Hamiltonian Ĥint(r,t) = − q

m
A(r,t) · p̂, where p̂ is

the momentum operator, q and m are the electronic charge
and mass, respectively, and A(r,t) is the vector potential of
the field [31]. In quantization, A(r,t) is expanded as A(r,t) =∑

l

√
�

2ωlε0
[Al(r)âle

−iωl t + H.c.], where Al(r) relevant to the

Green’s tensor is the field spatial distribution function, âl is
the annihilation operator with frequency ωl, ε0 is the vacuum
dielectric function, and l = (k,s) is the combined index of the
wave vector k and polarization s ∈ (1,2). To go beyond the
DA, we make a Taylor expansion of Al(r) to the first order
around the QD center

Al(r) � Al(r0) + (r − r0) · JJJAl(r)|r=r0 , (1)

where JJJAl(r) is the Jacobian matrix of partial derivatives
of Al(r). The QD in the strong confinement regime can be
well described by a two-band model with states |c〉 and |v〉
representing an electron and a hole in the conduction and
heavy valence band, respectively [48]. Employing the rotating
wave approximation, we arrive at the interaction Hamiltonian
beyond the DA in the interaction picture

ĤI(t) = �

∑
l

(gle
i�l t σ̂−â

†
l + H.c.), (2)

where σ̂− = |v〉〈c|, and �l = ωl − ω0 is the frequency
detuning. The QD-field coupling strength is

gl = − q

m

∑
j,k

(
1

2�ε0ωl

)1/2

[(μj + 
j,k∇k)A∗
lj (r)]r=r0 , (3)

where j and k index the three Cartesian coordinates x,y,z,
μj = 〈v|p̂j |c〉 and 
j,k = 〈v|p̂j rk|c〉 denote the dipole and
the quadrupole moments of the QD, respectively, and ∇k

represents the differential of A∗
lj (r) to the kth coordinate

component.
One can see from Eq. (3) that both the dipole and the

quadrupole moments contribute to its interaction with the
radiation field. The former couples to the field distribution
function Al(r), while the latter couples to the gradient of
Al(r). In atomic systems, the atom is much smaller than the
wavelength and the typical length of the spatial distribution of
the field, i.e., ∇kA

∗
l,j (r)|r=r0 � 0. Thus the contributions from

the quadrupole moment can be safely abandoned and the DA
is applicable. However, in the QD system, as the QD is large
in size and the spatial variation of the field is pronounced, they
cannot be ignored and the DA is inapplicable.
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The interaction between the QD and the field is further
characterized by the spectral density J (ω) = ∑

l g
2
l δ(ω − ωl).

Combined with Eq. (3), it takes the form

J (ω) = q2

πc2�2ε0m2

∑
j,n,j ′,n′

{(μj + 
j,n∇n)

× (μ∗
j ′ + 
∗

j ′,n′∇′
n′ )Im[Gj,j ′ (r,r′; ω)]}r=r′=r0 ,

(4)

where Gj,j ′ (r,r′; ω) is the (j,j ′) element of the
Green’s tensor and the relation Im[Gj,j ′ (r,r′; ω)] =
πc2

2ω

∑
l A

∗
l,j (r)Al,j ′ (r′)δ(ω − ωl) has been utilized [31]. In the

past decade, a division of the Green’s tensor into the surface
plasmons bounded on the surface and the out-of-plane waves
propagating away from the surface has been studied [49–51].
In the following, we shall study the spectral density for
different orientations of the QD.

C. Spectral density in arbitrary QD orientations

Consider first the special case that the QD orientates
in z axis. According to the symmetry of the electron and
hole wave functions, we can calculate the two moments


μ = μ̄(1 i 0)T and 
 = 
̄

(
0 0 0
0 0 0
1 i 0

)
, where μ̄ and 
̄

can be fitted experimentally [14]. When the QD orientates in
z′ shown in Fig. 1, which can be expressed as a φ rotation of the
QD along the x axis from the z direction, it can be proved that
the QD-field interaction Hamiltonian (2) is unchanged except
that the moments change into 
̃μ(φ) = 〈c|Û †

x (φ)p̂Ûx(φ)|v〉 and

̃(φ) = 〈c|Û †

x (φ)p̂rÛx(φ)|v〉, where Ûx(φ) = e−(i/�)L̂xφ with
L̂x the QD angular momentum and φ the angle between z and
z′. We thus have the moments


̃μ(φ) = μ̄
(
1 i cos φ i sin φ

)T
, (5)


̃(φ) = 
̄

⎛
⎝ 0 0 0

− sin φ −i sin φ cos φ −i sin φ sin φ

cos φ i cos φ cos φ i cos φ sin φ

⎞
⎠.

(6)

Inserting Eqs. (5) and (6) into Eq. (4), we obtain the spectral
density

J (ω) = J0(ω) + JR(ω), (7)

where J0(ω) and JR(ω) contain the contributions from the
free-space field G0(r,r′,ω) and the reflected field GR(r,r′,ω),
respectively. Their forms in the cylindrical coordinate are

J0(ω) = ω

�

∫
ds Re[A1μ̄

2 + B1
̄
′2], (8)

JR(ω) = ω

�

∫
ds Re{[A2μ̄

2 + B2
̄
′2 + B3μ̄
̄′]e2ikz1 �z}. (9)

where � = 8π2ε0m
2
�

2c3/(q2n1), 
̄
′ = k1
̄ with k1 =

n1ω/c, s = kρ/k1, and sz ≡ √
1 − s2 = kz1/k1. The coeffi-

cients are given as

A1 = s

sz

[(2 − s2)(1 + cos2 φ) + 2s2 sin2 φ], (10)

A2 = s

sz

[(rs − rps2
z )(1 + cos2 φ) + 2rps2 sin2 φ], (11)

B1 = s

sz

{(
2 − 10s2 + 35s4

4

)
sin4 φ + 2s2(4 − 5s2)

× sin2 φ + 2s4

}
, (12)

B2 = s

sz

{
[rp − rs + 3

4
(rp + rs − rps2)s2] sin4 φ

+s2(rs − 3rp) sin2 φ + 2rps4

}
, (13)

B3 = 2is[2rps2 + (rps2 + rp − rs) sin2 φ] cos φ, (14)

where rs = sz−
√

n2
m1−s2

sz+
√

n2
m1−s2

and rp = ε(ω)sz−ε1

√
n2

m1−s2

ε(ω)sz−ε1

√
n2

m1−s2
are the

Fresnel reflection coefficients for s- and p-polarized lights with
the relative dielectric function nm1 = √

εm(ω)/ε1.
Up to now, going beyond the DA, we have analytically

established the microscopic description to the interaction
between the QD and the radiation field propagating near
a plasmonic nanostructure. It can be seen that JR(ω) is
contributed from two types of field modes along the z direction
by dividing the integration range [0,∞] of s in Eq. (9)
into two intervals [0,1] and [1,∞]. The former has a real
kz1 and is associated with the reflected plane waves by the
metal-dielectric interface, while the latter has a complex kz1

and is associated with the surface plasmons and the damped
nonradiative mode [52,53]. Furthermore, the cooperative effect
of the dipole and the quadrupole moments are self-consistently
contained in JR(ω), where the B3 term characterizes the
interference between the two moments. Just due to this
interference, the decoherence of the QD shows significant
differences from the one under the DA. Under the DA, the
spectral density contributed uniquely from the dipole moment
has a π -rotation symmetry over the QD orientation. When the
quadrupole moment is taken into account, the symmetry is
changed into 2π because of the presence of the B3 term. It is
noted that in the special case φ = 0 or π , our result reduces
exactly to the one in Ref. [14].

III. FLUORESCENCE MODIFIED BY THE QD
MESOSCOPIC EFFECTS

We consider explicitly that the QD is resonantly driven by
a laser so that the resonance fluorescence of the QD near the
metal surface beyond the DA can be measured. In a frame
rotating at the laser frequency ω0, the master equation under
the Born-Markovian approximation reads

ρ̇(t) = − i
�

2
[σ̂+ + σ̂−,ρ(t)] + �

2

× [2σ̂−ρ(t)σ̂+ − σ̂+σ̂−ρ(t) − ρ(t)σ̂+σ̂−], (15)

where � is the Rabi frequency denoting the laser pump-
ing strength and � = 2πJ (ω0) is the QD spontaneous
emission rate.

In Figs. 2(a) and 2(b) we plot � in different QD orientations
as a function of the QD-interface separation �z̄ = �zωp/c

under and beyond the DA, respectively. It can be seen that
� attenuates rapidly at small �z̄ and tends to a persistent
oscillation with the increase of �z̄. This is understandable
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FIG. 2. Orientation dependence of � for different dimensionless
separation �z̄ under (a) and beyond (b) the DA. (c) A cross section of
(a) and (b) at �z̄ = 0.3 [blue solid and green dot-dashed lines from
(a) and (b), respectively]. (d) � as a function of 
̄′/μ̄ when φ = 0
(purple solid line) and φ = π (orange dashed line). Parameters are
ω0 = 1.2 eV, � = 3.0 × 109μ̄2, and 
̄′/μ̄ = 0.5, which are obtained
by fitting the experimental result in Ref. [14].

based on Eq. (9), which reveals that the contribution from the
surface plasmons only dominates the small �z̄ regime. Beyond
this regime, the spectral density originates mainly from
reflected plane waves, which shows a lossless oscillation with
the increase of �z̄. In addition, the significant deviations to
the result under DA can be seen at small �z̄, where the surface
plasmons bounded around the metal surface play a significant
role. The typical distance where this deviation is observable
is the penetration depth of the plasmons into the dielectric,
which takes �z̄c ∼ 2 for our parameters. Therefore, the DA is
inapplicable especially when the QD is positioned within �z̄c.
This has been verified experimentally [14]. A cross-section
view at �z̄ = 0.3 is plotted in Fig. 2(c). It indicates clearly that
� experiences a π rotation symmetry over the QD orientation
under the DA, while it is changed to 2π once the mesoscopic
effects are taken into account. This agrees with our analytical
expectation. To evaluate explicitly the mesoscopic effects,
we plot in Fig. 2(d) � as a function of 
̄′/μ̄ at φ = 0 and
π . It indicates that the interference between the dipole and
quadrupole moments can cause a constructive increase or a
destructive decrease of the decay rate under the DA (i.e., the
value when 
̄′ = 0). It demonstrates that we can control the
QD decay by manipulating the mesoscopic characteristics of
the QD, such as its spatial orientation and quadrupole moment.

The resonance fluorescence spectrum of the driven QD is
defined as S(ω) = I0

π
Re[

∫ ∞
0 dτeiωτ 〈σ̂+(t)σ̂−(t + τ )〉ss], where

“ss“ denotes the steady state and I0(r) depending on the
distance between the detector and the QD is a constant. From
the master equation (15) and with the use of the quantum
regression theorem, the spectrum admits an analytical expres-
sion [54]. It consists of the coherent (Rayleigh scattering) and
incoherent (inelastic scattering) components. The coherent one
is a delta function and ignored here, while the incoherent one

FIG. 3. Incoherent spectrum S0(ω) = S(ω)/I0 in different QD
orientations under (a) and beyond (b) the DA. The parameters are the
same as in Fig. 2(c) except for � = 5 ns−1.

takes the form

S(δω) = Y 2

8(1 + Y 2)

[
�

δω2 + �2

4

+
3�
4 P − (δω − α)Q

(δω − α)2 + (
3�
4

)2

+
3�
4 P + (δω + α)Q

(δω + α)2 + (
3�
4

)2

]
, (16)

where δω = ω − ω0, Y =
√

2�
�

, iα = �
4

√
1 − 8Y 2, P =

Y 2−1
Y 2+1 , and Q = �

4δ
1−5Y 2

1+Y 2 . In the strong-driving and
weak-radiation situation (� > �/4), the spectrum constitutes
of a sum of three Lorentzian components centered at ω0 and
ω0 ± �, respectively. This is the typical feature of the Mollow
triplet structure. In the weak-driving and strong-radiation
situation (� < �/4), the two sideband peaks disappear.
Furthermore, as shown in Eq. (16), the positions, the widths,
and the intensities of the three peaks of the spectrum are all as-
sociated with the decay rate �. Therefore, the spectrum can be
greatly influenced by the mesoscopic effects of the QD via �.

Figures 3(a) and 3(b) show the spectrum in different QD
orientations under and beyond the DA, respectively. The
spectrum under the DA has a π rotation symmetry over the
QD orientation, while beyond the DA, it has 2π symmetry. It
agrees with the behavior of �, Fig. 2(c). Another interesting
observation is that although the spectrum keeps the Mollow
triplet structure in the whole range of φ when the DA is applied
[see Fig. 3(a)], it can be switched from the Mollow triplet to a
single peak centered at δω = 0 by adjusting the QD orientation
when the mesoscopic effect is considered [see Fig. 3(b)]. This
result manifests clearly the anisotropy of the spontaneous
emission of the QD placed on the metal surface. Figure 4
plots the spectrum with the change of 
̄′/μ̄ for φ = 0 (a) and
π (b), respectively. When φ = 0, the Mollow triplet can be
either strengthened or weakened with the increasing of 
̄′/μ̄,
while at φ = π , it gradually switches to a single peak with the
increase of 
̄′/μ̄, which characterizes a strong radiation of the
QD. Thus, for the spectrum to be more evident in experiment,
a proper designation of the QD orientation and the quadrupole
moment is needed.

Another magnitude of the experimental interest is the
statistical properties of the emitted light from the QD [55,56],
which is measured by the second-order correlation function
g(2)(τ ) = G(2)(τ )

limτ→∞ G(2)(τ ) with G(2)(τ ) = 〈σ̂+(t)σ̂+(t + τ )σ̂−(t +
τ )σ̂−(t)〉ss. From Eq. (15) and with the use of the quantum
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FIG. 4. Incoherent spectrum S0(ω) = S(ω)/I0 in different 
̄′/μ̄
for φ = 0 (a) and π (b). The parameters are the same as in Fig. 2(d)
except for � = 5 ns−1.

regression theorem, g(2)(τ ) can be analytically obtained as

g(2)(τ ) = 1 −
[

cos(ατ ) + 3�

4α
sin(ατ )

]
e−3�τ/4. (17)

One can find that g(2)(τ ) > g(2)(0), which indicates that the
probability to detect two emitted photons with time delay τ

is larger than the one without time delay. This is a typical
nonclassical property of light, i.e., the antibunching character.
It ensures the single-photon nature of the emitted fluorescence.
We plot g(2)(τ ) in different QD orientations for 
̄′/μ̄ = 0.5
in Fig. 5(a). The 2π symmetry over the QD orientation is
also kept by g(2)(τ ). In addition, g(2)(τ ) experiences from
monotonically increase to oscillatory increase in different φ.
The oscillation is a manifestation of the laser-driven Rabi
oscillation, while the damping of its amplitude is caused by
the QD spontaneous emission. The oscillation of g(2)(τ ) in
fixed QD orientation can be dramatically suppressed with
the increase of the quadrupole moment [see Fig. 5(b)]. Such
type of transition can be viewed as a manifestation of the
fluorescence changed from the weak radiation to the strong
radiation regimes due to the presence of the QD mesoscopic
effects [36].

Both the spectrum and the second-order correlation func-
tion of the fluorescence indicate that one can control the

FIG. 5. g(2)(τ ) versus φ at 
̄′/μ̄ = 0.5 (a) and versus 
̄′/μ̄ at
φ = 0 (b). Parameters are the same as in Figs. 3 and 4.

single-photon emission of the QD by its mesoscopic effects,
e.g., the spatial orientation and the quadrupole moment.

IV. CONCLUSIONS

In summary, we have studied the resonance fluorescence of
a mesoscopic QD placed in plasmonic nanostructure. Going
beyond the DA, a microscopic description of the decoherence
dynamics of the QD has been established. It is revealed that,
modified by the QD mesoscopic effects, the spectrum and
its statistical property of the resonance fluorescence exhibit
different rotation symmetry over the QD orientation and shows
significant deviation from those under the DA. The results
demonstrate that one can control the interaction between the
QD and the surface plasmons by manipulating its mesoscopic
effects, which offers a dimension to control the radiation
properties of the QD. Our studies are within the present
experimental state of the art and instructive for the utilization of
the QD mesoscopic characteristics in the nanophotonic device
developments.
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APPENDIX: GREEN’S TENSOR OF PLANAR INTERFACE

The Green’s tensor in our system is

G(r,r′; ω) = G0(r,r′; ω) + GR(r,r′; ω), (A1)

where G0(r,r′; ω) and GR(r,r′; ω) denote the contributions of the field propagating in the dielectric and reflected by the
metal-dielectric interface, respectively. Under the angular spectrum representation, they take the form [42]

G0(r,r′; ω) = i

8π2

∫ ∞

−∞
dkx dky

ei[kx (x−x ′)+ky (y−y ′)+kz1 |z−z′ |]

k2
1kz1

⎛
⎝k2

1 − k2
x −kxky ∓kxkz1

−kxky k2
1 − k2

y ∓kykz1

∓kxkz1 ∓kykz1 k2
1 − k2

z1

⎞
⎠, (A2)

GR(r,r′; ω) = i

8π2

∫ ∞

−∞
dkx dky

ei[kx (x−x ′)+ky (y−y ′)+kz1 (z+z′)]

k2
x + k2

y

(Ms + Mp), (A3)

where k1 = (kx,ky,kz1 ) is the wave vector in the dielectric. The two different signs in G0(r,r′; ω) are determined by the absolute
value of |z − z′|, where the upper (lower) sign is applied when z > z′ (z < z′). In Eq. (A3), GR(r,r′; ω) has been split into the
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s-polarized part and p-polarized part:

Ms = rs(kx,ky)

kz1

⎛
⎝ k2

y −kxky 0
−kxky k2

x 0
0 0 0

⎞
⎠, Mp = −rp(kx,ky)

k2
1

⎛
⎝ k2

xkz1 kxkykz1 kx(k2
x + k2

y)
kxkykz1 k2

ykz1 ky(k2
x + k2

y)
−kx(k2

x + k2
y) −ky(k2

x + k2
y) −(k2

x + k2
y)2/kz1

⎞
⎠, (A4)

where rs(kx,ky) = μmkz1 −μ1kzm

μmkz1 +μ1kzm
and rp(kx,ky) = εmkz1 −ε1kzm

εmkz1 +ε1kzm
with kzm

being the z component of the wave vector in the metal are the
normal Fresnel reflection coefficients for the s-polarized and p-polarized light in the metal-dielectric interface, respectively.
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and M. S. Kim, Nat. Phys. 9, 329 (2013).

053803-6

http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1103
http://dx.doi.org/10.1103/RevModPhys.85.1103
http://dx.doi.org/10.1103/RevModPhys.85.1103
http://dx.doi.org/10.1103/RevModPhys.85.1103
http://dx.doi.org/10.1038/nphys3113
http://dx.doi.org/10.1038/nphys3113
http://dx.doi.org/10.1038/nphys3113
http://dx.doi.org/10.1038/nphys3113
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1038/nature12941
http://dx.doi.org/10.1103/PhysRevLett.115.043003
http://dx.doi.org/10.1103/PhysRevLett.115.043003
http://dx.doi.org/10.1103/PhysRevLett.115.043003
http://dx.doi.org/10.1103/PhysRevLett.115.043003
http://dx.doi.org/10.1103/PhysRevLett.115.093603
http://dx.doi.org/10.1103/PhysRevLett.115.093603
http://dx.doi.org/10.1103/PhysRevLett.115.093603
http://dx.doi.org/10.1103/PhysRevLett.115.093603
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevLett.108.066401
http://dx.doi.org/10.1103/PhysRevLett.108.066401
http://dx.doi.org/10.1103/PhysRevLett.108.066401
http://dx.doi.org/10.1103/PhysRevLett.108.066401
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1103/PhysRevLett.110.126801
http://dx.doi.org/10.1103/PhysRevLett.110.126801
http://dx.doi.org/10.1103/PhysRevLett.110.126801
http://dx.doi.org/10.1103/PhysRevLett.110.126801
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1088/0034-4885/78/1/013901
http://dx.doi.org/10.1088/0034-4885/78/1/013901
http://dx.doi.org/10.1088/0034-4885/78/1/013901
http://dx.doi.org/10.1088/0034-4885/78/1/013901
http://dx.doi.org/10.1038/nphys1870
http://dx.doi.org/10.1038/nphys1870
http://dx.doi.org/10.1038/nphys1870
http://dx.doi.org/10.1038/nphys1870
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1063/PT.3.1856
http://dx.doi.org/10.1063/PT.3.1856
http://dx.doi.org/10.1063/PT.3.1856
http://dx.doi.org/10.1063/PT.3.1856
http://dx.doi.org/10.1103/PhysRevLett.99.187402
http://dx.doi.org/10.1103/PhysRevLett.99.187402
http://dx.doi.org/10.1103/PhysRevLett.99.187402
http://dx.doi.org/10.1103/PhysRevLett.99.187402
http://dx.doi.org/10.1103/PhysRevLett.111.026403
http://dx.doi.org/10.1103/PhysRevLett.111.026403
http://dx.doi.org/10.1103/PhysRevLett.111.026403
http://dx.doi.org/10.1103/PhysRevLett.111.026403
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1103/RevModPhys.87.347
http://dx.doi.org/10.1103/RevModPhys.87.347
http://dx.doi.org/10.1103/RevModPhys.87.347
http://dx.doi.org/10.1103/RevModPhys.87.347
http://dx.doi.org/10.1103/PhysRevB.66.245322
http://dx.doi.org/10.1103/PhysRevB.66.245322
http://dx.doi.org/10.1103/PhysRevB.66.245322
http://dx.doi.org/10.1103/PhysRevB.66.245322
http://dx.doi.org/10.1103/PhysRevB.78.085109
http://dx.doi.org/10.1103/PhysRevB.78.085109
http://dx.doi.org/10.1103/PhysRevB.78.085109
http://dx.doi.org/10.1103/PhysRevB.78.085109
http://dx.doi.org/10.1002/pssa.200881299
http://dx.doi.org/10.1002/pssa.200881299
http://dx.doi.org/10.1002/pssa.200881299
http://dx.doi.org/10.1002/pssa.200881299
http://dx.doi.org/10.1063/1.3551710
http://dx.doi.org/10.1063/1.3551710
http://dx.doi.org/10.1063/1.3551710
http://dx.doi.org/10.1063/1.3551710
http://dx.doi.org/10.1038/nphoton.2013.129
http://dx.doi.org/10.1038/nphoton.2013.129
http://dx.doi.org/10.1038/nphoton.2013.129
http://dx.doi.org/10.1038/nphoton.2013.129
http://dx.doi.org/10.1103/PhysRevLett.105.123906
http://dx.doi.org/10.1103/PhysRevLett.105.123906
http://dx.doi.org/10.1103/PhysRevLett.105.123906
http://dx.doi.org/10.1103/PhysRevLett.105.123906
http://dx.doi.org/10.1103/PhysRevLett.112.133601
http://dx.doi.org/10.1103/PhysRevLett.112.133601
http://dx.doi.org/10.1103/PhysRevLett.112.133601
http://dx.doi.org/10.1103/PhysRevLett.112.133601
http://dx.doi.org/10.1103/PhysRevB.86.085304
http://dx.doi.org/10.1103/PhysRevB.86.085304
http://dx.doi.org/10.1103/PhysRevB.86.085304
http://dx.doi.org/10.1103/PhysRevB.86.085304
http://dx.doi.org/10.1103/PhysRevLett.114.247401
http://dx.doi.org/10.1103/PhysRevLett.114.247401
http://dx.doi.org/10.1103/PhysRevLett.114.247401
http://dx.doi.org/10.1103/PhysRevLett.114.247401
http://dx.doi.org/10.1103/PhysRevB.77.073303
http://dx.doi.org/10.1103/PhysRevB.77.073303
http://dx.doi.org/10.1103/PhysRevB.77.073303
http://dx.doi.org/10.1103/PhysRevB.77.073303
http://dx.doi.org/10.1103/PhysRevB.79.045301
http://dx.doi.org/10.1103/PhysRevB.79.045301
http://dx.doi.org/10.1103/PhysRevB.79.045301
http://dx.doi.org/10.1103/PhysRevB.79.045301
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevB.82.115334
http://dx.doi.org/10.1103/PhysRevA.57.3931
http://dx.doi.org/10.1103/PhysRevA.57.3931
http://dx.doi.org/10.1103/PhysRevA.57.3931
http://dx.doi.org/10.1103/PhysRevA.57.3931
http://dx.doi.org/10.1103/PhysRevA.64.033812
http://dx.doi.org/10.1103/PhysRevA.64.033812
http://dx.doi.org/10.1103/PhysRevA.64.033812
http://dx.doi.org/10.1103/PhysRevA.64.033812
http://dx.doi.org/10.1103/PhysRevB.81.125431
http://dx.doi.org/10.1103/PhysRevB.81.125431
http://dx.doi.org/10.1103/PhysRevB.81.125431
http://dx.doi.org/10.1103/PhysRevB.81.125431
http://dx.doi.org/10.1021/nl101876f
http://dx.doi.org/10.1021/nl101876f
http://dx.doi.org/10.1021/nl101876f
http://dx.doi.org/10.1021/nl101876f
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevA.89.053835
http://dx.doi.org/10.1103/PhysRevA.89.053835
http://dx.doi.org/10.1103/PhysRevA.89.053835
http://dx.doi.org/10.1103/PhysRevA.89.053835
http://dx.doi.org/10.1088/0034-4885/70/1/R01
http://dx.doi.org/10.1088/0034-4885/70/1/R01
http://dx.doi.org/10.1088/0034-4885/70/1/R01
http://dx.doi.org/10.1088/0034-4885/70/1/R01
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1103/RevModPhys.82.729
http://dx.doi.org/10.1103/RevModPhys.82.729
http://dx.doi.org/10.1103/RevModPhys.82.729
http://dx.doi.org/10.1103/RevModPhys.82.729
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615


RESONANCE FLUORESCENCE BEYOND THE DIPOLE . . . PHYSICAL REVIEW A 93, 053803 (2016)

[48] S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P.
Lodahl, Phys. Rev. B 80, 155307 (2009).

[49] T. Søndergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422
(2004).

[50] V. Siahpoush, T. Søndergaard, and J. Jung, Phys. Rev. B 85,
075305 (2012).

[51] V. Siahpoush and B. Shokri, Opt. Commun. 313, 315 (2014).
[52] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin,

Phys. Rev. Lett. 97, 053002 (2006).
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