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Kohn-Sham approach to Fermi gas superfluidity: The bilayer of fermionic polar molecules
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By using a well-established “ab initio” theoretical approach developed in the past to quantitatively study the
superconductivity of condensed matter systems, based on the Kohn-Sham density functional theory, I study the
superfluid properties and the BCS-BEC crossover of two parallel bi-dimensional layers of fermionic dipolar
molecules, where the pairing mechanism leading to superfluidity is provided by the interlayer coupling between
dipoles. The finite temperature superfluid properties of both the homogeneous system and one where the fermions
in each layer are confined by a square optical lattice are studied at half filling conditions, and for different values
of the strength of the confining optical potential. The T = 0 results for the homogeneous system are found to
be in excellent agreement with diffusion Monte Carlo results. The superfluid transition temperature in the BCS
region is found to increase, for a given interlayer coupling, with the strength of the confining optical potential.
A transition occurs at sufficiently small interlayer distances, where the fermions becomes localized within the
optical lattice sites in a square geometry with an increased effective lattice constant, forming a system of localized
composite bosons. This transition should be signaled by a sudden drop in the superfluid fraction of the system.
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I. INTRODUCTION

The study of superfluidity in Fermi systems is a very at-
tractive area of research in the field of ultracold atoms because
of the direct implications for superconductivity in solid-state
materials as well as for nuclear and quark matter [1]. One of
the most relevant experimental results in this field has been the
realization, obtained by tuning the interparticle interaction via
the use of Fano-Feshbach resonances, of the crossover from the
Bardeen-Cooper-Schrieffer (BCS) superfluid phase of loosely
bound fermion pairs to the Bose Einstein condensate (BEC)
of tightly bound composite bosons [2,3].

Of particular relevance are the studies aimed at un-
derstanding the pairing of fermions in strongly interacting
two-dimensional (2D) Fermi gases, a subject again of great
importance for condensed matter physics in view of the
not yet fully understood character of the corresponding
mechanism in high-temperature (layered) superconductors.
While charge transport within layers plays an essential role in
superconductivity of high Tc material, the long-range nature
of the interactions among the particles (electrons or holes)
belonging to adjacent layers is believed to largely affect
the value of the critical temperature. A bilayer of fermionic
particles interacting via long-range potential thus represents
an excellent platform to simulate the interplay between these
effects in the properties of high Tc superconductors.

Recently, the creation of ultracold dipolar gases of
fermionic molecules with large intrinsic dipole moments has
been achieved [4,5], opening the way to explore the fascinating
many-body physics of correlated Fermi systems associated
with the long-range, anisotropic nature of dipolar interaction
between molecules [6–8], which include topological superflu-
idity [9,10], interlayer pairing between two-dimensional (2D)
systems, and the formation of dipolar quantum crystals [11]
and possibly stripe phases [12].

Two-dimensional dipolar systems are of particular interest,
since the lifetime of heteronuclear molecules with permanent
electric dipole moment is increased by the effect of 2D

confinement [13]. Indeed such polar molecules can have very
large dipole moments, of the order of 1 Debye, allowing one to
access the regime of strong correlations in a controllable way.

When a bilayer of 2D fermionic dipoles is formed, where
the dipoles in each layer are aligned perpendicularly to
the planes by an external field, in spite of the repulsive
interaction between fermions belonging to the same layer,
a superfluid behavior is nonetheless expected, the pairing
among fermions being provided by the attractive head-to-tail
dipolar interaction between fermions belonging to different
layers, which results in a two-body bound state for any value
of the bilayer separation [14–16]. The resulting coupling
is predicted to cause superfluid behavior at sufficiently low
temperatures [17–20]. Moreover, a crossover is expected by
varying the interlayer distance, as the system evolves from
the weak-coupling BCS regime of largely overlapping Cooper
pairs to the strong-coupling BEC regime of composite bosons
[21,22]. Additional interest in bilayers of fermions is due to the
strong analogies with the physics of electron-hole bilayers in
semiconductor heterostructures [23]. The BCS-BEC crossover
in a (homogeneous) bilayer of fermionic dipoles has been
recently studied at zero temperature by means of diffusion
Monte Carlo (DMC) simulations [24].

Density functional theory (DFT) for electrons, which is
perhaps the most widely used and successful technique in
electronic structure calculations of condensed matter sys-
tems, has been proposed only recently [25–27] as a useful
computational tool in the field of cold gases. The main
advantage of the method is that it allows one to go beyond
the mean-field level by taking into account correlation effects,
and thus represents a valid alternative to more microscopic (but
also computationally more demanding) approaches such as
quantum Monte Carlo (QMC), especially for extended and/or
inhomogeneous systems.

A modified DFT approach, which has been used to study
the properties of a unitary Fermi gas [26], is based on a
functional form which exploits the scale invariance of the
unitary regime. DFT approaches have been used recently to
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describe a Fermi dipolar system in various “single-orbital”
approximations (Thomas-Fermi [28], Thomas-Fermi-Dirac
[29], Thomas-Fermi–von Weizsacker [30,31]). In Ref. [32]
a parameter-dependent DFT-LDA approach was used to study
a small number of harmonically trapped fermions.

The well-known Kohn-Sham (KS) mapping [33] of the
many-body problem into a noninteracting one makes the
DFT approach applicable in practice, either within the local
density approximation (LDA) or by including suitable gradient
corrections. The KS-DFT approach does not require adjustable
parameters, and thus belongs to the family of the so-called
“ab initio” methods well known in the electronic structure
community. Recently, the KS-DFT method has been applied to
cold atomic Fermi gases in optical lattices [25,34], the unitary
trapped Bose gas [35], and to the study of a rotating dipolar
Fermi gas [36].

The extension of multiorbital KS-DFT approaches to
superfluids is a challenging goal, opening important new
perspectives in the theory of cold quantum gases. A formally
exact generalization of “normal-state” DFT for condensed
matter systems which explicitly includes in its formulation
the superconducting order parameter has been proposed
to describe solid-state BCS superconductors [37], and was
found to be able to accurately predict experimental prop-
erties of superconducting materials, especially for systems
where a theory beyond simple BCS superconductivity is
needed.

I will use here a method based on the approach described in
Ref. [37] to study the superfluid behavior of a homogeneous
bilayer of (polarized) dipolar fermionic molecules, for which
accurate T = 0 results exist to compare with, obtained by
using QMC simulations [24]. To underline the capabilities
of the method to treat in particular inhomogeneous systems
(which are often difficult to study using QMC methods), I will
also calculate the finite-temperature superfluid properties of
this system in the presence of an additional external potential
which simulates an optical 2D square lattice acting on the
dipoles in each layer. I will compute, throughout the BCS-
BEC crossover, the normal-state density, the superconducting
gap, the condensate fraction, and the superfluid transition
temperature, and their changes as a function of the interlayer
distances and the depth of the confining optical potential wells.
The exchange-correlation energy of the homogeneous system,
which is an essential ingredient of the KS-DFT method, will be
provided by virtually exact diffusion Monte Carlo calculations
[24,38].

II. METHOD

The two-dimensional, spin-polarized dipolar Fermi gas
is characterized by the (intra-layer) interaction V =∑N

i<j
d2

|ri−rj |3 . Here d is the electric dipole moment of an atom
or molecule and ri ,rj are coordinates in the 2D x-y plane.
Being the dipole moments aligned parallel to the z axis, the pair
potential is purely repulsive. The range of the dipole-dipole
interaction is characterized by the length r0 = Md2/�

2, M

being the particle mass. The adimensional interaction strength
characterizing the system is kF r0 (where kF = √

4πn is the
Fermi wave vector of the 2D uniform system at a density n).

The interlayer interaction is given by

VIL(r,λ) = d2 r2 − 2λ2

(r2 + λ2)5/2
, (1)

where λ is the separation between the two layers and r is the
in-plane distance between two dipoles belonging to different
layers. At variance with the always repulsive intralayer
interaction, the potential VIL(r) is attractive for r <

√
2λ.

A. Normal state calculations

Within the Kohn-Sham formulation [33] of density func-
tional theory [39] for an inhomogeneous system of N

interacting particles with mass M , the total energy of the
system is given by the following total energy functional of
the density n, which includes the exact kinetic energy of
a fictitious noninteracting system and the interaction energy
functional Eint:

EKS[n(r)] = − �
2

2M

∑
i

∫
φ∗

i (r)∇2φi(r)dr + Eint[n(r)].

(2)
In the usual KS-DFT scheme for electronic systems, Eint is
usually split into three contributions, i.e., the Hartree (“mean-
field”), exchange, and correlation terms. The {φi(r), i =
1,N} are single-particle orbitals, forming an orthonormal set,
〈φi |φj 〉 = δij . I assume here a fully balanced system, with N

fermions per each layer. The total density of the system is
n(r) = ∑N

i=1 |φi(r)|2.
In the present case a more convenient partition is Eint[n] =

EL[n] + EIL[n]. EL is the energy contribution due to in-
tralayer interactions, given by the sum of the direct+exchange
interaction term (the “Hartree-Fock” energy EHF) and the
correlation energy EC , which I write here in the local density
approximation [36]:

EL[n] = EHF[n] + EC[n]

=
∫ {

256

45
d2√πn(r)5/2 + n(r)εC(n(r))

}
dr, (3)

where εC(n) is the correlation energy per particle of the homo-
geneous system of density n, as obtained from the (virtually
exact) diffusion Monte Carlo calculations of Ref. [38]. The
actual analytical form of the function εC(n) used to fit the
DMC results is taken from Ref. [32].

The interlayer interaction energy EIL is given by the sum of
the Hartree term plus the correlation energy (I neglect here any
exchange interaction contribution since orbitals of fermions on
different layers have zero overlap):

EIL[n] = 1

2

∫
dr

∫
dr′n(r)n(r′)VIL(|r − r′|) + ẼC[n]. (4)

Note that, from Eq. (1),
∫

VIL(r)dr = 0 [18], i.e., the mean-
field interaction energy between two layers in the homoge-
neous case (n(r) = n) is zero. Corrections to the mean-field
approximation for the interlayer interaction energy are incor-
porated in the correlation energy functional ẼC . Information
about this term come from the results of DMC calculations for
the homogeneous bilayer system [24], where the corrections
to mean-field results have been computed as a function of kF λ
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(see Fig. 3 in Ref. [24]). These corrections (once the energy
of a single-layer dipolar Fermi liquid, E/N = 0.6931 εF [38],
has been subtracted from the DMC results) can be written in
the form,

ẼC/N = −εF

2
f (kF λ), (5)

where the function f interpolates the DMC results. I choose
here f (x) = 0.292[1 − tanh[5.5(x − 0.45)]], which gives a
reasonable overall fit to the DMC data. The above result,
which holds for the homogeneous system, can be used for
inhomogeneous systems as well by using again the LDA:

ẼC[n] = −1

2

∫
dr n(r)εF (r)f (kF (r)λ), (6)

where kF (r) ≡ √
4πn(r) and ε(r) ≡ �

2kF (r)2/2M are the
local values of the Fermi wave vector and energy, respectively.

The effective potential μIL(r) ≡ δEIL
δn

associated with the
interlayer interactions is thus

μIL(r) =
∫

dr′n(r′)VIL(|r − r′|)

− εF (r)

2

[
2f (kF (r)λ) + n(r)

∂f

∂n

]
. (7)

Constrained minimization of the energy functional EKS[n]
leads to the coupled KS eigenvalues equations,[

− �
2

2M
∇2 + VKS(r)

]
φi(r) = εiφi(r), (8)

where

VKS(r) = εC(n(r)) + n(r)
∂εC

∂n

+ 128

9
d2√πn3/2(r) + μIL(r). (9)

Solutions of the above system of equations provide the
density n(r) [and thus the total energy, through Eq. (2)] of the
fermion system in its (normal) ground state.

In practice, the solutions {φi(r)} of Eq. (8) are found by
propagating in imaginary time the time-dependent version
[33] of the KS equations (8) (for more details about the
actual method used to efficiently propagate the orbitals φi

in imaginary time, see Ref. [40]). Both the density and the
single-particle orbitals φi have been discretized in Cartesian
coordinates using a spatial grid fine enough to guarantee
well converged values of the total energy. The orthogonality
between different orbitals has been enforced by a Gram-
Schmidt (G-S) process. The spatial derivatives entering Eq. (8)
have been calculated with accurate 13-point formulas, while
efficient fast-Fourier techniques [41] have been used to
calculate the nonlocal term entering the KS potential VKS and
the potential term entering the gap equation (see the following
section).

B. Superfluid state calculations

The basic formulation of the KS-DFT for superconductors
[37], which I will follow, mutatis mutandis, in the present
work, is described in the following.

The theory is based on the fermion (electron) density
n(r) = 〈�+(r)�(r)〉 (“normal” density) as well as the super-
conducting order parameter (“anomalous” density) χ (r,r′) =
〈�(r)�(r′)〉 where �+(r) is the fermion creation operator.
This quantity is finite for superconductors below the transition
temperature and zero above it. Associated with these two
densities there are two key quantities, i.e., the KS potential
VKS(r) described in the previous section, and the so-called
anomalous potential 
s(r,r′):


s(r,r′) = χ (r,r′)V (|r − r′|) + 
xc(r,r′). (10)

Here V (|r − r′|) represents the effective interaction between
the fermionic particles responsible for pairing. In the present
case V ≡ VIL, where VIL is the interlayer dipole-dipole interac-
tion potential [Eq. (1)]. The first term in Eq. (10) corresponds
to the Hartree (mean-field) approximation, while the extra
term includes exchange and correlation effects. Although
recipes have been proposed to approximately construct 
xc

for electronic superconductors [37], which may be adapted to
the case of fermionic cold gases, I neglect it here because
in the present case the attractive interaction acts between
fermions belonging to different, spatially separated 2D layers,
and thus exchange is null. I am nevertheless including
neglected correlation effects beyond mean field in the chemical
potential (7).

The Kohn-Sham-Bogoliubov–de Gennes equations read
[37,42]

[
−∇2

2
+ VKS(r) − μ

]
ui(r) +

∫
dr′
s(r,r′)vi(r′) = Ẽiui(r)

(11)

−
[
−∇2

2
+ VKS(r) − μ

]
vi(r) +

∫
dr′
∗

s (r,r′)ui(r′) = Ẽivi(r),

(12)

where ui(r),vi(r) are the particle and hole amplitudes.
We notice here that the nonlocal nature of the pairing field


s(r,r′) in the above equations does not lead to the ultraviolet
divergence in the anomalous density matrix elements which
may occur [43,44] when using, instead of Eqs. (11) and (12),
the standard Hartree-Fock-Bogoliubov–de Gennes equations
of the BCS mean-field theory of superconductivity [45] with
a local pairing field 
s(r).

The amplitudes ui(r),vi(r) can be expanded in the complete
set of wave functions {φi(r)} of the normal-state Kohn-Sham
equations:[

− �
2

2M
∇2 + VKS(r) − μ

]
φi(r) = εiφi(r). (13)

Within the so-called “decoupling approximation” [37,46], i.e.,
assuming ui(r) ∼ uiφi(r) and vi(r) ∼ viφi(r) (with ui and vi

complex constants), one can write Ẽi = ±Ei , where

Ei =
√

ξ 2
i + |
i |2, (14)

and ξ = εi − μ

By defining the matrix elements,


i =
∫

dr
∫

dr′φ∗
i (r)
s(r,r′)φi(r′), (15)
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one can write the following equations for the normal and the
anomalous densities:

n(r) = 1

2

∑
i

[
1 − ξi

Ei

tanh(βEi/2)

]
|φi(r)|2, (16)

χ (r,r′) = 1

2

∑
i


i

Ei

tanh(βEi/2)φi(r)φ∗
i (r′). (17)

Using Eqs. (10) and (15) one can write Eq. (17) as an implicit
equation for 
i :


i = 1

2

∑
j


j

Ej

tanh(βEj/2)
∫

drφ∗
i (r)φ∗

j (r)Aij (r), (18)

where

Aij (r) ≡
∫

dr′φi(r′)φ∗
j (r)VIL(|r − r′|). (19)

The convolution integrals appearing in Aij (r), which is the
most time-consuming step in solving the gap equation (18),
are efficiently performed by using fast Fourier transforms [41],
knowing that the Fourier transform of VIL(r) is

VIL(q) = −d2qe−λq . (20)

The actual calculations of the superfluid quantities are per-
formed as follows: (i) first the ground-state density n(r) and the
effective potential VKS are found by self-consistently solving
Eq. (13) for the occupied states {φi(r),i = 1,N}; (ii) a larger
number N ′ (whose minimum value necessary for converged
results depends on the effective coupling between the layers,
i.e., on the interlayer distance λ) of orbitals {φi(r),i = 1,N ′}
are calculated in the effective potential VKS obtained from the
previous step; (iii) the number density equation (16) is solved
for μ using the normalization condition

∫
n(r)dr = N ; (iv)

the gap equation (18) is then solved iteratively to provide 
i .
The pairing gap 
0 separating the normal to superfluid state

is finally found as


0 = min{Ei }
i.

In the BCS regime (μ > 0) the pairing gap 
0 equals

i(εF ).

Step (ii) in the sequence described above typically requires
the (non-self-consistent) calculations of a very large number
(up to a few thousand) of empty states φi . Most of the computer
time during this step is spent in the G-S process. To expedite
this time-consuming part of the calculations, I employed a
block Gram-Schmidt orthogonalization procedure which can
be recast using BLAS-3 level matrix-matrix multiplication
operations [47], which can be efficiently performed using
cpu-optimized mathematical libraries. This allows one to
speed up the calculation by a factor between 4 and 5 with
respect to the time spent doing the conventional G-S iteration,
which uses much less efficient BLAS-1 level operations.

From the calculated KS orbitals {φi(r),i = 1,N ′} the
condensate number of Fermi pairs can also be easily computed,
being defined as follows:

nc =
∫

dr
∫

dr′|χ (r,r′)|2 = 1

4

∑
i

|
i |2
E2

i

tanh2(βEi/2).

(21)

III. RESULTS AND DISCUSSION

I will first discuss the case of the homogeneous bilayer of
dipolar fermions, both at T = 0 and at finite temperatures:
A comparison with the accurate DMC results at T = 0 will
allow one to assess the accuracy of the method employed here,
which will be used in the following section to address the more
complex case of the inhomogeneous bilayer system.

I assume in the following calculations d = 0.8 Debye,
which is appropriate to 40K23Na molecules in the experimental
realization of Ref. [5]. The mass M is that of a 40K23Na
molecule. The spatial range of the potential is thus given
by r0 = Md2/�

2 ∼ 0.6 μm. The adimensional interaction
strength characterizing the system is kF r0. I will consider
here a fermion density such that kF r0 = 0.5 (a relatively weak
value which can easily be achieved in experiments), which
is the case studied in the T = 0 DMC calculations reported
in Refs. [24,38]. These results represent a solid benchmark
with which the results discussed in the present paper will be
compared, at least for the homogeneous system at T = 0. For
such value of kF the interparticle distance 〈r〉 is larger than the
range of the interaction, being 〈r〉/r0 ∼ 3.6 (dilute system).

A. Homogeneous system

The calculated values of the pairing gap 
0 and chemical
potential μ for the homogeneous bilayer are shown, as a
function of the temperature, in Fig. 1. The temperature at which

0 = 0 is by definition the superfluid critical temperature Tc.
I compare these findings at T = 0 with the DMC results of
Ref. [24]. Note the excellent agreement throughout the whole

FIG. 1. Pairing gap 
0 (upper panel) and chemical potential
μ (lower panel) as a function of T/TF , in units of EIFG = εF /2,
for different values of the interlayer distances: kF λ = 0.25 (dashed
line), 0.3 (dotted line), 0.35 (short-dashed line), 0.425 (solid line),
0.5 (dash-dot line). The squares at T = 0 show the DMC results from
Ref. [24].
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FIG. 2. Condensate fraction of the homogeneous bilayer,
for different values of kF λ. (From top to bottom) kF λ =
0.25,0.3,0.35,0.4,0.425,0.45,0.5.

BCS-BEC crossover (which is conventionally set at μ = 0).
The BEC regime is characterized by negative (large) values of
μ, whereas in the BCS regime of weak coupling μ > 0.

Although the agreement with the T = 0 DMC results for
the chemical potential is not unexpected since two important
ingredients in the effective potential (9) are fitted to DMC data
(namely the inter- and intralayer correlation contributions),
the results for the pairing gap, even at T = 0, truly represent a
prediction of the KS-DFT theory used here. The calculated
values for the gap show nonetheless a discrepancy for
kF λ = 0.25, when compared with the DMC result. I must
recall, however, that according to Ref. [24] this value for the
pairing gap has been computed using a different, approximate,
expression than that used for larger values of kF λ.

From the calculated values of μ vs kF λ at T = 0 I find
that the BCS-BEC crossing μ = 0 occurs at kF λ = 0.322, in
almost perfect agreement with the DMC result, kF λ = 0.325.

In Fig. 2 the calculated condensate fraction nc is shown up
to the superfluid critical temperature, for different values of
the interlayer distances. As expected, the condensate fraction
decreases, as well as the critical temperature, as the system
evolves from BEC to BCS regime.

The condensate fraction at T = 0, calculated using Eq. (21),
is shown in Fig. 3 as a function of the interlayer distance.

In the BCS region (i.e., for weak coupling resulting from
larger interlayer distance) the superfluid fraction ns can be
calculated using Landau’s formula [48] for a two-dimensional
system, ns = n − nn(T ), where the normal fluid component
(assuming purely fermionic excitations) is given by

nn(T ) = �
2β

2M

∫
d2k

(2π )2
k2 eβEk

(eβEk + 1)2
. (22)

Ek represents the single-particle excitation spectra, which
I write here as Ek =

√
[�2k2/2M∗ − μ]2 + 
2

0 , using the
effective mass M∗ as an adjustable parameter. By imposing
that the superfluid fraction goes to zero at the calculated
critical temperature Tc, I find M∗ = 0.7(0)M , in reasonable
agreement with the effective mass M∗ = 0.77 M as computed
in Ref. [24] using DMC. The calculated superfluid fraction,

FIG. 3. Condensate fraction of the homogeneous bilayer at T = 0
as a function of the interlayer distance.

for kF λ = 0.45 (i.e., in the BCS regime), is compared in Fig. 4
with the condensate fraction for the same interlayer distance.

Finally, the critical superfluid transition temperature is
shown with a solid line in Fig. 7. It is known that in two
dimensions the transition from normal to superfluid state is
of the Kosterlitz-Thouless (KT) type. However, at least in the
BCS limit, the KT transition temperature is very close to the
one calculated using BCS theory [21]. In the present case this is
indeed true on the BCS side of the phase diagram. I computed
TKT through the Kosterlitz-Nelson condition:

kBTKT = �
2π

8m
ns(TKT), (23)

and indeed found that it almost coincides with Tc down to the
μ = 0 line.

B. Inhomogeneous system

I consider in the following a bilayer of 2D dipolar fermions
under the effect of an additional external potential in the KS
equations (13) corresponding to a square 2D optical lattice,

Vext(r) = V0[sin2(xπ/a) + sin2(yπ/a)], (24)

FIG. 4. Condensate (lower curve) and superfluid (upper curve)
fraction as a function of temperature.
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FIG. 5. Chemical potential as a function of the interlayer distance,
for the homogeneous system (dashed line), the “weak” potential (solid
line), and the “strong” potential (dotted line). The inset show the
fermion density profiles, along the x direction, for the two optical
potential strengths described in the text: V0 = 3.52 εF (solid line),
V0 = 9.39 εF (dotted line). Here n0 is the density of the uniform
system.

where two different well depths will be considered in the
following, i.e., V0 = 3.52 εF and V0 = 9.39 εF . For the sake
of simplicity, I will refer in the following to the first case as
a “weak” potential, while the second will be termed “strong.”
The chosen lattice constant is a = 2.5 k−1

F .
I will consider in the following the case of half-filling (i.e.,

one fermion every two lattice sites).
The chemical potential is calculated as described in Sec. II

as a function of the interlayer separation λ. The results
are shown in Fig. 5, where they are compared with the
results for the homogeneous bilayer treated in the previous
section. It appears that for stronger confining potentials the
BCS-BEC crossover moves towards lower values of the
interlayer distance, i.e., it occurs for higher values of the
interlayer coupling, and the transition between te BCS and
BEC regimes becomes sharper. The inset shows the fermion
density profiles for the two values V0 of the amplitude of the
optical potential considered here, along a line passing through
adjacent potential minima.

The condensate fraction is also shown, as a function of the
system temperature, in Fig. 6, where it is compared with the
homogeneous bilayer results.

Finally, the dependence of the calculated critical superfluid
temperatures on the interlayer distance is shown for the
two optical potential strengths studied here (and for the
homogeneous system as well) in Fig. 7. Notice that in the
BCS regime the critical temperature in the presence of a
strong optical potential is quite enhanced with respect to
the homogeneous system, the enhancement increasing as one
goes deeper into the BCS regime. This finding is consistent
with similar results found for different systems of fermionic
atoms subject to optical potentials, which undergo a phase
transition to a superfluid state at a strongly increased transition
temperature with respect to the uniform case [49].

I end this section by mentioning a transition which takes
place in the presence of the “weak” optical potential, when
the distance between the two dipolar layers is reduced until it

FIG. 6. Condensate fraction for the homogeneous bilayer system
(solid line) and for the two values of the strength V0 of the optical
potentials: “weak” potential (dotted line) and “strong” potential
(dashed line).

reaches a critical (small) value λc, corresponding to a large and
negative value of μ, i.e., in the deep BEC regime. Then there
occurs sudden rearrangements of the orbital occupations, so
that the fermions that for λ > λc populate each lattice site with
1/2 filling, become suddenly localized every other lattice site
(which become populated by one fermion each) as the critical
interlayer distance λc is reached.

This transition (which occurs at kF λc = 0.13) is illustrated
by the associated fermion density in the optical lattice
immediately before and after it, in Figs. 8 and 9, respectively.
The sudden localization of each fermion in every other lattice
site results in a marked change in the total fermion density,
which suddenly evolves from a “delocalized” configuration
characterized by the lattice constant a (see Fig. 8) to a 45◦-
rotated square lattice structure with a larger lattice constant,
a′ = √

2a (see Fig. 9). In this “localized” phase, each dipolar
fermion sits in a lattice site just above an equally occupied one
in the second layer, thus forming a tightly bound composite
boson because of the dipole-dipole head-to-tail attractive
interaction. In both phases shown in Figs. 8 and 9, the
calculated condensate fraction is close to 1. This sudden

FIG. 7. Calculated critical temperatures for the homogeneous
system (solid line) and for the two values of the strength V0 of
the optical potentials: “weak” potential (dotted line) and “strong”
potential (dashed line).
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FIG. 8. Contour plot of the total density for kF λ = 0.12 in the
“weak” optical potential. The coordinates are in units of k−1

F , while
the density is in units of n0.

transition is not accompanied by any visible anomaly or
discontinuity neither in the chemical potential nor in the
superconducting gap or the condensate fraction as a function of
kF λ. However, I speculate that the resulting system of localized
composite bosons is expected to be a superfluid, as a result
of the finite overlap between neighboring sites, although the
superfluid fraction is expected to be smaller than in the 1/2
filling phase shown in Fig. 8. This is suggested in Fig. 10
where the density profiles along the x axis are shown for the two
structures in Figs. 8 and 9. Due to the reduced overlap between
fermion pairs in the “localized” phase, one should expect, once
the condition for this transition is met by varying the interlayer

FIG. 9. Contour plot of the total density for kF λ = 0.14 in the
“weak” optical potential. The coordinates are in units of k−1

F , while
the density is in units of n0.

FIG. 10. Density profiles along the x direction, corresponding to
the two structures shown in Figs. 8 and 9. n0 is the density of the
homogeneous system.

distance, to observe a sudden drop in the superfluid fraction.
In a way, the resulting state, being characterized by strong
density modulations and a finite superfluid fraction, shares
some similarities with a truly “super-solid” phase.

To substantiate quantitatively the above speculations the
actual superfluid fraction in both phases shown in Figs. 8 and
9 should be explicitly computed. The superfluid fraction could
be extracted, for instance, from the calculated total momentum
of the system under a Galilean boost, as obtained by solving
the associated time-dependent equations of motion in the co-
moving frame of reference (as done, for example, in Ref. [50]
for a system of soft-core bosons). Since this is not the main
subject of the present paper, I will not do this here.

In a practical, quasi-2D realization of the bilayer geometry
studied here the transition discussed above, which involves a
sudden evolution of the system from an “itinerant” character
associated with the first structure, to a more “insulating” one
for the second structure, should be observable in principle by
studying the transport properties of the bilayer system trapped
inside an optical lattice with underlying harmonic confinement
(see, for instance, Ref. [51]), e.g., by monitoring the center-of-
mass motion of the atomic cloud after a sudden displacement of
the harmonic trap minimum. As discussed in Ref. [51], systems
with high filling are characterized by a slower relaxation
towards the equilibrium position. Accordingly, the decrease in
the superfluid fraction expected with the transition described
here should be signaled by a discontinuity in the observed
relaxation time of the displaced clouds.

IV. CONCLUSIONS

In this paper I applied a multiorbital Kohn-Sham “ab
initio” formulation of the density functional theory of BCS
superconductivity in a condensed matter system, which is
known to accurately predict the experimental properties of
superconducting materials especially for systems where a
theory beyond simple BCS superconductivity is needed, to
the study of Fermi gas superfluidity, namely in a bilayer of
fermionic dipolar molecules in 2D, aligned perpendicular to
the planes, where the superfluid pairing is provided by the
partially attractive interaction between dipoles belonging to
different layers.
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The finite temperature superfluid properties of both the
homogeneous system and one where the fermions in each layer
are confined by a square optical lattice have been studied. The
resulting T = 0 properties of the homogeneous system are
found to be in excellent agreement with the results of recent
diffusion Monte Carlo simulations.

I computed the superconducting gap, the condensate
fraction, and the superfluid transition temperatures, and
found how they change as the interlayer distances is
varied, together with their dependence upon the depth
of the confining optical potential wells. A marked in-
crease in the superfluid critical temperature in the BCS
regime is found with increasing amplitude of the confining
potential.

When the distance between the two dipolar layers reaches
a critical (small) value, corresponding to coupling strengths
characteristic of the deep BEC regime, a transition is observed
where the fermions, previously spread out over the lattice,
increase their localization such as there is one composite boson
in every other lattice site. This transition should be signaled
by a sudden drop in the system superfluid fraction, due to the
reduced overlap between neighboring particles.
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