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Ordered phases in a bilayer system of dipolar fermions
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The liquid-to-ordered phase transition in a bilayer system of fermions is studied within the context of our
recently proposed density-functional theory [B. P. van Zyl, W. Kirkby, and W. Ferguson, Phys. Rev. A 92,
023614 (2015)]. In each two-dimensional layer, the fermions interact via a repulsive, isotropic dipolar interaction.
The presence of a second layer introduces an attractive interlayer interaction, thereby allowing the presence
of inhomogeneous density phases which would otherwise be energetically unfavorable. For any fixed layer
separation, we find an instability to a commensurate one-dimensional stripe phase in each layer, which always
precedes the formation of a triangular Wigner crystal. However, at a certain fixed coupling, tuning the separation
can lead to the system favoring a commensurate triangular Wigner crystal, or one-dimensional stripe phase,
completely bypassing the Fermi liquid state. While other crystalline symmetries, with energies lower than the
liquid phase can be found, they are never allowed to form owing to their high energetic cost relative to the
triangular Wigner crystal and stripe phase.
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I. INTRODUCTION

In a recent paper [1], a density-functional theory (DFT) [2]
was developed for investigating the zero-temperature liquid-
to-ordered phase transition in a single-component, two-
dimensional (2D) dipolar Fermi gas (dFG). The model
considered is one in which all of the dipoles are aligned
perpendicular to the 2D xy plane, thereby rendering the
dipole-dipole interaction isotropic and repulsive. The central
finding of this study is that the single-layer dFG spontaneously
breaks rotational invariance above some critical coupling
to a one-dimensional stripe phase (1DSP), followed by a
transition to a triangular Wigner crystal (TWC) at slightly
higher coupling. The DFT prediction that the 1DSP precedes
the formation of a 2D TWC is supported by earlier calculations
utilizing the random-phase (RPA) [3–5], STLS (Singwi,
Tosi, Land, and Sjolander) [6], and conserving Hartree-Fock
(HF) approximations [7–10]. However, recent variational and
quantum Monte Carlo (QMC) calculations [11–13] suggest
that the TWC phase precedes the 1DSP with a coupling
strength which is an order of magnitude larger than any of the
values predicted in Refs. [1,3–10]. The controversy generated
by the single-layer dFG studies suggests that it should also be
interesting to consider the natural extension of this system to
the case of two (or more) 2D layers.

To date, there are relatively few articles in the literature
dealing with the density instabilities in multilayer systems. In
Refs. [5,8,9], the RPA [5] and conserving HF [8,9] theoretical
formulations were extended to the case of two or more layers,
with a focus on investigating the instability toward a stripe
phase in each layer. In these studies, when the intralayer dipolar
interaction is purely repulsive, a transition to a 1DSP is found,
with the stripes in each layer being “in-phase” (i.e., aligned
with one another). An application of the STLS formalism
to the multilayer case has also recently been provided in
Refs. [14,15], where an in-phase 1DSP was found, along with
the transition being shifted to lower coupling compared to the
single-layer geometry. The consensus therefore appears to be
that for repulsive intralayer dipolar interactions, a variation
of the layer density and/or separation leads to the bilayer
2D dFG undergoing a transition to a 1DSP, such that the

stripes in each layer are commensurate or in phase. It is
worthwhile pointing out that QMC calculations analogous to
the single-layer dFG have yet to be performed for a multilayer
configuration.

In this paper, we propose to extend the DFT of Ref. [1]
to a bilayer 2D dFG, and investigate whether it predicts
any additional density instabilities away from the uniform
liquid state not present in the single-layer scenario. The
motivation for this study is manifold. First, as mentioned
above, there are a limited number of papers focusing on
the quantum phase transition in a multilayer dFG, and of
these studies, none have considered the possibility of a
transition to a Wigner crystal. In addition, there is a complete
absence of any application of DFT to the investigation of
density instabilities in the bilayer dFG; filling this void will
allow useful comparisons to be made with results obtained
from other theoretical approaches [5,8,9,14,15], along with
providing relevant predictions to be tested by any future QMC
calculations on bilayer dipolar Fermi systems. Moreover,
the mathematical formulation of DFT is exceedingly simple
and computationally efficient, meaning that we are able to
investigate a large set of system configurations with little
additional effort. Finally, we are encouraged by the early
work of Goldoni and Peeters [16], who implemented a DFT to
examine the crystalline phases in a bilayer electron system. The
result of their investigation was that the preferred ordered state
in each layer is not necessarily the expected TWC. Specifically,
depending on the layer separation and electronic density,
the crystal phases could be square, rectangular, rhombic,
or triangular. In fact, owing to the repulsive intralayer and
interlayer Coulomb interactions, the crystalline structures in
each 2D slab were found to be staggered relative to each
other, so as to minimize the electrostatic energy of the system.
Whether the bilayer 2D dFG possesses crystalline phases
analogous to the bilayer 2D electron gas is certainly of interest,
particularly in view of the fact that DFT predicts a 1DSP,
rather than a TWC phase, as the preferred ordered state in the
single-layer geometry.

To proceed, we organize the rest of our paper as follows.
In Sec. II, we present the DFT appropriate to the bilayer
2D dFG, along with providing simple analytical results for
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FIG. 1. Phase diagram of the bilayer system. As discussed in the
text, λ0 is the dimensionless coupling and r0 is the dipolar length scale.
For γ̃ = γ /r0 � 4, the two layers are effectively uncoupled, and we
reproduce the results found in Ref. [1]. The solid curve delineates the
boundary between the liquid and 1DSP, while the solid curve with
triangles separates the 1DSP from the TWC. The liquid → 1DSP and
1DSP → TWC are first-order phase transitions. Inset: A schematic
depiction of the model under consideration. In each 2D layer, the
atoms have their dipole moments (represented by the arrows) aligned
with the z axis. The layers are separated by a distance γ .

examining the transition from the liquid-to-ordered state.
Section III implements the results of Sec. II to generate

the phase diagram for the bilayer system. The paper closes
in Sec. IV with our conclusions and suggestions for future
work.

II. DFT FOR THE BILAYER 2D DFG

Let us briefly review some of the relevant mathematical
and theoretical concepts necessary for the extension of the
single-layer DFT [1] to a bilayer geometry. We recall that for
a strictly 2D dFG with all of the moments oriented along the
z axis (see the inset to Fig. 1), the dipole-dipole interaction is
isotropic and repulsive, viz.,

Vdd(r − r′) = Cdd

4π |r − r′|3 , (1)

where Cdd = μ0d
2 or Cdd = p2/ε0, for magnetic (with mag-

netic moment d) or electric dipolar atoms (with electric dipole
moment p), respectively. The vectors r and r′ are the coordi-
nates of two dipoles in the xy plane. The natural length and
energy scales of the system are given by r0 = MCdd/(4π�

2)
and �

2/Mr2
0 , respectively, with M being the mass of an atom.

Introducing the 2D Fermi wave vector, kF = √
4πρ0, we

may define a dimensionless coupling constant (equivalently,
density), viz., λ0 = kF r0, where ρ0 is the areal density of
the uniform system. For a weakly inhomogeneous system,
it is reasonable to introduce the local-density approximation
(LDA) [2], which amounts to λ0 → λ(r) and kF → kF (r); that
is, in the LDA, the uniform density ρ0 is replaced locally by a
spatially varying density ρ(r).

As discussed in detail in Ref. [1], the total energy functional
for a single-layer (SL) 2D dFG (within the LDA) may be
written as

ESL[λ(r)] = 1

16π

�
2

Mr4
0

∫
d2rλ(r)4 + λvW

8π

�
2

Mr2
0

∫
d2r|∇λ(r)|2 + 8

45π2

�
2

Mr4
0

∫
d2rλ(r)5 − Cdd

4(4π )2r4
0

∫
d2rλ(r)2

×
∫

d2r ′
∫

d2k

(2π )2
k e−ik·(r−r′)λ(r′)2 − 1

32π

�
2

Mr4
0

∫
d2rλ(r)6 ln

(
1 + 1

a
√

λ(r) + bλ(r) + cλ(r)
3
2

)
, (2)

where a = 1.1958,b = 1.1017, and c = −0.0100 [13]. In
Eq. (2), the first term is the Thomas-Fermi kinetic energy
functional for a noninteracting Fermi system, the second term
is the von Weizsäcker-like (vW) gradient correction to the
kinetic energy [18], the third and fourth terms correspond to
the LDA for the total dipole-dipole HF interaction energy
(i.e., they are not separately the direct and exchange terms,
respectively) [17,18], while the last term corresponds to the
correlation energy [13]. Note that for a uniform system,
ρ(r) → ρ0 and the second and fourth terms in Eq. (2) vanish.

The total energy functional ESL can then be used to
investigate instabilities away from the Fermi liquid state by
considering the quantity [19]

�εSL = εin − εun = ESL[λ(r)] − ESL[λ0]∫
d2rρ0

(
�

2

Mr2
0

)−1

, (3)

which represents the dimensionless difference in energy (per
particle) between the inhomogeneous and uniform phases. The

results of applying Eq. (3) to various inhomogeneous densities
are presented in Ref. [1], where it was found that the nonlocal
contribution to the HF interaction energy, viz., the fourth term
in Eq. (2), is crucial for the onset of a phase transition from the
liquid to 1DSP. In other words, without the nonlocal term, the
Fermi liquid state is always stable toward any ordered phase
in the single-layer 2D dipolar Fermi gas.

The essential ingredient for extending Eq. (2) to the case of
a bilayer system is the interlayer interaction energy between
dipoles residing in different 2D slabs, viz.,

EI[ρ] =
∫

d2r

∫
d2r ′ρ2(r′)VI(r − r′; γ )ρ1(r), (4)

where ρ1(r) and ρ2(r′), and r and r′, are the areal densities and
spatial coordinates in layers 1 and 2, respectively (see the inset
to Fig. 1). The interlayer interaction potential VI reads

VI(r − r′; γ ) = Cdd

4π

|r − r′|2 − 2γ 2

(|r − r′|2 + γ 2)5/2
, (5)
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which is attractive for |r − r′|2 < 2γ 2 and repulsive for
|r − r′|2 > 2γ 2, where γ is the separation between the two
layers. Equation (4) is most easily evaluated by considering
the Fourier transform of Eq. (5), viz.,

VI(r − r′; γ ) = 1

(2π )2

∫
d2kṼI(k; γ ) e−ik·(r−r′)

= −Cdd

2

1

(2π )2

∫
d2kk e−kγ e−ik·(r−r′), (6)

where k is the variable conjugate to r − r′, and k = |k|. The
interlayer interaction energy then reads

EI[ρ] = −Cdd

2

∫
d2rρ1(r)

∫
d2r ′

×
∫

d2k

(2π )2
k e−kγ e−ik·(r−r′)ρ2(r′), (7)

which bears a striking resemblance to the nonlocal HF
interaction energy E

(2)
dd for the single-layer system. Indeed,

recall that [17,18]

E
(2)
dd [ρ] = −Cdd

4

∫
d2rρ(r)

∫
d2r ′

×
∫

d2k

(2π )2
k e−ik·(r−r′)ρ(r′). (8)

Equation (8) corresponds exactly to the fourth term in
Eq. (2) provided we use the definition λ(r) = √

4πρ(r). Now,
comparing Eq. (7) to Eq. (8), we observe that E

(2)
dd for the

single-layer system can evidently be obtained (aside from a
factor of 2) by simply evaluating the direct interaction between
two 2D layers separated by a distance γ , and then taking the
γ → 0 limit. In order to understand this result, let us rewrite
Eq. (4) as

EI[ρ] =
∫

d2rV2(r)ρ1(r), (9)

where

V2(r) =
∫

d2r ′ρ2(r′)VI(r − r′; γ ) (10)

can be thought of as the potential produced by ρ2(r). We see
that if ρ2(r) = ρ0 is uniform, then V2(r) = 0, meaning that
EI = 0 regardless of the form of ρ1(r). Thus, it is only the
deviations from the uniform density ρ0 which contribute to the
interlayer interaction. Now, as we take γ → 0, one can think of
EI as being the interaction energy between density fluctuations
of two independent gases superposed on each other. With
these comments in mind, an interesting interpretation of E

(2)
dd

develops; namely, E(2)
dd represents the classical self-interaction

energy between density fluctuations in the gas of a single-layer
2D dFG. Viewing E

(2)
dd in this way also naturally explains

the factor of 2 mentioned above, in that we now have the
relationship

E
(2)
dd = 1

2
lim
γ→0

EI, (11)

where the γ → 0 limit is taken after the integration, since
Eq. (4) is not convergent for γ = 0. In this sense, for a single
2D dFG, γ is simply a parameter which causes the divergent
bare dipolar self-interaction energy integral to converge, after
which one can set γ = 0. The connection displayed in Eq. (11)
does not appear to have been noticed before, and provides an
alternative route to obtaining the interaction energy functional
(within the HF approximation) for a weakly modulated 2D
dFG. In what follows, we shall make use of Eq. (11) to
immediately construct the interlayer energy EI without having
to perform any additional calculations.

We are now in a position to write the total energy functional
for the bilayer (BL) 2D dFG, namely,

EBL[λ(r)] = ESL[λ(r)] + EI[λ(r)] = 1

16π

�
2

Mr4
0

∫
d2rλ(r)4 + λvW

8π

�
2

Mr2
0

∫
d2r|∇λ(r)|2 + 8

45π2

�
2

Mr4
0

∫
d2rλ(r)5

− Cdd

4(4π )2r4
0

∫
d2rλ(r)2

∫
d2r ′

∫
d2k

(2π )2
k e−ik·(r−r′)λ(r′)2

− 1

32π

�
2

Mr4
0

∫
d2rλ(r)6 ln

(
1 + 1

a
√

λ(r) + bλ(r) + cλ(r)
3
2

)

− Cdd

2(4π )2r4
0

∫
d2rλ1(r)2

∫
d2r ′

∫
d2k

(2π )2
k e−kγ e−ik·(r−r′)λ2(r′)2. (12)

A few comments are in order at this point. First, note that in
Eq. (12), we have ignored the thickness of the layers and have
prohibited the possibility of tunneling between the layers. In
addition, while EBL[λ] does contain the intralayer correlations,
we have not taken into account the interlayer correlations;
in the absence of any QMC calculations for the bilayer
geometry, this is an unavoidable approximation. Nevertheless,

we expect that omitting the interlayer correlations should not
qualitatively affect the outcome of this work, since it is the
intralayer correlations which largely determine the transition
from the liquid-to-ordered state [1,16].

Following the methodology of the single-layer case, we
will now investigate if the bilayer 2D dFG has a propensity
to possess ordered states by employing Eq. (3), but now with
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EBL[λ] replacing ESL[λ],

�εBL = EBL[λ(r)] − EBL[λ0]∫
d2rρ0

(
�

2

Mr2
0

)−1

= ESL[λ(r)] − ESL[λ0]∫
d2rρ0

(
�

2

Mr2
0

)−1

+ EI[λ(r)]∫
d2rρ0

(
�

2

Mr2
0

)−1

= �εSL + �εI, (13)

where we have made use of the fact that EI[λ0] = 0. We will
provide details for density modulations corresponding to the
1DSP and TWC in each layer, noting that other crystalline
symmetries follow exactly the same analysis.

A. Density modulation for a 1DSP

The simplest ansatz corresponding to a 1D spatial modula-
tion, with wave vector q, is given by

ρ(r) = ρ0[1 + α cos(q · r)], (14)

where α � 1 represents the small amplitude deviation about
the uniform density ρ0, and is not to be interpreted as a
variational parameter. Equation (14) can also be cast in terms
of the dimensionless quantity λ(r), viz.,

λ(r) = λ0[1 + α cos(q · r)]
1
2 . (15)

In the case of two layers, we should also take into account the
possibility that the modulated densities are not commensurate,
namely, that they may be offset relative to each other by some
phase shift φ, viz.,

ρ1(r) = ρ0[1 + α cos(q · r)], (16)

ρ2(r′) = ρ0[1 + α cos(q · r′ + φ)]. (17)

Using Eqs. (16) and (17) in Eq. (7), we obtain for �εI,

�εI = −1

4
α2q̃ e−γ̃ q̃λ2

0 cos(φ), (18)

where we have introduced the dimensionless quantities q̃ =
qr0 and γ̃ = γ /r0. Note that �εI vanishes when γ → ∞,
or when the stripe phases in the layers are shifted by φ =
π/2mod(2π ). Regardless, it is clear that Eq. (18) favors the
situation in which the stripes in each layer are commensurate,
viz., φ = 0. Our prediction that the 1DSP in each layer are
in phase is supported by the other calculations [5,8,9,14,15],
although our determination is obtained via a simple analytical
expression, Eq. (18), rather than relying on involved numerical
computations.

Coming back to Eq. (13), we now make use of the fact that
α � 1, so that a perturbative approach is sensible, meaning
that we need only consider shifts to O(α2). It is evident from
Eq. (18) that the shift from the interlayer interaction is already

O(α2). Utilizing the result for �εSL from Ref. [1],

�εSL

α2
= 1

8
λ2

0 + λvW
q̃2

16
+

[
2

3π
− 1

8

q̃

λ0

]
λ3

0

− 1

8
λ4

0

[
3

2
ln[f0] + 11

16
λ0A + 1

16
λ2

0B

]
, (19)

where

f (λ) =
(

1 + 1

a
√

λ + bλ + cλ
3
2

)
, (20)

f0 ≡ f (λ0), f ′
0 ≡ df

dλ

∣∣∣∣
λ=λ0

, f ′′
0 ≡ d2f

dλ2

∣∣∣∣
λ=λ0

, (21)

A = f ′
0

f0
, (22)

B = f ′′
0 f0 − f ′2

0

f 2
0

, (23)

we finally obtain our desired result:

�ε1DSP
BL

α2
= 1

8
λ2

0 + λvW
q̃2

16
+

[
2

3π
− 1

8

q̃

λ0

]
λ3

0

− 1

8
λ4

0

[
3

2
ln[f0] + 11

16
λ0A + 1

16
λ2

0B

]

− 1

4
q̃ e−γ̃ q̃λ2

0. (24)

Recall that all energies are scaled by �
2/Mr2

0 , and observe
that the right-hand side of Eq. (24) has no dependence
on α, emphasizing that α is not a variational parameter
in our analysis. Equation (24) illustrates that the interlayer
interaction will actually enhance the system’s tendency to
undergo a transition to a 1DSP because it contributes a negative
component to the energy shift �ε1DSP

BL . Indeed, it was found in
Ref. [1] that a negative contribution to the energy shift [arising
from the nonlocal HF interaction, Eq. (8)], was essential for
the single-layer system to undergo a phase transition. The
additional term coming from Eq. (18) will clearly serve to
lower the system’s energy in favor of an inhomogeneous state
in the bilayer configuration, and therefore lower the coupling
λ0 required for the onset of the phase transition.

B. Density modulation for a triangular Wigner crystal

To find the expression for �εBL corresponding to a
triangular TWC, we use the densities [1,20]

ρ(r) = ρ(x,y) = ρ0

[√
1 − 3

2
α2 + α cos(qx)

+ 2α cos

(
q

2
x

)
cos

(√
3

2
qy

)]2

, (25)

λ(r) = λ(x,y) = λ0

[√
1 − 3

2
α2 + α cos(qx)

+ 2α cos

(
q

2
x

)
cos

(√
3

2
qy

)]
, (26)

in each layer, with the understanding that the spatial coor-
dinates are specific to a given layer. In view of our findings
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from the 1DSP case, we do not need to consider a scenario
in which the TWC lattices in the two layers are staggered in
any way (it is in this sense that we mean the TWCs in each
layer are commensurate). This is in contrast to the Coulomb
bilayer problem, where the lattices in each layer must be
incommensurate in order to minimize the total energy of the
system [16].

From Ref. [1] we have for the single layer

�εSL

α2
= 3

2
λ2

0 + λvW
3q̃2

4
+

[
8

π
− 3

2

q̃

λ0

]
λ3

0

− 1

4
λ4

0

[
9 ln[f0] + 33

8
λ0A + 3

8
λ2

0B

]
. (27)

As previously shown, with no additional effort we can make
use of the connection between EI and E

(2)
dd to write

�εI

α2
= −3q̃ e−q̃γ̃ λ2

0, (28)

which leads directly to

�εTWC
BL

α2
= 3

2
λ2

0 + λvW
3q̃2

4
+

[
8

π
− 3

2

q̃

λ0

]
λ3

0

−1

4
λ4

0

[
9 ln[f0] + 33

8
λ0A + 3

8
λ2

0B

]
−3q̃ e−q̃γ̃ λ2

0.

(29)

Armed with expressions for the shifts for both the 1DSP,
Eq. (24), and a TWC, Eq. (29), we are now poised to investigate
the phase diagram for the bilayer 2D dipolar Fermi gas.

III. PHASE DIAGRAM OF THE BILAYER SYSTEM

In contrast to the single-layer problem, there are now
two independent variables which may be varied, namely, the
coupling λ0 and the separation between the two layers γ .
Consequently, our phase diagram will be an exploration of
how the system responds to changes in these two variables. As
discussed in Ref. [1], for the 1DSP, we take q̃ = 2λ0, while
for the TWC we set q̃ = (8π/

√
3)1/2λ0/2. The value q̃ = 2λ0

is the wave vector associated with the lowest energy for the
formation of the stripe phase, while q̃ = (8π/

√
3)1/2λ0/2 for

the TWC enforces that we have only one atom per unit cell.
Specifically, we look for a change in the signs of �ε1DSP

BL /α2

and �εTWC
BL /α2 as we vary λ0 for a fixed layer separation, γ .

As it happens, �ε1DSP
BL /α2 always crosses zero first (indicating

that the 1DSP phase is now energetically favorable over the
uniform state) while �εTWC

BL /α2 remains positive. Then, as λ0

is further increased, �εTWC
BL /α2 also crosses zero (i.e., becomes

negative), and we determine the preferred inhomogeneous
phase by comparing the values of �ε1DSP

BL /α2 and �εTWC
BL /α2;

if �εTWC
BL /α2 < �ε1DSP

BL /α2, the TWC phase is the ordered
state, even though both phases are lower in energy than the
uniform Fermi liquid. The procedure is repeated for different
layer separations, leading to the phase diagram shown in Fig. 1.
It should be noted that owing to the fact that the liquid, 1DSP,
and TWC belong to different symmetry classes, our ordered
states are separated by first-order phase transitions.

Let us now take a closer look at Fig. 1. First, we observe
that for values of γ̃ = γ /r0 � 4, the layers are effectively

uncoupled, and the results of Ref. [1] are recovered, viz., the
system undergoes a transition first to a 1DSP followed by a
TWC at higher coupling. Next, consider the case where we
have a fixed layer separation γ̃ and start with small λ0, which
increases as we move up vertically in the phase diagram. It is
evident that the window in which the 1DSP precedes the TWC
gets smaller and smaller as the fixed layer separation decreases.
Indeed, for say γ̃ = 0.5, the range of λ0 distinguishing the
1DSP from the TWC is very narrow. This is perhaps not so
surprising given that the �εI contribution has a maximum
negative component as γ̃ → 0.

If we now fix the coupling, λ0, and move horizontally in
the phase diagram (i.e., varying γ̃ ), we see that there are layer
separations at which a crystal or 1DSP is the preferred phase.
For example, if we take λ0 = 1, and move horizontally in our
phase diagram starting from small γ̃ , we observe that up to
γ̃ ≈ 1, each layer possesses a TWC as the ground state of the
system. The system then undergoes a transition to a 1DSP,
which lasts over only a very short coupling range, followed
by the system melting to a liquid. Looking now at values of
1.4 � λ0 � 1.5, we see that the liquid state is never present,
and the system goes from a 1DSP to a TWC as the layer
separation is decreased (i.e., moving right to left in the phase
diagram). Finally, notice that for λ0 � 1.5, each layer remains
frozen in a TWC, regardless of the layer separation γ̃ .

We have performed the same analysis as above for other
crystal symmetries, e.g., square, rhombic, and rectangular,
and have confirmed that none of these crystal symmetries are
more energetically favorable than the TWC. This finding is
in stark contrast to a bilayer 2D electron system [16], where
depending on the coupling and layer separation, the TWC is
not necessarily the ground state of the system. It appears that,
at least within our DFT, the only two phases possessed by the
bilayer 2D dFG are the 1DSP and the TWC.

Before closing this section, it is worthwhile briefly com-
menting on the feasibility of experimentally exploring our
phase diagram. We note that it will in fact be difficult to reach
strong enough interactions (or high enough densities) with
161Dy (d ∼ 10μB ) or other magnetic atoms. Specifically, for
161Dy, typically λ0 < 1, implying that it will be difficult to
observe the density instabilities with magnetic atoms, in either
a single-layer geometry, or equivalently, the large γ /r0 sector
of our phase diagram. In contrast, dipolar molecules with an
electric dipole moment should allow experiments to reach
sufficiently strong interactions to observe the 1DSP or TWC.
For example, using 23Na 40K molecules, with dipole moments
of up to ∼ 2.7 Debye, current experimental conditions [21]
should allow λ0 ∼ 1.4, which is within the range of coupling
in our phase diagram where the Fermi liquid state is completely
absent for any layer separation. Our phase diagram suggests
that it should be easier to experimentally investigate density
instabilities in bilayer configurations because the transition
from the Fermi liquid to the ordered state occurs at lower
coupling as the spacing between the layers, γ /r0, is decreased.
This is important from an experimental point of view if
one wishes to work with chemically inactive 161Dy atoms,
where λ0 < 1. According to our phase diagram, the bilayer
geometry still allows the observation of a phase transition
for λ0 < 1 by varying the interlayer separation. However,
for 161Dy ,r0 ∼ 0.02 μm, meaning that layer separations,
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γ ∼ 0.02 μm, would have to be readily achievable in the
laboratory. It therefore appears that the most promising
candidate for experimentally exploring our phase diagram is
by using 23Na 40K molecules, where both the 1DSP and TWC
phases should be readily accessible [21].

IV. CONCLUSIONS AND CLOSING REMARKS

We have extended the density-functional theory of Ref. [1]
to the case of a bilayer, two-dimensional dipolar Fermi
gas. The present density-functional study investigates the
possibility of a quantum phase transition to either a stripe
or a Wigner crystal phase in the bilayer two-dimensional
dipolar Fermi gas. While developing our formal extension of
the work in Ref. [1], we have found an interesting connection
between the direct interlayer interaction energy, Eq. (7), and
the nonlocal Hartree-Fock energy, Eq. (8); namely, that the
nonlocal Hartree-Fock energy can be obtained by considering
the direct interaction between two different layers, separated
by a distance γ , and then taking the γ → 0 limit. We have
provided a physical interpretation of this connection, which
is that E

(2)
dd represents the classical self-interaction energy in

an inhomogeneous two-dimensional dipolar Fermi gas. We
have also presented analytical expressions, Eqs. (24) and (29),
which allow a numerically efficient examination of the phase
diagram for the bilayer system. The relative ease of obtaining
the phase diagram for the bilayer system should be viewed
as a testament to the utility of the density-functional theory
approach.

Our phase diagram (see Fig. 1) demonstrates that the bilayer
two-dimensional dipolar Fermi gas has only two energetically
favorable inhomogeneous phases, viz., a one-dimensional
stripe phase or a triangular Wigner crystal in each layer.
In contrast to the case of the bilayer electron system (see
Ref. [16]), the stripe and Wigner crystal phases are perfectly

commensurate in the two layers, with no possibility of other
crystalline symmetry phases existing owing to their high
energy cost relative to the triangular Wigner crystal. Through
an exploration of the (γ̃ ,λ0) space, we have also confirmed
that there are coupling regimes for which the system is always
in a Wigner crystal or stripe phase, completely bypassing the
liquid state, regardless of the separation between the layers.
We have also shown that the range of coupling, λ0, over which
the phase transition occurs can be significantly reduced in a
bilayer geometry, and have provided a simple explanation for
this result in terms of the connection between the nonlocal
Hartree-Fock and interlayer interaction energy terms.

To close this paper, we mention that an interesting pro-
gression of this work would be to consider other exotic Fermi
systems, such as the electron-hole bilayer problem [22–24],
which to date has not been studied within a density-functional
theory approach. It is also still an outstanding problem to
provide a density-functional theory in the case where the dipole
moments of the atoms are canted at some angle relative to the
z axis (i.e., taking into account the full anisotropic nature of
the dipole-dipole interaction). Finally, the development of our
density-functional theory to finite temperatures would be of
interest, because it is expected that at nonzero temperatures, the
physics of the Berezinskii-Kosterlitz-Thouless transition [25]
is the appropriate description of the system.

ACKNOWLEDGMENTS

B.v.Z. would like to thank Prof. Eugene Zaremba for
very useful conversations involving the nonlocal Hartree-Fock
interaction energy. This work was supported by grants from the
Natural Sciences and Engineering Research Council of Canada
(NSERC). W.F. would like to thank the NSERC Undergraduate
Student Research Award (USRA) for additional financial
support.

[1] B. P. van Zyl, W. Kirkby, and W. Ferguson, Phys. Rev. A 92,
023614 (2015).

[2] R. M. Dreizler and E. K. U. Gross, Density Functional Theory:
An Approach to the Quantum Many-Body Problem (Springer-
Verlag, Berlin, 1990).

[3] K. Sun, C. Wu, and S. Das Sarma, Phys. Rev. B 82, 075105
(2010).

[4] Y. Yamaguchi, T. Sogo, T. Ito, and T. Miyakawa, Phys. Rev. A
82, 013643 (2010).

[5] N. T. Zinner and G. M. Bruun, Eur. J. Phys. 65, 133 (2011).
[6] M. M. Parish and F. M. Marchetti, Phys. Rev. Lett. 108, 145304

(2012).
[7] L. M. Sieberer and M. A. Baranov, Phys. Rev. A 84, 063633

(2011).
[8] J. K. Block, N. T. Zinner, and G. M. Bruun, New J. Phys. 14,

105006 (2012).
[9] M. Babadi and E. Demler, Phys. Rev. B 84, 235124 (2011).

[10] J. K. Block and G. M. Bruun, Phys. Rev. B 90, 155102 (2014).
[11] M. Babadi, B. Skinner, M. M. Fogler, and E. Demler, Europhys.

Lett. 103, 16002 (2013).

[12] N. Matveeva and S. Giorgini, Phys. Rev. Lett. 109, 200401
(2012).

[13] S. H. Abedinpour, R. Asgari, B. Tanatar, and M. Polini, Ann.
Phys. (NY) 340, 25 (2014).

[14] F. M. Marchetti and M. M. Parish, Phys. Rev. B 87, 045110
(2013).

[15] M. Callegari, M. M. Parish, and F. M. Marchetti,
arXiv:1601.06988.

[16] G. Goldoni and F. M. Peeters, Europhys. Lett. 37, 293 (1997).
[17] B. Fang and B.-G. Englert, Phys. Rev. A 83, 052517

(2011).
[18] B. P. van Zyl, E. Zaremba, and P. Pisarski, Phys. Rev. A 87,

043614 (2013).
[19] N. Choudhury and S. K. Ghosh, Phys. Rev. B 51, 2588

(1995).
[20] Note that we have not included the “granular density” analysis

discussed in Ref. [1] when exploring the triangular Wigner crys-
tal phase. The granular density analysis does not qualitatively
alter the phase diagram obtained from the simpler perturbative
approach presented in this paper.

053626-6

http://dx.doi.org/10.1103/PhysRevA.92.023614
http://dx.doi.org/10.1103/PhysRevA.92.023614
http://dx.doi.org/10.1103/PhysRevA.92.023614
http://dx.doi.org/10.1103/PhysRevA.92.023614
http://dx.doi.org/10.1103/PhysRevB.82.075105
http://dx.doi.org/10.1103/PhysRevB.82.075105
http://dx.doi.org/10.1103/PhysRevB.82.075105
http://dx.doi.org/10.1103/PhysRevB.82.075105
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevA.82.013643
http://dx.doi.org/10.1103/PhysRevLett.108.145304
http://dx.doi.org/10.1103/PhysRevLett.108.145304
http://dx.doi.org/10.1103/PhysRevLett.108.145304
http://dx.doi.org/10.1103/PhysRevLett.108.145304
http://dx.doi.org/10.1103/PhysRevA.84.063633
http://dx.doi.org/10.1103/PhysRevA.84.063633
http://dx.doi.org/10.1103/PhysRevA.84.063633
http://dx.doi.org/10.1103/PhysRevA.84.063633
http://dx.doi.org/10.1088/1367-2630/14/10/105006
http://dx.doi.org/10.1088/1367-2630/14/10/105006
http://dx.doi.org/10.1088/1367-2630/14/10/105006
http://dx.doi.org/10.1088/1367-2630/14/10/105006
http://dx.doi.org/10.1103/PhysRevB.84.235124
http://dx.doi.org/10.1103/PhysRevB.84.235124
http://dx.doi.org/10.1103/PhysRevB.84.235124
http://dx.doi.org/10.1103/PhysRevB.84.235124
http://dx.doi.org/10.1103/PhysRevB.90.155102
http://dx.doi.org/10.1103/PhysRevB.90.155102
http://dx.doi.org/10.1103/PhysRevB.90.155102
http://dx.doi.org/10.1103/PhysRevB.90.155102
http://dx.doi.org/10.1209/0295-5075/103/16002
http://dx.doi.org/10.1209/0295-5075/103/16002
http://dx.doi.org/10.1209/0295-5075/103/16002
http://dx.doi.org/10.1209/0295-5075/103/16002
http://dx.doi.org/10.1103/PhysRevLett.109.200401
http://dx.doi.org/10.1103/PhysRevLett.109.200401
http://dx.doi.org/10.1103/PhysRevLett.109.200401
http://dx.doi.org/10.1103/PhysRevLett.109.200401
http://dx.doi.org/10.1016/j.aop.2013.10.006
http://dx.doi.org/10.1016/j.aop.2013.10.006
http://dx.doi.org/10.1016/j.aop.2013.10.006
http://dx.doi.org/10.1016/j.aop.2013.10.006
http://dx.doi.org/10.1103/PhysRevB.87.045110
http://dx.doi.org/10.1103/PhysRevB.87.045110
http://dx.doi.org/10.1103/PhysRevB.87.045110
http://dx.doi.org/10.1103/PhysRevB.87.045110
http://arxiv.org/abs/arXiv:1601.06988
http://dx.doi.org/10.1209/epl/i1997-00544-3
http://dx.doi.org/10.1209/epl/i1997-00544-3
http://dx.doi.org/10.1209/epl/i1997-00544-3
http://dx.doi.org/10.1209/epl/i1997-00544-3
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.87.043614
http://dx.doi.org/10.1103/PhysRevA.87.043614
http://dx.doi.org/10.1103/PhysRevA.87.043614
http://dx.doi.org/10.1103/PhysRevA.87.043614
http://dx.doi.org/10.1103/PhysRevB.51.2588
http://dx.doi.org/10.1103/PhysRevB.51.2588
http://dx.doi.org/10.1103/PhysRevB.51.2588
http://dx.doi.org/10.1103/PhysRevB.51.2588


ORDERED PHASES IN A BILAYER SYSTEM OF DIPOLAR . . . PHYSICAL REVIEW A 93, 053626 (2016)

[21] J. W. Park, S. A. Will, and M. W. Zwierlein, Phys. Rev. Lett.
114, 205302 (2015).

[22] G. Senatore and S. De Palo, Contrib. Plasma Phys. 43, 363
(2003).

[23] J. Ye, J. Low Temp. Phys. 158, 882 (2009).

[24] J. Schleede, A. Filinov, M. Bonitz, and H. Fehske, Contrib.
Plasma Phys. 52, 819 (2012).

[25] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1971) [Sov.
Phys. JETP 34, 610 (1972)]; J. M. Kosterlitz and D. J. Thouless,
J. Phys. C 7, 1046 (1974).

053626-7

http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://dx.doi.org/10.1103/PhysRevLett.114.205302
http://dx.doi.org/10.1002/ctpp.200310047
http://dx.doi.org/10.1002/ctpp.200310047
http://dx.doi.org/10.1002/ctpp.200310047
http://dx.doi.org/10.1002/ctpp.200310047
http://dx.doi.org/10.1007/s10909-009-0056-z
http://dx.doi.org/10.1007/s10909-009-0056-z
http://dx.doi.org/10.1007/s10909-009-0056-z
http://dx.doi.org/10.1007/s10909-009-0056-z
http://dx.doi.org/10.1002/ctpp.201200045
http://dx.doi.org/10.1002/ctpp.201200045
http://dx.doi.org/10.1002/ctpp.201200045
http://dx.doi.org/10.1002/ctpp.201200045
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1088/0022-3719/7/6/005



