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Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the
potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states
of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect
has been shown to possess ground states with non-Abelian excitations. The most well studied of these states
is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), which is the
ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction
can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems
exists.
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Coupled atom-cavity systems (falling under the broad
umbrella of cavity QED) are proving to be an excellent
framework for the investigation of fundamental quantum
phenomena, due to the versatility and control of system
parameters. In particular, cavity QED is promising to be a
powerful platform for quantum emulation, where a wide range
of condensed-matter systems can be modeled through tailoring
of atom-cavity interactions [1–6].

Recent work has shown how complex states of correlated
light can be induced in cavity QED systems via nonlinearities
in atom-light interactions. In particular, a class of states that
corresponds to the quantum Hall effect has been predicted.
In this paper, we extend this class to include Pfaffian-like
states [7]. These states possess highly nontrivial topological
properties that make them of great interest to the understanding
of quantum Hall physics, as well as providing an opportunity
to examine strongly correlated quantum states of light.

Since the unexpected discovery of fractional quantum
Hall states [8], a small industry has grown up around the
construction of complex states that might be found in two-
dimensional quantum Hall fluids. These states (for the most
part) lie in the massively degenerate lowest Landau level
(LLL). Single-particle states in the lowest Landau level have
a beautiful property that leads to the general structure found
across all the quantum Hall effect (QHE) states. One can write
the position of a single particle k in the two-dimensional
(2D) plane as zk = (xk + iyk)/�B , with �B the magnetic
length; then the single-particle states can all be written as
a holomorphic function in zk , multiplied by a Gaussian factor.
As a consequence, all many-body states that lie in the LLL are
functions of z̄ = {zk|k � Np} and consist of a Gaussian term,
exp [− 1

4

∑
k |zk|2], multiplied by a Jastrow factor, an analytic

function F(z̄).
The Jastrow factor encodes the correlations between

particles. The simplest correlated state was proposed by
Laughlin [9] to account for the fractional QHE states
found at ν = 1/q. The Laughlin Jastrow factors are FL(z̄) =∏

k>j (zk − zj )q . These states have a wave function that van-
ishes as any two particles approach one another, minimizing
the electron-electron repulsion within the lowest Landau
level.

The Moore-Read Pfaffian state is defined by the Jastrow
factor

�Pf ∝ Pf

(
1

zk − zj

) ∏
k>j

(zk − zj )q . (1)

The terms in the Pfaffain factor cancel a factor in the Laughlin
state, leading to a nonzero amplitude at the coincidence of just
two particles.

This ground state has some interesting properties, most no-
tably non-Abelian excitations and a (related) triply degenerate
ground state in the toroidal geometry [7].

In this work, we consider a Jaynes-Cummings-Hubbard
(JCH) system with synthetic magnetic field and demonstrate
the existence of Pfaffian-like ground states at a filling factor
ν = 1. We first consider the conventional JCH system and
find no evidence for Pfaffian-like states. We then consider a
three-level Jaynes-Cummings (JC) cavity and show how there
are regimes in which three-body interactions dominate. We
then study the conditions under which Pfaffian-like states will
arise when these three-level systems are Hubbard coupled.

Each cavity in the JCH lattice is described by

H JC = ωL + �σ+σ− + β(σ+a + σ−a†), (2)

where a is the photonic annihilation operator, σ± are the
atomic raising and lowering operators, L is the excitation
number operator, � is the atom-photon detuning, β is the
coupling energy, and � = 1. The states |g(e),n〉, where n is
the number of photons and g(e) are the ground (excited) state
of the atom, form the single-cavity basis. H JC commutes with
the total excitation number operator, L. Therefore, the total
excitations in the cavity, �, is a good quantum number. The
eigenstates of Eq. (2) are termed polaritons, i.e., superpositions
of atomic and photonic excitations, and are a function of � and
�/β.

The JCH model describes an array of individual Jaynes-
Cummings cavities, which are coupled via a Hubbard-like
photon tunneling term. In the case of a lossless system, the
JCH model can be described by

H JCH =
∑

i

H JC
i −

∑
〈i,j〉

κij a
†
i aj , (3)
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where κij is the tunneling rate between cavities i and j , and
the sum over 〈i,j 〉 is between nearest neighbors only.

The presence of the intracavity atom induces an intrinsic
anharmonicity in the spectrum. This anharmonicity leads to an
effective photon-photon repulsion which leads to the nontrivial
dynamics found in JCH systems.

For large detuning (|�| � β), eigenstates separate out into
either atomic or photonic modes. In this limit, the photonic
or atomic mode can be adiabatically eliminated. Eliminating
the atomic modes, the photonic mode has a weak Kerr-type
photon-photon repulsion [10] and the exchange of energy
between atomic and photonic modes is strongly suppressed.
However, virtual processes lead to effective interactions in
the photonic and atomic submanifolds. Photons have an
atomic mediated nonlinear on-site repulsion, making the JCH
model equivalent to the Bose-Hubbard (BH) model [11].
Atomic modes are coupled with the effective hopping rate
κeff

ij = κijβ
2/�2 [12]. As the atomic modes are restricted to

two levels, this is effectively a hard-core boson field for atomic
states, in contrast to the weakly interacting photon field.

Investigation of quantum Hall physics in the JCH model
requires the introduction of a synthetic magnetic field. An
artificial magnetic field may be realized via the introduction of
some time-reversal symmetry-breaking interactions. A num-
ber of techniques have been proposed to achieve this [6,13–17].
For example, one may exploit a time-dependent potential to
induce magnetic flux across the lattice [16], thereby explicitly
breaking the time symmetry of the system. A similar strategy
is proposed in Ref. [6], where the authors utilize a time-
dependent intersite coupling to induce a synthetic magnetic
field. Alternatively, effective coupling to real magnetic fields
can be used, such as in the proposal by Koch et al. [15]. Other
means, such as the use of optically polarized media [13] or via
atomically mediated intersite coupling [14], have also been
proposed.

Inspired by results in ultracold-atom simulations [18–21],
one might expect to find evidence of a Pfaffian ground state
in the JCH model at ν = 1. We numerically investigated the
JCH model on a torus to this end. Existence of a Pfaffian-like
state can be indicated by a number of properties of the ground
state: a triply degenerate ground-state manifold, large overlap
with the Pfaffian trial wave function, and a Chern number of 3
computed for the three ground states.

We conducted a comprehensive search over several pa-
rameters within the JCH model, but the tell-tale signature
of a triple-degeneracy ground state proved elusive. Instead,
simulations reveal, for some lattice configurations, a single
separated ground state in the strongly interacting limit, with a
transition to a gapless phase as the effective two-body inter-
action decreased. Other configurations possessed a gapless
ground state extending all the way to the hard-core limit.
While these results disagree with the Bose-Einstein condensate
(BEC) findings, other lattice boson simulations have failed
similarly [22].

Although the evidence from BECs suggests that a Pfaffian
ground state should be preferred, there are other possible states
at ν = 1 filling for bosons which are in competition with the
Pfaffian state. For example, Read [23] proposes a ground
state in which, approximately, a single vortex is attached to
each boson. This assignment exactly cancels out the external

magnetic field, which reduces the problem to that of a Fermi
liquid. Alternatively, it is conjectured [24] that a striped phase
with charge density order may exist at ν = 1, with some
numerical simulations [25] finding evidence for this.

The relatively small size of the systems we have simulated
makes it difficult to tease out the importance of different effects
which determine the real nature of the ground state at this filling
factor. However, the poor scaling of these systems means that
significantly larger systems are impractical at this point in
time. Of course, this problem is one of the primary motivators
of work into quantum emulation.

For ν = 1, the Pfaffian ground state is the highest-density
ground state of the three-body δ potential Hamiltonian [26].
For each pair of particles, there is a number of terms in Eq. (1)
for which each particle is in a different partition. However,
there is no term for which three or more particles coincide that
does not vanish.

The JCH in the limit of large detuning can be described by a
Bose-Hubbard model with an effective two-body interaction,
U2. However, the atomic-cavity interaction induces interac-
tions to all orders of n-photon interactions. These higher-order
interactions are much smaller than the two-body interaction,
and therefore the physics of the JCH very much mirrors that of
the Bose-Hubbard model with two-body interaction. We now
show that it is possible to eliminate the two-body interaction
while retaining the higher-order interactions.

Three-body interactions (without corresponding two-body
ones) are unnatural and do not arise in many physical
systems. A number of schemes for creating effective three-
body interactions have been proposed in the context of
BECs [22,27–29] and in the circuit QED setting [30]. Below
we show that an effective three-body interaction can be
induced in an atom-cavity lattice by replacing the two-level
atoms in the JCH model with appropriately tuned three-level
atoms. Furthermore, it is demonstrated via simulation that an
atom-cavity lattice consisting of these three-level atoms can
possess a Pfaffian-like state as its ground state.

We consider the three-level system atom in the � config-
uration, as shown in Fig. 1(a). This configuration consists of
two evenly spaced excited states, with the atom-cavity system
described by the Hamiltonian

H 3L = ωa†a + ε1 |e1〉 〈e1| + (β1σ
+
1 a + H.c.)

+ε1 |e2〉 〈e2| + (β2σ
+
2 a + H.c.). (4)

Here, σ+
1(2) raises the atomic level from g ↔ e1 (e1 ↔ e2), and

levels 1 (2) have energies ε1(2).
Choosing an atom with energy levels

ε1 = ω − �, ε2 = 2ω − 2�, (5)

and transition strengths

g ↔ e1 ≡ β1, e1 ↔ e2 ≡ β2 =
√

2β1, (6)

leads to an effective three-body interaction. This can be seen by
considering the formulation of the JC system as a two-mode
bosonic system with intermode tunneling. If one imposes a
hard-core boson condition on one of the modes, then the system
corresponds exactly to the JC cavity with a two-level atom.
In the single-excitation subspace, the hard-core condition is
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(a) (b) (c)

FIG. 1. (a) Three-level atom configuration for inducing a three-body interaction in the JCH lattice. (b) Energy per excitation in the three-level
atom for � = 1–5 (blue, orange, green, red, and purple, respectively). Excitations in the � = 1 and � = 2 excitation subspace have the same
energy cost. For higher excitation numbers, the energy per particle increases. (c) Energy per excitation as a function of β2 [same colors as (b)]
for �/β1 = −5.

automatically satisfied and the system is simply a free boson
model.

If, instead of the hard-core condition, one imposes a
three-particle hard-core condition (U3 → ∞), then a similar
situation arises, except that for both the single and double
excitation subspaces, there are no interactions. Mapping this
model back to the atomic model, for one and two particles, the
equivalent atom-cavity model corresponds exactly to the one
presented previously, where the factor of

√
2 arises from the

indistinguishably of the bosons.
The three-body nonlinearity is demonstrated in Fig. 1(b).

Here, the energy cost per particle for the lower polariton branch
is plotted as a function of the detuning, �. For one and two
excitations, the energy per particle is the same. However,
for � = 3 and above, there is an increased cost for adding
additional particles. Figure 1(c) shows that at β2/β1 = √

2,
the two- and three-level atom-cavity systems share several
properties. The nonlinearity is unbounded as the detuning is
lowered, and disappears as the detuning is increased. Also,
the nonlinearity does not grow quadratically with excitation
number, as is the case for a pure three-body interaction, similar
to the two-level atom case.

Figure 1(c) demonstrates how the two-body interaction is
affected by the strength of β2. As β2 is tuned away from
β2/β1 = √

2, the effective two-body interaction becomes +ve

or −ve. However, at low detunings [�/β1 = −5 in Fig. 1(c)],
the relative strength of this effective two-body interaction is
much smaller than the three-body one.

This method for generating three-body interactions opens
up possibilities for investigating the physics of topological
quantum states that has proved elusive in traditional envi-
ronments. Furthermore, this same technique can be extended
to higher-order interactions. There is a hierarchy of states
that generalize the Pfaffian [31] state, which are expected
to be ground states of these higher-order interactions. The
JCH model with this modification is a system in which such
higher-order interactions might be achieved, outside of a fully
functional quantum computer.

In practice, engineering the three-level system as described
lies well within the capabilities of current cavity QED
fabrication techniques. Engineering a system like this in circuit
QED has been discussed in [30]. For cavity atoms, most

� configurations tend to be unstable, with fast relaxation
rates that would preclude large-scale coherence in the system.
This instability can be mitigated by instead using an M-like
configuration (as in [32]), where classical driving can be used
to create an effective three-level JCH system.

In our simulations, we restrict the system to a torus, to
remove edge effects. The toroidal geometry permits twisted
periodic boundary conditions, which reduces finite-size effects
and allows for computation of the Chern number.

The Chern number [33], C, is a measure of the topology
of the ground state of the system and can provide evidence
for the existence of a Pfaffian-like state. Here, we define
a two-dimensional manifold over the two phases, θx,y , that
parametrizes the twisted periodic boundary conditions across
the torus. For the Pfaffian state, the three ground states have a
combined Chern number of 3.

We compute, by exact diagonalization, the low-energy band
structure of the three-level JCH system for four excitations
over the twisted boundary condition manifold [Fig. 2(a)]. For
four particles, there is a large modulation of the energy as a
function of the twist angles (which one expects to disappear
in the many-particle limit [34]). We find that a quasigap can

FIG. 2. Energy gap for the first five excited states in the three-level
JCH model on a 4 × 4 lattice with four particles and four flux quanta
(ν = 1). There is a three-dimensional quasidegeneracy in the ground
state, indicative of a Pfaffian-like state.
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FIG. 3. Band gap and Pfaffian overlap as a function of β2/β1 (at
�/β1 = −5) and �/β1 (with β2/β1 = √

2) for four particles on 4 × 4
(blue long-dashed line), 4 × 5 (orange dashed line), 5 × 5 (green
dot-dashed line), 6 × 5 (purple solid line), and 6 × 6 (brown dotted
line) lattice.

exist in both models, and computation of the Chern number
(C = 3) coupled with the threefold degeneracy provides strong
evidence for Pfaffian physics.

In the case of Laughlin states on a lattice, the gap has been
shown [33] to scale proportionally to the flux density per lattice
plaquette. This does not seem to apply in the case of the Pfaffian
state. We hypothesize that the first excited state of this system
is not an excitation lying in a higher Landau level. Rather, it
is some combination of quasiparticles and quasiholes. These
excitations lie in the LLL, with no energy gap in the continuum
limit, which would explain the rapid decrease in the gap as the
flux density per lattice plaquette decreases.

With strong evidence for the Pfaffian state, we proceed
to investigate the three-level JCH model in more detail, by
exploring the properties of the ground state over a range of
lattice sizes and system parameters. These investigations are
presented in Fig. 3.

In Figs. 3(a) and 3(c), we show how the ground state
changes as a function of β2. The ground state experiences
a transition from the Pfaffian state away from β2/β1 = √

2.
For β2/β1 >

√
2, where the effective two-body interaction

becomes attractive, there is a very sharp transition to a
collapsed state. On the other side, β2/β1 <

√
2, the gap and

Pfaffian overlap remain fairly stable, although we observe a
transition in the 4 × 5 lattice configuration.

In Figs. 3(b) and 3(d), we show how the ground state
changes as a function of the detuning, �. We find that as in
the Laughlin case [35], increasing the atomic detuning, which
alters the effective interaction strength [Fig. 1(b)], can induce
a transition from a Pfaffian state to an uncorrelated one. This
transition is accompanied by a closing of the band gap and,
for most cases, a drop off of the overlap with the trial wave
function.

The Pfaffian states at ν = 1 have a straightforward inter-
pretation as the symmetrized product of two Laughlin states at
ν = 1/2 [36], assigning each particle to one of two Laughlin
states. The wave function will vanish as two particles in the
same Laughlin state approach each other, but not if those two
particles are in different states. However, if any three particles
coincide, then by construction the wave function will be zero
at this point. The three degenerate states in the torus setting
correspond to the singlet and two doublet states that one can
construct from the doubly degenerate Laughlin states.

This reexpression of the Pfaffian wave function also allows
one to translate findings from investigations into the Laughlin
state in the JCH into the current work. For example, we find
that the detuning for which the Pfaffian state undergoes a
transition [Figs. 3(b) and 3(d)] is the same for the equivalent
single Laughlin state [35]. Furthermore, the overlap with the
trial Pfaffian wave function is very well approximated by the
overlap with a single Laughlin function, to the power of two.

While we have shown that the ground state of the three-level
JCH model possesses a Pfaffian-like ground state, preparing
such a state in a real system presents significant challenges.
In particular, the presence of dissipation and decoherence in
photonic cavities will impede the system from finding its
natural ground state. However, there has been much work
towards combating these forces in atom-cavity systems, and
several methods that drive a photonic system towards the
desired equilibrium have been proposed [37–39]. In particular,
Hafiz [40] and Kapit [6] consider this problem for fractional
quantum Hall states.

In conclusion, we have described a method by which
three-body interactions can be induced in Jaynes-Cummings-
Hubbard systems. In the presence of synthetic magnetic fields,
such interactions, i.e., strongly correlated states of light with
Pfaffian-like topological properties, will exist. This opens up
exciting possibilities for the exploration of exotic quantum
states within the cavity QED framework, including states with
non-Abelian quasiparticles pertaining to topological quantum
computing.

The authors would like to acknowledge A. D. Greentree for
helpful discussions.
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