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Coherence of interacting bosons in optical lattices in synthetic magnetic fields
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We study the behavior of interacting ultracold bosons in optical lattices in synthetic magnetic fields with wide
range of in-cell fluxes α = p/q. The problem is similar to the one of an electron moving in a tight-binding scheme
in the magnetic field and becomes difficult to tackle for a growing number of magnetic subbands, q. To overcome
this, we focus on the interplay of the width, shape, and number of the subbands on the formation of the coherent
state of cold bosons. Using the quantum rotor approach, which goes beyond the mean-field approximation, we
are able to pinpoint the elements of the band structure, which are the most significant in a proper theoretical
description of the synthetic magnetic field in a bosonic lattice system. As a result, we propose a method of
reconstruction of the Hofstadter butterfly spectrum by replacing the magnetic subbands with renormalized bands
of a square lattice. This allows us to effectively investigate the properties of the studied system for a wide range
of magnetic fluxes and their impact on the Mott-insulator–superfluid transition.
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I. INTRODUCTION

The presence of a magnetic field acting on electrons
tightly bound in a lattice leads to a complex response of the
system known as Hofstadter’s butterfly [1,2]. The energetic
spectrum splits into magnetic subbands while the precise
relation between the number of subbands and value of the
magnetic field and also the shape of the bands themselves are
nontrivial and nonmonotonic. The strength of the magnetic
field is measured by a fraction (α) of a flux through an
elementary cell to one flux quantum �0 = h/e. However, in
solid-state physics, only very small values of α can be obtained
experimentally due to the small size of interatomic distances
leading to a description of equally separated Landau levels
(e.g., in typical materials α ≈ 1 would require a magnetic
field of ∼104–105 T).

Recent developments in cooling and trapping techniques
of neutral atoms in optical lattices have led to a new field of
solid-state-like physics with ultracold gases [3,4]. Counter-
propagating laser beams are used to create a spatially periodic
pattern of variable light intensity, which due to ac Stark shift
is able to trap single atoms in their lowest energy states. Such
systems are experimental realizations of Hubbard (fermions)
or Bose-Hubbard (bosons) models allowing for precise control
of tunneling, interactions between particles, geometry of the
lattice, shape of the system, etc. For shallow trapping potential
the kinetic energy is dominant and the ground state of the
system is the superfluid (SF), characterized by a long-range
phase coherence. Increase of the interparticle interactions
drives decoherence and strong localization of atoms in lattice
sites leading to the Mott-insulating (MI) state [5].

Although the particles trapped in these systems are neutral,
they can mimic behavior of charged particles influenced by
the magnetic field. It can result from rotation of the system
due to correspondence between the Lorentz and Coriolis
forces [3]; however, reaching high (synthetic) magnetic fields
in this way is not possible. More precise control can be
achieved by modification of hopping using phonon-assisted
tunneling control [6–10] or lattice shaking [11,12], thus
directly implanting a nonvanishing phase ϕ that atoms acquire

while moving from site ri to rj in the lattice:

ϕ = 2πi

�0

∫ rj

ri

A · dl, (1)

with A being the vector potential of the synthetic magnetic
field. In this manner, high values of the magnetic field (α ∼ 1)
can be obtained with arbitrarily engineered vector potentials
A [13]. This additional phase can be related to investigations
of a magnetic frustration in systems of Josephson junction
arrays [14].

From the theoretical point of view, a description of proper-
ties of interacting atoms influenced by a strong (synthetic)
magnetic field is highly complicated due to the complex
structure of Hofstadter’s butterfly. Methods based on the
mean-field approximation are not sufficient because they
neglect the internal structure of the magnetic energy bands,
while only taking into account their total width. Furthermore,
the exact shape of the spectrum is known only for a few
rational values of α = p/q, where q = 2, 3, 6, and 8 [15,16].
For smaller values of α the spectrum could be in principle
calculated numerically, though it would require a significant
effort. To this end, in the present paper we systematically
analyze the role of the shape of magnetic subbands in the
properties of strongly interacting bosons to propose a simpler
method of reconstruction of the spectrum. Moreover, we use
the quantum rotor approach, which goes beyond the mean-field
approximation by including spatial fluctuations, thus allowing
us to properly describe influence of subtleties of magnetic
subbands. The approach has been successfully applied to
describe quantum phase transitions [17], phase transitions
in spin glasses [18], superconducting and magnetic systems
[19–21], and Josephson junction arrays [22]. It has been also
verified in systems of ultracold atoms in optical lattices by
comparison with quantum Monte Carlo calculations [23] or
experimental results, e.g., on time-of-flight patterns [24,25].
As a result, we are able to examine the influence of the
parameters of the band structure on the formation of the
coherent state.
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The remainder of the paper is organized as follows. In the
first two sections the Bose-Hubbard model and quantum rotor
approach are briefly introduced. Section III contains analysis
of the band-structure parameters—number of the bands, their
flatness, and shape—by employing two test models: Dirac-δ-
like bands and a two-band model. This leads to a method of
construction of approximated magnetic densities of states (see
Sec. IV), which is applied to investigate the phase diagram of
the system for a wide range of values of α. Finally, in Sec. V
we summarize our results.

II. MODEL

Strongly interacting bosons in optical lattices are well
described by the Bose-Hubbard model [26,27], for which the
Hamiltonian reads

Ĥ = −
∑
〈i,j〉

tij (â†
i âj + H.c.) + U

2

∑
i

n̂2
i − μ

∑
i

n̂i , (2)

where âi (â†
i ) is the bosonic annihilation (creation) operator

and n̂i is the particle number operator at the lattice site i. The
first term describes tunneling between the nearest-neighboring
sites with hopping integral tij , while the next is related to the
on-site repulsive interaction U . Finally, μ = μ + U/2, where
μ is the chemical potential, which controls the number of
bosons.

A. Method

To proceed, we write the partition function in the path-
integral formalism using the Matsubara “imaginary-time” 0 �
τ � β ≡ 1/kBT (T being temperature) technique [28]:

Z =
∫

[DaDa]e−S[a,a], (3)

where the action is defined as

S[a,a] =
∫ β

0
dτ

{
H [a(τ ),a(τ )] +

∑
i

ai(τ )
∂

∂τ
ai(τ )

}
. (4)

The Hamiltonian H is of the same form as in Eq. (2) with
operators being substituted by complex fields ai(τ ), ai(τ ) as a
consequence of the path-integral formalism in coherent-state
representation [29]. The central point of our approach is a
variable transform:

ai(τ ) = eiφi (τ )bi(τ ), (5)

which allows to isolate U(1) phase symmetry naturally present
in the Bose-Hubbard Hamiltonian in the form of phase fields
φi(τ ) [19,23,30,31] from the “rotated” bosonic amplitudes
bi(τ ) describing formation of the superfluid density. Since
in a strongly interacting bosonic system the phase transition
between superfluid and Mott-insulating states is governed by
phase ordering, we can restrict ourselves to phase fluctuations
and assume that the amplitude fields bi(τ ) = b0 + δbi(τ ) ≈ b0

following the course of treatment extensively described in
Refs. [23,25]. However, in principle, amplitude fluctuations
can also be included, which is required, e.g., for investigation
of momentum-resolved correlation functions. This leads to the
extension of the quantum rotor approach with the Bogoliubov

method [25]. The value of b0 can be obtained from minimal-
ization of the Hamiltonian H [ā(τ ),a(τ )]:

b0 =
√

tz + μ

U
, (6)

where z stands for the coordination number of the lattice.
In consequence, the action takes the form of the action of
interacting quantum rotors:

S[φ] =
∫ β

0
dτ

{
−2J

∑
〈i,j〉

cos(φj − φi)

+
∑

i

(
φ̇2

i

2U
+ i

μ

U
φ̇i

)}
, (7)

where J = tb2
0 and

Z =
∫

[Dφ]e−S[φ]. (8)

The integration over φ has to be performed carefully, satisfying
the boundary condition φi(β) − φi(0) = 2πmi with mi =
0, ± 1, ± 2, . . . . The variable transform in Eq. (5) affects
the definition of the superfluid order parameter defined as
�B = 〈ai(τ )〉, which factorizes as

�B = 〈bi(τ )〉〈eiφi (τ )〉 = b0ψB, (9)

where 〈· · · 〉 denotes statistical averaging. As a result, super-
fluidity requires not only nonzero amplitude b0, but also phase
coherence signaled by nonvanishing ψB .

Furthermore, we introduce unimodular fields ζi(τ ) = eiφi (τ )

using the following resolution of unity [25]:

1 =
∫

[DζDζ ]δ[ζ i(τ ) − e−iφi (τ )]δ[ζi(τ ) − eiφi (τ )]. (10)

The partition function can be calculated by weakening the uni-
modularity condition to be fulfilled only on average [20,32,33],

|ζi(τ )|2 = 1 ⇒ 1

N

∑
i

|ζi(τ )|2 = 1, (11)

and representing the Dirac δ with the Laplace transform δ(x) =∫
dλeλx , which introduces a Lagrange multiplier λ. As a result,

after taking the Fourier transform, the partition function reads

Z =
∫

dλ
∏
k,n

[dζ k(ωn)dζk(ωn)]eNβλ−S[ζ ,ζ], (12)

where the action

S[ζ ,ζ ] = 1

βN

∑
n,k

ζ k(ωn)�−1
λ (k,ωn)ζk(ωn), (13)

with the propagator

�−1
λ (k,ωn) = λ − Jεk + γ −1

n , (14)

where εk is a dispersion relation and ωn = 2πn/β is the
bosonic Matsubara frequency with n = 0, ± 1, ± 2, . . . . The
propagator contains the phase-phase correlator γ (τ − τ ′) =
〈eiφ(rτ )−iφ(rτ ′)〉, which is dependent on a single site only. Its
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Fourier transform in the limit of β → ∞ reads

γ −1
n = U

4

{
1 − 4

[
v

(
μ

U

)
+ i

ωn

U

]2}
, (15)

where v(x) = x − [x] − 1/2 and [x] is the floor function,
which gives the greatest integer less than or equal to x. In
the thermodynamic limit (N → ∞), the Lagrange multiplier
can be determined by the saddle-point method ∂S/∂λ|λ=λ0 = 0
with the stationary point value of λ0. This leads to the equation
of state

1 − ψ2
B = 〈ζ i(τ )ζi(τ )〉 = 1

Nβ

∑
k,n

�λ0 (k,ωn). (16)

At criticality and in the phase-ordered state (ψ2
B > 0) the

Lagrange multiplier is fixed by the condition

�−1
λ0c

(k = 0,ωn = 0) = 0 ⇒ λ0c = Jε0 − γ −1
0 , (17)

while in the disordered (Mott-insulating) phase it has to be
determined from Eq. (16) with ψB = 0. Combining Eq. (16)
with Eq. (17) and introducing density of states (DOS) of the
lattice,

ρ(x) = 1

N

∑
k

δ(x + εk), (18)

one arrives at the equation for the critical line, which at T = 0
reads

1 = 1

2

∫ ∞

−∞
dx

ρ(x)√
t
U

(
tz
U

+ μ

U

)
(x − ε0) + v2

(
μ

U

) . (19)

As a result, the shape of the energy bands given by the density
of states, ρ(x), is crucial for the critical properties of the
system. Because the shape of ρ(x) results directly from the
spatial dependence of hopping Jεk, the presented approach
is well suited to analysis of effects of lattice geometry of
other modifications of intersite tunneling on the ground state
of the Bose-Hubbard model. In contrast, methods based on the
mean-field approximation consider only the total bandwidth,
ignoring the precise form of ρ(x).

B. Synthetic magnetic field

A synthetic magnetic field can be included in the Bose-
Hubbard model by introducing the Peierls phase factor to the
hopping integral [2,15], i.e.,

tij → tij exp

(
2πi

�0

∫ rj

ri

A · dl
)

. (20)

This substitution follows from gauge invariance of the
Schrödinger equation and leads to modification of the lattice
dispersion relation εk. As a result, the presence of the magnetic
field alters the density of states of the lattice in Eq. (18) and,
consequently, the ground state of the system determined by
Eq. (19). The Peierls factor breaks the translational invariance
of the lattice. To account for that, the magnetic supercell can
be introduced, which allows the recovery of the translational

symmetry. The size of the supercell results from the chosen
gauge as well as the periodicity of the Peierls factor [1]. If
α is expressed as a rational fraction p/q, the denominator q

determines the size of the supercell, which, however, is still
dependent on the choice of the actual gauge. For example,
in the Landau gauge A = (0,Bx,0) the magnetic supercell is
rectangular, containing q × 1 cells of the original lattice. This
leads to the dispersion given by Harper’s equation [1] with
q bands, which is used to calculate the density of states in
Eq. (18). As q grows, the size of the supercell rises, making
the band structure more complex. In the following, we analyze
the influence of the properties of the band structure on the
formation of the ground state.

III. ELEMENTS OF THE MAGNETIC BAND STRUCTURE

The primary effect of a magnetic field on energy structure
is quenching of kinetic energy. This leads to a change of
the number of subbands, their flattening, and modification of
their shape. Shift of these parameters with magnetic field in
lattice systems is nonmonotonic. In order to understand the
influence it has on the ground state of the ultracold bosons,
these parameters can be studied separately in effective test
models. First, we use an infinitely flat bands scenario to study
the role of the number of bands in the regime of flat bands.
Next, we consider two bands of finite width to study the role
of changing flatness. Finally, we investigate the influence of
the internal structure of subbands on the ground state of the
system.

A. Infinitely flat bands

In weak magnetic fields (α � 1), the magnetic cell is very
large, containing a significant number of lattice sites. As a
result, the system resembles a continuous medium. Hence, we
first consider an extreme situation of infinitely flat bands with
a density of states given by Dirac δs, i.e., Landau levels. In the
case of two subbands, each band contains half of the states of
the whole system. Inserting

ρ(x) = 1

2

[
δ

(
x − xg

2

)
+ δ

(
x + xg

2

)]
(21)

into Eq. (19) we get the expression for the critical line:

1 = 1

4
∣∣v(

μ

U

)∣∣ + 1

4
√

t
U

(
tz
U

+ μ

U

)
xg + v2

(
μ

U

) , (22)

where ε0 = −xg/2 was introduced in Eq. (19) and xg is a
dimensionless parameter describing the energy gap. In a region
where 1/[4|v(μ/U )|] � 1, no solution exists, because the last
term in Eq. (22) cannot be negative. As a result, in the range
1/4 � μ/U − [μ/U ] � 3/4 only the Mott-insulator phase is
present for any value of t/U . This appears to be a general
feature resulting from the fact that the lowest band has density
of states of the form of the Dirac δ, while the size of the
Mott-insulator-only region (range in values of μ/U ) depends
on the weight of this band. For the remaining values of the
chemical potential the critical line is defined by Eq. (22). If
the number of subbands is increased to n with energy gaps
between them equal to xg/(n − 1), the critical state equation
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FIG. 1. Phase diagrams of the system with various numbers n of
equally separated infinitely flat bands. The narrowing of the Mott-
insulator region can be observed as the number of bands increases.
The diagram for a rectangular DOS serves as a limiting case of an
infinite number of infinitely flat bands (n → ∞).

takes the form

1 = 1

2n
∣∣v(

μ

U

)∣∣ +
n∑

i=2

1

2n

√
t
U

(
tz
U

+ μ

U

)
i−1
n−1xg + v2

(
μ

U

) . (23)

As the number of bands is increased, the Mott-insulator-only
region is narrowed (see Fig. 1) and given by 1/2 − 1/(2n) �
μ/U − [μ/U ] � 1/2 + 1/(2n). This is due to diminishing
influence of the lowest flat band on the entire system and
directly results from the factor 1/n in the first term of Eq. (23)
being the weight of the lowest band. In the case of a large
number of bands the phase diagram approaches that of a system
with a uniform, rectangular density of states, apart from the
infinite peaks of critical hopping t/U at the odd multiple of
μ/U = 1/2.

B. Finitely flat bands

To investigate the role of finite band flatness we consider a
hypothetical scenario of a system consisting of two bands with
rectangular density of states and widths equal to d1 and d2 for
the lower band and higher band, respectively, separated by an
energy gap xg (see Fig. 2). In this case, the integral in Eq. (19)
can be calculated exactly and the equation for the critical line
reads then

1 = 1

2d1

√
t(tz + μ)d1/U 2 + v2(μ/U ) − |v(μ/U )|

t(tz + μ)/U 2

+ 1

2d2

[√
t(tz + μ)(d1 + d2 + xg)/U 2 + v2(μ/U )

t(tz + μ)/U 2

−
√

t(tz + μ)(d1 + xg)/U 2 + v2(μ/U )

t(tz + μ)/U 2

]
. (24)

Phase diagrams for selected values of flatness of the lower
and upper bands, marked as f1 and f2, respectively, are
presented in Fig. 3. Here, the flatness is defined as a ratio of
energy gap to bandwidth, f1,2 = xg/d1,2. Through the analysis

FIG. 2. Illustration of the density of states in a two-band model of
finitely flat bands. Bandwidths d1 and d2 and gap xg can be changed
freely to investigate which of them has the most pronounced influence
on the ground state.

the total bandwidth was kept constant (d1 + xg + d2 = 1) in
order to avoid the renormalization of the hopping parameter
t , allowing for objective comparison of the obtained results.
Additionally, while changing the flatness of one of the bands,
the width of the other is set constant and equal to 0.1. In
consequence the contribution of this band remains constant.

FIG. 3. Phase diagram of superfluid–Mott-insulator transition in
the two-band model. The top plot shows changes in the shape of the
critical line when the flatness of the lower band, f1, is changed. A
substantial difference in tc/U occurs near half-integer values of the
chemical potential. In the bottom plot the impact of the flatness of the
upper band, f2, on the critical line is presented.
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Changing the flatness of the upper band, f2, has only a slight
impact on the shape of the critical line (see Fig. 3). This is due to
the fact that the upper band is poorly populated by bosons and
thus weakly influences the superfluid–Mott-insulator phase
transition. On the other hand, the lower band influences the
shape of the phase diagram substantially. For high values of
flatness f1 the phase diagram approaches the limiting behavior
of Dirac δ bands (see Sec. III A). The region of the largest
increase of the critical hopping corresponds to the MI-only
region in the Dirac δ bands model: 1/4 � μ/U − [μ/U ] �
3/4 (see Sec. III A). As f1 increases, the superfluid state is
suppressed there. This is due to the fact that bosons are not
forced by the Pauli exclusion principle to occupy multiple
bands. As a result, at low temperatures (or in the ground state)
they strongly populate the lowest energy levels. Particularly
while the particle density approaches integer values (this
occurs for half-integer values of μ/U ), the hopping energy in a
narrow, flat band is not sufficient to overcome strong repulsive
interactions between particles, and the Mott-insulating state
is reinforced. Therefore, the influence of the d1 bandwidth is
mostly pronounced for μ/U ≈ 1/2 + n.

C. Shape of the bands

In order to assess the influence of the shape of the bands
on the critical behavior of ultracold bosons in the regime of
flat bands, once again we consider the n-band model (with
equally distributed bands) similar to the one investigated in
the previous section, when n = 2. However, this time we also
study how its properties change when the rectangular density
of states is replaced by that of a square lattice. Both of the
DOS functions exhibit the same behavior around the edges of
the band (constant value); however, the square-lattice DOS has
a central van Hove singularity, which is of the same type as
noncentral van Hove singularities of the magnetic bands in the
Hofstadter spectrum. In Fig. 4, a comparison of phase diagrams
calculated with rectangular and square lattice DOS for selected
values of the lower band flatness is presented. Discrepancies
in the shape of the critical line are pronounced mostly near
half-integer values of μ/U and they are hardly affected by the
flatness of the lowest band, f1, being still of the same order
(around 9%) for a wide range of values of f1. Finally, we check
how the shape of the bands influences the phase diagram,
while the number of bands, n, is changed. It appears that,
with increasing number of bands, the discrepancies between
two DOS functions become smaller and are noticeable in
the narrower regions surrounding half-integer values of the
chemical potential (see Fig. 5).

The differences in critical hopping between the density of
states of a square lattice and the rectangular DOS result from
a different distribution of the band weight, which leads to
distinct values of DOS functions at ε0 (for rectangular DOS it
is about 1.5 times greater than for the square lattice). However,
with increasing number of bands this effect is suppressed due
to diminishing impact of the lowest band. These results are
consistent with conclusions from Sec. III A.

IV. APPROXIMATED MAGNETIC DENSITY OF STATES

In the previous section it was shown that the number of
subbands, but also, most importantly, the width of the lowest

FIG. 4. Comparison of phase diagrams of superfluid–Mott-
insulator transition in the two-band model for two different shapes
of bands (black solid line, density of states of a square lattice; blue
dashed line, rectangular density of states). From top to bottom, the
flatness f1 of the lower band increases. Although the shape of the
critical lines is affected by f1, the behavior around half-integer values
of μ/U stays roughly the same.

bands, has the most significant impact on the critical properties
of ultracold bosons in an optical lattice. While the shape
of subbands and size of energy gaps that separate them are
important, they can be in principle treated less rigorously.
However, the energy gaps are intrinsically connected with the
widths of subbands (they both sum to the total width of the
band structure) so they have to be treated on equal footing,
thus leaving the shape of the bands to be simplified. As a
result, complicated densities of states obtained from solving
Harper’s equation can be replaced by simpler, approximated
functions, where the structure of energy levels is reproduced
exactly but the shape of subbands is selected in such a way
that it mimics the original shape of the magnetic subbands,
simultaneously lowering computational cost. To this end, we
use an appropriately scaled square-lattice density of states for
each subband, since it exhibits a central van Hove singularity
of the same type as noncentral singularities in magnetic bands.

As a result, the key point of the proposed approximation
is to properly determine the energy gaps and bandwidths,
which requires solving Harper’s equation at two points of the
Brillouin zone. Then densities of states of a square lattice
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FIG. 5. Comparison of phase diagrams of the superfluid–Mott-
insulator transition in the n-band model for two different shapes of
bands (black solid line, density of states of a square lattice; blue
dashed line, rectangular density of states). With increasing number
of bands, n (top, n = 2; bottom, n = 10), the differences are less
pronounced.

are used to describe each of the subbands. As a result of
analysis from the previous section, we expect the largest
discrepancies between the approximation and exact solutions
to be located around the half-integer values of the chemical
potential. Simultaneously, the lower the magnetic field is,
the larger is the number of subbands, resulting in more
accurate approximation. To check the precision of the proposed
method, we compare it with analytical, exact densities of states
calculated for small values of α [15,16]. In Fig. 6 we present
phase diagrams for α = 1/3 and α = 1/6. It can be seen that
the method becomes more accurate as the number of bands
increases. At α = 1/6 the phase diagram obtained from a
simulated density of states is already in very good agreement
with the one obtained from the exact DOS. It is due to the fact
that, as the magnetic subbands flatten, the contribution of each
of them to the integral in Eq. (19) becomes less dependent
on their internal structure, but mostly determined by their total
weight and distance from the energy spectrum edge. Therefore,
it can be concluded that the approximation works even better
for higher values of q.

The application of the method described above allows us
to investigate the critical properties of ultracold bosons in an
optical lattice for a wide range of fluxes α, corresponding to
fractions p/q, where the denominator q is large. In Figs. 7
and 8 we present the dependence of critical hopping tc/U as a
function of magnetic flux α for selected values of the chemical
potential μ/U . For comparison, we additionally present the
behavior of the inverse of the total energy width, (�E)−1, of the
Hofstadter butterfly spectrum, which represents a mean-field
solution [34]. The shape of the critical line is determined by
the following factors. First, the critical hopping is scaled by
the total Hofstadter energy spectrum width, similarly as in the

FIG. 6. Comparison of phase diagrams obtained from analyti-
cal [16] and simulated magnetic densities of states for two magnetic
fluxes: α = 1/3 (top) and α = 1/6 (bottom). Increasing accuracy can
be observed as number of bands, q, increases.

mean-field approach. Second, flattening of the lowest band
increases the critical hopping near half-integer values of the
chemical potentials (tips of lobes) in a similar manner as in the
case of a two-band model described in the previous section.
Finally, the raising number of the bands leads to a diminishing
influence of the lowest flat band and as a result makes the tips
of the lobes more narrow. This behavior is analogous to that
of infinitely flat bands (see Fig. 1).

The number of bands, q, and the flatness of the lowest band
influence the critical hopping differently depending on the
value of chemical potential μ/U . For μ/U near integer values
(e.g., μ/U = 0.2; see Fig. 7) the behavior is simply scaled
by the total energy width of the Hofstadter butterfly and is
weakly affected by the number of bands and flatness. As μ/U

approaches half-integer values, the number of bands starts to
play an important role. As can be deduced from Sec. III A,
the growing number of bands makes the region of high tc/U

(in the vicinity of μ/U − [μ/U ] = 1/2) more narrow. We
can consider an example of flux α = 1/5, where this region is
wider than for, e.g., α = 1/10. This leads to a bigger increase
of tc in the former case than for the latter at μ/U = 0.4 (see
Fig. 8). When μ/U is exactly a half integer, the values of tc/U

belong to the region of strong MI enhancement (analogous to
the MI-only region in Sec. III A), independently of the number
of bands. This leads to the effect of the increase of critical
hopping with flattening of the bands.

V. SUMMARY

The system of ultracold bosons in optical lattices in
a synthetic magnetic field has been studied using the
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FIG. 7. Top: Dependence of the inverse of total energy width
of the Hofstadter butterfly spectrum on the magnetic flux. Bottom:
Dependence of critical hopping on magnetic flux for μ = 0.2.
Each circle corresponds to a separate value of α = p/q with q

up to 13. Reconstructed DOS were used except for q = 2,3,4 for
which analytical results are easily obtainable. Solid circles indicate
characteristic points in the Hofstadter butterfly spectrum. Diamonds
correspond to values of α = 1/5, 1/10 considered in the text. The
lines connecting points are only guides indicating the order of
considered discrete values of α.

Bose-Hubbard model. The artificial gauge fields have been
introduced by Peierls substitution, which affects hopping
of atoms. Using the quantum rotors approach the ground
state of the system has been determined. The method used
includes spatial correlations, which yield the calculated critical
line to be not only dependent on the total width of the
magnetic bands and the number of the nearest neighbors,
but also on subtleties of the complicated structure of the
Hofstadter butterfly spectrum. In this sense, the approach
goes beyond the mean-field approximation (for details, see
Ref. [35]) and allows for analysis of the influence of the
shape of the magnetic band structure on the critical properties
of the system. The number of bands and the flatness of the
lowest bands (being ratios between bandwidths and energy
gaps that separate them) have been found as the most crucial
elements that affect the formation of the coherent state. This
has led to a method of substitution of complicated magnetic

FIG. 8. Dependence of critical hopping on magnetic flux for μ =
0.4 (top) and μ = 0.5 (bottom), depicting non-mean-field behavior.
Symbols are used in the same manner as in Fig. 7.

densities of states for fluxes α = p/q with large q, which are
difficult to be calculated [36], by simpler, approximated form,
which still captures the essential physics of the system. This
allowed us to determine and explain the phase diagram of the
Bose-Hubbard model in a synthetic magnetic field for a wide
range of magnetic fluxes. It should be also noted that strong
uniform artificial magnetic fields (α = 1/2) have already been
realized in ultracold atomic systems in optical lattices [10].
Parameters of the Bose-Hubbard model t/U can be estimated
using typical experimental quantities from the formula t/U =
λl exp(−2

√
V0/ER)/(

√
2πas) (where V0 is the potential depth,

ER is the recoil energy, λl is the laser light wavelength, and
as is the scattering length) [37]. Finally, in the experimental
setups, apart from the periodic landscape of the optical
lattice, additional trapping potentials are usually introduced.
As a result, systems lose their translational symmetry. The
quantum rotor approach used in the present paper requires
spatial homogeneity and the infinitely large lattice to work
(thermodynamic limit). However, an external trap leads to
a spatial change of the chemical potential. Results of the
quantum rotor approach can be averaged over that range of
the chemical potential to accommodate the presence of the
trap, as in Ref. [25].
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