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Fermi polaron in a one-dimensional quasiperiodic optical lattice:
The simplest many-body localization challenge
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We theoretically investigate the behavior of a moving impurity immersed in a sea of fermionic atoms that are
confined in a quasiperiodic (bichromatic) optical lattice within a standard variational approach. We consider both
repulsive and attractive contact interactions for such a simple many-body localization problem of Fermi polarons.
The variational approach enables us to access relatively large systems and therefore may be used to understand
many-body localization in the thermodynamic limit. The energy and wave function of the polaron states are
found to be strongly affected by the quasirandom lattice potential and their experimental measurements (i.e.,
via radio-frequency spectroscopy or quantum gas microscope) therefore provide a sensitive way to underpin the
localization transition. We determine a phase diagram by calculating two critical quasirandom disorder strengths,
which correspond to the onset of the localization of the ground-state polaron state and the many-body localization
of all polaron states, respectively. Our predicted phase diagram could be straightforwardly examined in current
cold-atom experiments.
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I. INTRODUCTION

Anderson localization of interacting disordered systems—a
phenomenon referred to as many-body localization (MBL)—
has received intense attention over the past few years [1,2].
Earlier studies focus on condensed matter systems, where a
uniformly distributed white-noise disorder potential is often
adopted to carry out perturbative analyses in the presence of
weak interactions [3,4] or numerical simulations with strong
interactions [5–8]. Recent experimental advances in ultracold
atoms provide a new paradigm to explore MBL [9,10]. In these
experiments, a quasiperiodic bichromatic optical lattice has
been used, leading to a quasirandom disorder potential [11,12].
The interatomic interaction and dimensionality of the system
can be tuned at will, with unprecedented accuracy [13].

It is well known that Anderson localization occurs not only
in the ground state of the system but also in highly excited
states [15]. In the presence of interactions, this fundamental
feature makes both theoretical and experimental investiga-
tions of MBL extremely challenging [1,2]. To understand
the localization of highly excited states, most theoretical
studies of interacting disorder systems rely on the full exact
diagonalization of the model Hamiltonian and therefore the
size of the system is severely restricted [5,6,8,14]. On the
other hand, in the recent two cold-atom experiments, only
the localization of a particular type of (excited) states, i.e., a
charge density wave state, has been examined [9,10].

In this work, motivated by those rapid experimental
advances, we propose to experimentally explore (arguably) the
simplest case of MBL: a moving impurity immersed in a sea
of noninteracting fermionic atoms. The latter is subjected to a
one-dimensional (1D) quasiperiodic optical lattice [11] and ex-
periences Anderson localization when the disorder strength is
sufficiently strong [12]. There is a contact interaction between
impurity and fermionic atoms. The motion of impurity—
or, more precisely, a Fermi polaron [16–20]—is therefore
affected by the localization properties of fermionic atoms. The
proposed system has several advantages to address the MBL

phenomenon. Experimentally, it seems easier to measure a
Fermi polaron. Its energy might be determined by using radio-
frequency spectroscopy [18] while its wave function might be
identified from the in situ density profile through the recently
developed quantum gas microscope for fermionic atoms
[21–23]. Theoretically, we have well-controlled approxima-
tions to handle the Fermi polaron problem [16], even in the
limit of very strong interactions [17,24], which make it feasible
to access large systems as those experimentally explored.
Therefore, we may underpin a phase diagram of MBL in the
thermodynamic limit.

Our main result is briefly summarized in Fig. 1. We
determine two critical quasirandom disorder strengths within
a variational approach by taking into account the dominant
single particle-hole excitation above the Fermi sea [16]. The
first critical field (circles with solid line) corresponds to the
onset of the Anderson localization of the ground-state polaron
state. While at the second critical field (empty squares with
dashed line), all polaron states become localized. This gives
rise to a complete MBL phase diagram of Fermi polarons. It
is amazing that even the interaction experienced by a single
impurity can dramatically lead to the appearance of MBL. Our
predicted phase diagram could be easily examined in current
cold-atom experiments [9,10].

II. MODEL HAMILTONIAN AND
VARIATIONAL APPROACH

A moving Fermi polaron in a 1D quasidisordered lattice of
length L can be described by the model Hamiltonian [9,10],

H =
L−1∑
n=0

[(−tcĉ
†
nĉn+1 + H.c.) + (−td d̂

†
nd̂n+1 + H.c.)

+Uĉ†nĉnd̂
†
nd̂n + V0 cos(2πnβ + θ )ĉ†nĉn], (1)

where ĉn and d̂n are the annihilation field operators for
fermionic atoms and impurity, respectively. For atoms, we
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FIG. 1. Phase diagram of a fermionic polaron in quasirandom
lattice potentials. The full circles with solid line show the threshold
of entering a localized state for the ground-state polaron. The empty
squares with dashed line give the critical disorder strength, above
which all polaron states become localized. The error bars indicate
the estimated uncertainty. The system has an unpure many-body
energy spectrum in the shaded area, i.e., extended polaron states
can coexist with localized polaron states. The average filling factor
of fermionic atoms is 〈n̂〉 = 1/2. The critical disorder strength V0,c

and the interaction strength U are measured in units of tc = t .

consider the half-filling case that corresponds to a chemical
potential μ = 0. In contrast, there is only one impurity which
creates a single Fermi polaron. tc and td are the hopping
amplitudes and, without loss of generality, we take equal mass
for atoms and impurity and hence td = tc = t . The effect of an
unequal mass on the many-body localization is examined in
Appendix. We use a periodic boundary condition, which means
ĉL = ĉ0 and d̂L = d̂0. For single-component fermionic atoms,
the interatomic interaction is of p-wave characteristic and is
generally very weak. Thus, we assume an s-wave interaction
between fermionic atoms and the impurity only, with the inter-
action strength U being either repulsive (U > 0) or attractive
(U < 0). The last term with the potential V0 cos(2πβn + θ )
in the Hamiltonian describes the quasiperiodic superlattice
experienced by fermionic atoms [9,10]. We assume that the
impurity does not feel the quasiperiodic potential and, without
the impurity-atom interaction, can move freely through the
lattice. In the presence of the interaction, the motion of
impurity or Fermi polaron therefore provides a sensitive probe
of the underlying localization properties of the Fermi sea
background.

In the quasidisorder potential, the irrational number β and
phase offset θ are determined by the experimental bichromatic
lattice setup [9,10]. However, from a theoretical point of
view, their detailed values are irrelevant [25]. Hereafter, for
definiteness we take β = (

√
5 − 1)/2, the inverse of the golden

mean, and θ = 0, unless specifically noted. To increase the
numerical stability, we further approximate β as the limit of a
continued fraction, β � Fl−1/Fl [26], where Fl are Fibonacci
numbers (i.e., F0 = F1 = 1 and Fl+1 = Fl + Fl−1) and l is a
sufficiently large integer. We minimize the finite-size effect by
taking the length of the lattice L = Fl [26].

In the absence of the impurity or the interaction, the model
Hamiltonian reduces to the well-known Aubry-André-Harper
(AAH) model [11,12]. Fermionic atoms experience Anderson
localization at the critical point V (0)

c = 2t , at which all the
single-particle states of atoms are multifractal [25]. If V0 <

V (0)
c , then all the states are extended. Otherwise (V0 > V (0)

c ), all
the states are exponentially localized [12]. Here, we address the
problem of how the behavior of the Fermi polaron is affected
by the localization properties of fermionic atoms, due to the
impurity-atom interaction.

A. Variational approach with one particle-hole excitation

To solve the Fermi polaron problem, we use the standard
variational approach within the approximation of consider-
ing only a single particle-hole excitation, as proposed by
Chevy [16]. This approach is known to provide an accurate
zero-temperature description of the equation of state and of the
dynamics of the system in a reasonably long time scale [20,24].
Let us consider a Fermi sea of fermionic atoms, occupied
up to the chemical potential μ = 0 (i.e., at half-filling with
〈n̂〉 = ∑

n 〈ĉ†nĉn〉 = 1/2):

|FS〉 =
∏
Eη<0

ĉ†η|vac〉, (2)

where Eη is the energy level of the AAH model for fermionic
atoms in the quasirandom lattice and ĉη is the corresponding
field operator. The level index η of single-particle states runs
from 0 to ηF − 1, where ηF is the first energy level that satisfies
EηF

> 0, and, finally, to L − 1. For a large lattice size L � 1,
we would have ηF � L/2. For the numerical convenience, we
shall always take

ηF = L

2
. (3)

By slightly generalizing Chevy’s variational ansatz [16], a
Fermi polaron in disordered potentials can be described by the
following approximate many-body wave function:

|P 〉 =
∑

n

znd̂
†
n|FS〉 +

∑
n,ηh,ηp

αn(ηh,ηp)d̂†
nĉ

†
ηp

ĉηh
|FS〉, (4)

where zn corresponds to the residue of the polaron at each
lattice site n ∈ [0,L − 1]. The second term with amplitude
αn(ηh,ηp) describes the single particle-hole excitation, for
which the level index ηh (for hole excitation) and ηp (for
particle excitation) satisfy

0 � ηh � ηF − 1 < ηp � L − 1. (5)

We note that, in the absence of the quasirandom lattice,
momentum is a good quantum number and the level index
η will then simply be replaced by momentum. In that case,
we can use momentum conservation to greatly simplify the
wave function so the amplitude αn(ηh,ηp) depends only on a
momentum difference and Chevy’s variational ansatz is then
recovered [16]. The loss of periodicity means that we may
have to restrict the length of the system L to a reasonably large
value.
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TABLE I. The length of the system L = Fl and the dimension of
the polaron Hilbert space D considered in our numerical calculations.

l 6 7 8 9 10 11

L = Fl 13 21 34 55 89 144
D 549 2315 9826 41 593 176 242 746 496

B. The dimension of the polaron Hilbert space

Let us now count how many states are there in the polaron
variational wave function. The site index n takes L values, ηh

runs from 0 to ηF − 1, and, finally, ηp takes L − ηF values.
This means that we should have a Hilbert space with dimension

D = L[1 + ηF (L − ηF )] � L3

4
, (6)

where we have used ηF = L/2. Thus, we obtain, with
increasing l,Dl=6 � 549,Dl=7 � 2315,Dl=8 � 9826,Dl=9 �
41 593,Dl=10 � 176 242, and Dl=11 � 746 496, as listed in
Table I.

C. Diagonalization solution of polaron states

A direct and convenient way to solve the variational
parameters zn and αn(ηh,ηp) is to diagonalize the model
Hamiltonian Eq. (1) in the Hilbert space expanded by the
states, |i〉 = d

†
n|FS〉 or |i〉 = d

†
nc

†
ηp

cηh
|FS〉, where the index

i (or j used later) runs from 1 to D. Thus, we obtain the
following three kinds of matrix elements Hij :

〈FS|dnHd
†
n′ |FS〉 = δnn′

⎡
⎣EFS + U

∑
Eη<0

|uηn|2
⎤
⎦ − tδn±1,n′ ,

(7)

〈FS|dnHd
†
n′c

†
η′

p
cη′

h
|FS〉 = Uδnn′uη′

pn(uη′
hn

)∗, (8)

and

〈FS|c†ηh
cηp

dnHd
†
n′c

†
η′

p
cη′

h
|FS〉

=
⎡
⎣δnn′

⎛
⎝Eηp

− Eηh
+ EFS + U

∑
Eη<0

|uηn|2
⎞
⎠ − tδn±1,n′

⎤
⎦

× δηpη′
p
δηhη

′
h
+ Uδnn′ [δηhη

′
h
(uηpn)∗uη′

pn− δηpη′
p
uηhn(uη′

hn
)∗].

(9)

In the above expressions,

EFS ≡
∑
Eη<0

Eη (10)

is the energy of the Fermi sea of fermionic atoms and uηn is the
wave function of the single-particle state η of atoms, obtained
by solving the AAH Hamiltonian, i.e.,

ĉn =
∑

η

uηnĉη. (11)

By appropriately arranging the order of the variational states,
the matrix element Hij can be easily calculated. The resulting
large and sparse matrix can be partially or fully diagonalized
by using standard numerical subroutines, leading directly to
zn and αn(ηh,ηp) of the ground state and excited states of the
polaron.

D. Variational minimization of the ground-state polaron state

Alternatively, for the ground state of the polaron, we may
determine zn and αn(ηh,ηp) by minimizing 〈P |H|P 〉 [16],
under the normalization condition,∑

n

z2
n +

∑
n,ηh,ηp

α2
n(ηh,ηp) = 1. (12)

By taking some straightforward calculations, it is easy to obtain
that

〈P |H|P 〉 = −2t
∑

n

znzn+1 +
∑

n

z2
n

⎛
⎝EFS + U

∑
Eη<0

|uηn|2
⎞
⎠ − 2t

∑
n,ηh,ηp

αn(ηh,ηp)αn+1(ηh,ηp)

+
∑

n,ηh,ηp

znαn(ηh,ηp)

⎛
⎝Eηp

− Eηh
+ EFS + U

∑
Eη<0

∣∣uηn

∣∣2

⎞
⎠ + 2U

∑
n,ηh,ηp

znαn(ηh,ηp)uηhnuηpn

+U
∑

n,ηh,ηp,η′
p

αn(ηh,ηp)αn(ηh,η
′
p)uηpnuη′

pn − U
∑

n,ηh,ηp,η′
h

αn(ηh,ηp)αn(η′
h,ηp)uηhnuη′

hn
, (13)

where we have used the fact that the coefficients uηn are real. The minimization of 〈P |H|P 〉 then leads to the following two
coupled equations [16]:

0 = −t(zn−1 + zn+1) +
⎛
⎝EFS + U

∑
Eη<0

|uηn|2 − λ

⎞
⎠zn + U

∑
ηh,ηp

αn(ηh,ηp)uηhnuηpn (14)

and

0 = znUuηhnuηpn + αn(ηh,ηp)

⎛
⎝Eηp

− Eηh
+ EFS + U

∑
Eη<0

|uηn|2 − λ

⎞
⎠

− t[αn−1(ηh,ηp) + αn+1(ηh,ηp)] + U
∑
η′

p

αn(ηh,η
′
p)uηpnuη′

pn − U
∑
η′

h

αn(η′
h,ηp)uηhnuη′

hn
. (15)
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Here, λ is a multiplier used to remove the normalization
constraint for the variational parameters. In the limit of weak
interactions, |U | � t , we may use the above coupled equations
to have a perturbative solution for zn and αn(ηh,ηp).

E. Properties of a polaron state

The total residue of a polaron state is given by [16],

Z =
∑

n

z2
n. (16)

It seems reasonable to define a (normalized) wave function for
a Fermi polaron,

ψn = zn√
Z

. (17)

Moreover, the energy of the polaron E can be written in relative
to its noninteracting counterpart,

EP = E − EFS − E(0)
imp, (18)

where E(0)
imp = −2td = −2t is the lowest energy level of the

impurity with the HamiltonianH(0)
d = ∑

n(−tdd
†
ndn+1 + H.c.).

By considering the scaling behavior of EP and its effective
wave function ψn, as a function of the rational index l,
we may determine the localization property of the Fermi
polaron [25].

To characterize the localization transition of the ground-
state polaron, it is convenient to use the inverse participation
ratio (IPR), defined by

αIPR =
L−1∑
n=0

|ψn|4. (19)

For an extended state, we anticipate αIPR ∼ 1/L, while for a
localized state, αIPR converges to a finite value at the order of
O(1). Near the localization transition point, with increasing
disorder strength, a sharp increase would appear in αIPR.

The IPR is not a sensitive indicator for determining the
localization properties of excited polaron states or MBL. In
this case, the system size L is not allowed to take large values
since the information of all excited states is needed. As a result,
one can hardly carry out the scaling analysis of all excited states
by increasing the rational index l. It turns out to be more useful
to consider the statistics of the many-body energy spectrum, as
suggested by Oganesyan and Huse [5]. That is, the energy level
spacing of the many-body system has different probability
distribution across the MBL transition. Numerically, we may
calculate the dimensionless ratio between the smallest and
largest adjacent energy gaps [5,8],

0 � rn = min {δn,δn−1}
max {δn,δn−1} � 1, (20)

where δn = En − En−1 � 0 and {En} is the ascending ordered
list of the many-body energy levels. In the extended phase, the
ratio satisfies a Wigner-Dyson distribution (for the Gaussian
orthogonal ensemble, GOE) and the averaged ratio is

〈rn〉WD � 0.536. (21)

While in the MBL phase, the ratio follows a Poisson distribu-
tion PP (r) = 2/(1 + r)2, with an averaged ratio,

〈rn〉P = 2 ln 2 − 1 � 0.386. (22)

III. RESULTS AND DISCUSSIONS

A. The ground-state polaron

Figure 2 reports the energy of the ground-state polaron at
an intermediate onsite interaction strength |U | = 2t for the
system length up to L = 144. Both the energy of repulsive
and attractive polarons decreases with increasing quasirandom
disorder strength. However, the length dependence of the
polaron energy is very different for weak and strong disorder.
In the former case, the finite-size effect is pronounced.
Numerically, we find that the finite-size correction to energy
is approximately proportional to 1/L, as shown in the inset at
the disorder strength V0 = t , with a coefficient that depends
on the parity of the length. Thus, the polaron energy approach
its thermodynamic limit from above or below for even or odd
system length, respectively. In contrast, at strong disorder (i.e.,
V0 > 2t), the polaron energy essentially does not depend on
the length.

FIG. 2. The ground-state energy of repulsive (a) and attractive
polarons (b) as a function of the disorder strength, at the interaction
strength |U | = 2t . In (a), we check the dependence of the polaron
energy on the length of the system. The inset shows the 1/L

dependence of the polaron energy at a weak disorder strength V0 = t .
By extrapolating to 1/L = 0, we obtain EP (V0 = t) � 0.744t in the
thermodynamic limit. In contrast, in the localized phase, the length
dependence is extremely weak. The average filling factor of fermionic
atoms is 〈n̂〉 = 1/2. EP and V0 are measured in units of tc = t .
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FIG. 3. The residue of repulsive (thick solid line, dashed line, and
circles) and attractive polarons (thin solid line) as a function of the
disorder strength, at the interaction strength |U | = 2t . We take an
average filling factor of fermionic atoms 〈n̂〉 = 1/2. V0 is measured
in units of tc = t .

The residue of the ground-state polaron similarly shows
different length dependence at weak and strong disorder, as
illustrated in Fig. 3. Furthermore, it is interesting that the
behavior of the residue is also affected by the sign of the
impurity-atom interaction. While the residues of both repulsive
and attractive polarons initially decrease with increasing
disorder strength, beyond a threshold V0,c ∼ 2t , the residue of
the repulsive polaron saturates to unity and that of the attractive
polaron continues to decrease. Therefore, for a repulsive
polaron, the impurity will finally be isolated by strong disorder.
In contrast, for an attractive polaron, the impurity will bind
more tightly with surrounding fermionic atoms in the strong-
disorder limit. In other words, the formation of a molecule is
favored at strong disorder.

B. Localization of the ground-state polaron

The different finite-size dependence of the polaron energy
and residue at weak and strong disorder indicates that there is
a localization transition of the ground-state polaron, which we
now characterize quantitatively by using the IPR.

Figure 4 presents the disorder dependence of αIPR of
repulsive and attractive polarons at the interaction strength
|U | = 2t . As anticipated, there is a sharp increase at about
V0 ∼ 2t . We then identify V0,c as the inflection point of the
calculated curve αIPR(V0) [26], as indicated by the circle
symbol. We have checked that the threshold V0,c is independent
on the choice of the phase offset θ . With increasing disorder
strength across V0,c, the wave function of polaron (impurity)
must change from extended to exponentially localized. To see
this, we show in the inset the wave function of an attractive
polaron in the extended phase (V0 = t) and of a repulsive
polaron in the localized phase (V0 = 3t). We emphasize that
the observed localization of the polaron wave function is
induced by the impurity-atom interaction, since the impurity
itself does not experience the quasidisorder disorder potential.
By repeating the calculation of αIPR for different interaction

FIG. 4. The inverse participation ratio of repulsive (solid line)
and attractive polarons (dashed line) as a function of the disorder
strength at the interaction strength |U | = 2t . The circles indicate the
inflection point of the curve (i.e., the threshold for the localization of
the ground-state polaron). The inset shows the wave function of the
ground-state polaron ψi at θ = 2π/5. The other parameters are the
same as in Fig. 3. V0 is measured in units of tc = t .

strengths, we determine the phase boundary for the localization
of the ground-state polaron, as shown in the phase diagram
Fig. 1 by solid circles.

C. Many-body localization of all polaron states

We now turn to consider the MBL of all polaron states
by computing the averaged ratio of adjacent energy levels.
At this point, it is important to note that, strictly speaking,
Chevy’s ansatz [Eq. (4)] takes into account single particle-hole
excitation only and therefore is not anticipated to provide an
accurate description for high-lying excited states of the system.
How can we use Chevy’s ansatz to describe the high-lying
states? Here, the crucial point is that the actual Hilbert space
of the system is much larger than what we have considered (see
Table I). There are different types of many-body states and we
may classify them according to the number of particle-hole
excitations. Here we are only interested in a particular set of
excited states, in which the single particle-hole excitation has
the largest weight. Thus, these states are well described by
Chevy’s ansatz. Certainly, this set of excited states is a very
small portion of all the many-body states, distributed over the
whole energy spectrum. However, the understanding of the
MBL phenomenon of this particular set of polaron states may
provide us useful information on the MBL of all many-body
states.

In Fig. 5, we show the averaged ratio 〈rn〉 at the interaction
strengths |U | = 2t (a) and U = 5t (b) as a function of the
disorder strength. For any interaction strength, the disorder
dependence of the ratio is similar: At very weak disorder
the ratio approximately takes the value 〈rn〉P � 0.386 (i.e.,
the phase I), at some intermediate disorder strengths the
ratio increases to about 〈rn〉WD � 0.536 (the phase II), and
at strong disorder the ratio crosses over to 〈rn〉P again (the
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FIG. 5. The averaged ratio of adjacent energy gaps as a function
of the disorder strength for three values of the interaction strength
|U | = 2t (a) and U = 5t (b). The average 〈rn〉 was calculated over
the central half of the spectrum, averaging over 20–200 quasirandom
disorder realizations by choosing randomly the phase offset θ . In
(a), we check that the average ratio is independent on the sign of
the interaction strength. In (b), we show the length dependence of
the average ratio. The arrows indicate the estimated critical disorder
strength (see text), at which the many-body localization of all polaron
states occurs. The two thin dot-dashed lines show the average ratio for
the Wigner-Dyson distribution (〈rn〉WD � 0.536) and for the Poisson
distribution (〈rn〉P � 0.386). V0 is measured in units of tc = t .

phase III). The area of the phase I shrinks quickly by increasing
the absolute value of the interaction strength.

The existence of the phase I can be easily understood
from the clean limit, where the system becomes integrable
(or exactly solvable by Bethe ansatz) [27,28] and thus loses
its ability to thermalize. The Poisson distribution can be
understood as a result of the localization of the system in
momentum space. Away from the integrable limit td = tc, the
phase I ceases to exist (see Appendix). In contrast, in phase III
at strong disorder, the system becomes localized in real space.
In between, the system has extended wave functions in real
space and has the ability to reach thermal equilibrium against
perturbations.

It is readily seen from Fig. 5(a) that the averaged ratio
and hence the MBL do not depend on the sign of the
impurity-atom interaction. The same sign independence has
been experimentally observed for the localization of a charge-
density-wave state [9]. On the other hand, the averaged ratio
depends on the length of the system, as explicitly shown in
Fig. 5(b) for U = 5t . A larger system have more Poisson-like
statistics than a smaller one for strong disorder in the apparent

localized regime, i.e., V0 > 3t [5]. The size dependence of the
ratio, however, becomes weak for a relatively large L. In our
calculations, we thus estimate the critical disorder strength of
MBL by using the criterion [5,8,14]

〈rn〉L=21(V0,c) = 0.41. (23)

This criterion is inspired by the previous studies in the
disordered spin-chain model [5,14] and disordered Hubbard
model [8], where the crossing point of the data curves at
different system size was found to locate near the localization
phase, with a typical averaged ratio 〈rn〉 ∼ 0.4. The uncertainty
of our estimation, δV0,c, can be similarly determined using
the condition, 〈rn〉L=21(V0,c − δV0,c) = 0.43. In the figure, the
critical disorder strength determined in this manner has been
indicated by the arrow. By repeating the same calculation
for different interaction strengths, we obtain the MBL critical
disorder strength, as reported in the phase diagram Fig. 1 by
empty squares.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have investigated the many-body lo-
calization phenomenon in the simplest cold-atom setup: a
Fermi polaron in quasirandom optical lattices, where the
localization is induced by the impurity-atom interaction. The
use of Chevy’s variational approach enables us to access
relatively large samples and therefore we have approximately
determined a phase diagram of many-body localization in
the thermodynamic limit. The localization of the ground-state
polaron has also been studied in greater detail. While at weak
disorder both attractive and repulsive polarons in the ground
state behave similarly, at strong disorder the impurity in an
attractive polaron binds with atoms to form a molecule and
the impurity in a repulsive polaron is isolated from atoms. We
note that both the energy and wave function of the ground-
state polaron can be experimentally determined by using
radio-frequency spectroscopy and quantum gas microscope,
respectively. The ground-state localization can therefore be
directly observed.

Our variational ansatz can be easily generalized to take into
account the effect of the external harmonic trapping potential
in real experiments. Moreover, to improve the quality of the
ansatz, we may also consider two particle-hole excitations and
use the ansatz

|P 2〉 =
⎡
⎣∑

n

znd
†
n +

∑
n,ηh,ηp

αn(ηh,ηp)d̂†
nĉ

†
ηp

ĉηh

+
∑

n,ηh1,ηh2,ηp1,ηp2

αn(ηh1,ηh2,ηp1,ηp2)d̂†
nĉ

†
ηp2

ĉ†ηp1
ĉηh2 ĉηh1

⎤
⎦

× |FS〉. (24)

The number of possible states in the enlarged Hilbert space
is about L5/64. Therefore, we have Dl=6 � 5,801,Dl=7 �
63,814, and Dl=8 � 709,928. We may address the polaron
problem with improved accuracy for l up to 8 and L = Fl up
to 34.
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APPENDIX: MANY-BODY LOCALIZATION AT tc �= td

In this Appendix, we examine the averaged ratio of adjacent
energy gaps for different unequal mass ratios between atom
and impurity (i.e., td < tc = t). In those cases, the clean
limit is no longer integrable. As a result, as the disorder
strength decreases to zero, the averaged ratio is anticipated
to approach 〈rn〉WD � 0.536 (instead of 〈rn〉P � 0.386). As
shown in Fig. 6, with tuning the mass ratio away from the
integrable limit td = tc, the average ratio at small disorder
strength increases to ∼ 0.5 ∼ 〈rn〉WD.

FIG. 6. The averaged ratio of adjacent energy gaps 〈rn〉 as a
function of the disorder strength for three values of the mass ratio
between atom and impurity at U = 2t and L = 21. 〈rn〉 was calculated
by averaging over 100 quasirandom disorder realizations for the
central half of the spectrum. The thin dot-dashed line shows the
average ratio 〈rn〉WD � 0.536 or 〈rn〉P � 0.386. The disorder strength
V0 is measured in units of tc = t .
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