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Monotonic convergent quantum optimal control method with exact equality constraints
on the optimized control fields
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We present a monotonic convergent quantum optimal control method that can be utilized to optimize the
control field while exactly enforcing multiple equality constraints for steering quantum systems from an initial
state towards desired quantum states. For illustration, special consideration is given to finding optimal control
fields with (i) exact zero area and (ii) exact zero area along with constant pulse fluence. The method combined
with these two types of constraints is successfully employed to maximize the state-to-state transition probability
in a model vibrating diatomic molecule.
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I. INTRODUCTION

Control over the time evolution of quantum systems towards
desired quantum states with tailored control fields has moti-
vated extensive experimental and theoretical studies [1–6],
ranging from the control of chemical reactions [7–11] and the
performance of gate transformation in quantum information
systems [12] to the control in nanostructures [13] and more.
While analytically accessible only in highly specialized cases
[14], quantum optimal control theory (QOCT) has become
a powerful tool for designing optimal control fields that
can maximize the control objective [15–20]. The subject of
finding reasonable control fields subject to various constraints
governed by partial differential equations while maintaining
monotonic convergence of the optimization algorithms is
among the most challenging problems at the frontier of
quantum control research [21–28]. In a recent study [29],
we proposed a gradient-based frequency domain quantum
optimal control method to optimize the spectral field of
laser pulses subject to multiple external constraints. For the
present work, we generalize this method to the time domain
to directly optimize the temporal control fields while taking
into account multiple equality constraints. As illustrations, the
method will be performed to find optimal control fields with
(i) exact zero area and (ii) exact zero area while keeping
pulse fluence constant. The time-integrated zero-area-field
constraint for a freely propagating electromagnetic pulse is an
important property for exploring coherent interaction of light
with matter [30–33] and is required as a fundamental condition
for satisfying the Maxwell’s equations [27]. There have been
only limited attempts to take into account such constraint in
the contexts of local control theory (LCT) and QOCT [27,34].
However, these previously proposed LCT- and QOCT-based
methods in principle do not exactly reduce the field area to
zero and, as a result, an additional filtering process is required
to accurately render a zero-area field. The constant fluence
constraint on the optimized control field has been considered
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in our previous work by fixing the spectral amplitude of the
control unchanged [29]. Here we will apply this requirement
to the full control field in the time domain. In addition, the
present method can directly include these desired constraints
into optimizations and guarantee monotonic convergence of
the algorithm, which is fundamentally different from the brute
force strategy by applying the constraints after each iteration
[16].

II. THEORETICAL METHODS

We consider a closed N -level quantum system
|0〉, . . . ,|N − 1〉 governed by the time-dependent Hamiltonian
H (t) = H0 − μE(t), where H0 is the field-free Hamiltonian
with eigenenergies {En}, μ the dipole operator, and E(t) the
control field of a finite pulse length T . The objective is to
identify an optimal control field that maximizes the transition
probability Pi→f for population transfer from an initial state
|i〉 to a specified final state |f 〉 at the final time T . The
time-dependent evolution of the quantum system is described
by the wave function ψ(t) = U (t,0)ψ(0), where U (t,0) is
the corresponding unitary evolution matrix governed by the
time-dependent Schrödinger equation

i�
∂U (t,0)

∂t
= H (t)U (t,0), U (0,0) ≡ I, (1)

and ψ(0) is the state of the quantum system at the initial time
t = 0.

In the present method, the local gradient-based algorithm
utilized to optimize the control field is a variant of D-MORPH
[35,36], in which the control field E(t) is parametrized by
s � 0 with E(s,t) morphing from E(0,t) at s = 0 in steps
s → s + ds, i.e., E(s,t) → E(s + ds,t). Without considering
any constraints on the control field, maximizing Pi→f entails
satisfying the monotonic convergence condition [37]

g0(s) ≡ dPi→f [E(s,·)]
ds

=
∫ T

0

δPi→f [E(s,·)]
δE(s,t)

∂E(s,t)

∂s
dt � 0. (2)
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A monotonic increase in Pi→f can be ensured by integrating
the first-order differential equation

∂E(s,t)

∂s
= δPi→f [E(s,·)]

δE(s,t)
, s > 0. (3)

The unconstrained D-MORPH algorithm in Eq. (3) can be
generalized to include a set of exact equality constraints on the
control fields

hm[E(s,·)] = Cm, m = 1,2, . . . ,M, (4)

where C1, . . . ,CM are specified constants and M (� 1) is the
number of constraints, and thus ∂E(s,t)/∂s is expanded to
incorporate the conditions

gm(s) ≡ dhm[E(s,·)]
ds

=
∫ T

0

δhm[E(s,·)]
δE(s,t)

∂E(s,t)

∂s
dt = 0,

m = 1,2, . . . ,M, (5)

which is a manifestation of the equality constraints given in
Eq. (4).

The condition (2) is satisfied when ∂E(s,t)/∂s is propor-
tional to the derivative δPi→f [E(·)]/δE(t) [35,37,38], while
the conditions (5) are satisfied when ∂E(s,t)/∂s is orthogonal
to all of the derivatives δhm/δE . The combined conditions
(2) and (5) can be fulfilled by expressing ∂E(s,t)/∂s, in a
projection operator formulation, as

∂E(s,t)

∂s
= S(t)

{
g0(s)

M∑
�=0

[�−1]0�Pc�(s,t) + (1 − P)β(s,t)

}
,

(6)

where S(t) � 0 is the pulse profile that smoothly switches
the control field on and off, β(s,t) is an arbitrary function,
implying that there exist multiple solutions to Eqs. (2) and (5),
and the coefficients c�(s,t) are defined as

c�(s,t) =
{ δPi→f [E(s,t)]

δE(s,t) , � = 0
δh�[E(s,t)]

δE(s,t) , � = 1, . . . ,M.

(7a)

(7b)

The (M + 1)-dimensional symmetric square matrix � in
Eq. (6) is composed of elements

���′ =
∫ T

0
S(t)c�(s,t)c�′(s,t)dt. (8)

Here the matrix � is assumed to invertible (i.e., full rank). For
large values of M , regularization may be needed to compute
the corresponding inverse matrix �−1 [39]. The action of
the projection operator P on an arbitrary function α(s,t) is
given by

Pα(s,t)≡
∫ T

0
S(t ′)

(
M∑

k,k′=0

ck(s,t)[�−1]kk′ck′(s,t ′)

)
α(s,t ′)dt ′.

(9)

By inserting Eq. (6) into Eqs. (2) and (5), we can verify that

g�′ = g0(s)
∫ T

0
S(t)c�′(s,t)

M∑
�=0

[�−1]0�Pc�(s,t)dt

+
∫ T

0
S(t)c�′(s,t)t(1 − P)β(s,t)dt

= g0(s)δ0�′ +
∫ T

0
S(t)c�′(s,t)β(s,t)dt

−
M∑

k′=0

δ�′k′

∫ T

0
S(t ′)ck′(s,t ′)β(s,t ′)dt ′

= g0(s)δ0�′ , �′ = 0,1, . . . ,M (10)

is always greater than (�′ = 0) or equal (�′ �= 0) to zero,
indicating that Eq. (6) satisfies the criteria set out in Eqs. (2)
and (5) for any choice of β(s,t). The initial-value differential
equation (6) is integrated starting from an initial control
field E(0,t), until an optimal control E(s∞,t) is obtained at
s = s∞ such that the control objective Pif (T ) is maximized.
With reasonably imposed equality constraints, the objective
may still approach its global maximum value Pi→f = 1.0.
However, strongly demanding and competing constraints may
result in a suboptimal solution Pi→f < 1.0, even at the best
attainable control field.

In the remainder of the paper, we will set β(s,t) = 0 to
show the basic principles of the procedure and thus Eq. (6)
becomes

∂E(s,t)

∂s
= S(t)g0(s)

M∑
�=0

[�−1]0�c�(s,t). (11)

The gradient of Pi→f with respect to E(s,t) can thus be written
as

δPi→f

δE(s,t)
= −2 Im(Tr{[|i〉〈i|,O(T )]μ(t)}), (12)

with μ(t) = U †(t,0)μU (t,0) and O(T ) = U †(T ,0)|f 〉
〈f |U (T ,0), and it can be readily computed upon
solving Eq. (1) with the control field E(s,t). The
equality-constraint-preserving differential equation (11)
is solved to morph the control field E(s,t) over s, starting
with an initial field E(0,t), until the control objective Pi→f is
maximized to an acceptable precision.

As an illustration, we desire to find pure ac optimal controls
of zero area that may also preserve the control field fluence.
For the pure ac control, the pulse area is zero, i.e.,

h1[E(s,·)] =
∫ T

0
E(s,t)dt = 0, (13)

leading to c1(s,t) = 1, whereas for the constant pulse fluence,
we have

h2[E(s,·)] =
∫ T

0
E2(s,t)dt = const, (14)

leading to c2(s,t) = 2E(s,t). Reliably solving Eq. (11) coupled
to the time-dependent Schrödinger equation (1) is essential for
obtaining optimal control fields. In our simulations, Eq. (11)
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is solved by using MATLAB routine ode45 [40], a fourth-
order Runge-Kutta integrator, with a variable step size ds

to determine the control field E(s,t), starting at s = 0. We
remark that, in principle, the initial guess field E(0,t) can
be an arbitrary function and we may start with a zero initial
field E(0,t) = 0 and then bring the field fluence up to the
intended value using the unconstrained D-MORPH method
[35,36]. However, the purpose of the following simulations
is to demonstrate the utility of the proposed constrained
D-MORPH method for optimizing the control field subject
to the zero-area and the constant nonzero fluence equality
constraints (13) and (14) throughout the optimization in the
time domain.

III. RESULTS AND DISCUSSION

We have carried out numerical simulations for control
of state-to-state transitions for a five-level LiH molecular
system composed of the five lowest vibrational levels in the
ground electronic state. The energies of these five levels are
E0 = 697.96, E1 = 2057.71, E2 = 3372.57, E3 = 4643.45,
and E4 = 5871.22 cm−1. The dipole matrix elements μνν ′ =
〈ν|μ|ν ′〉, ν,ν ′ = 0,1,2,3,4, are obtained from the data in
Ref. [41]. We consider the vibrational ground state |0〉 as the
initial state |i〉 and the target state |f 〉 is a superposition state
1/

√
2(|2〉 − |3〉). The convergence criterion is Pi→f > 0.999

to ensure that the final two vibrational states |2〉 and |3〉
are equally populated. To satisfy the zero-area condition in
Eq. (13) at s = 0, the initial control field E(0,t) is written as

E(0,t) = E0

[
ε(t) − 1

T

∫ T

0
ε(t)dt

]
, (15)

where E0 denotes the control field amplitude, and in this
work we choose a transform-limited laser field ε(t) =
S(t) cos[ω0(t − t0)] with ω0 = 1600 cm−1 and t0 = T/2 =
300 fs. The profile S(t) = exp[−4 ln 2(t − t0)2/τ 2] has a full
width at half maximum (FWHM) τ = 150 fs [bandwidth
(FWHM) of 196 cm−1]. The field amplitude E0 is chosen such
that the initial fluence is

∫ T

0 E2(0,t)dt = 0.125. The temporal
grid is discretized with 2048 uniform time steps.

We first consider the single-constraint case of finding
a zero-area control field. Figure 1 plots the pulse area
(i.e., the dc component), the fluence of the final control
field, and the objective yield as a function of search effort
(iteration) for the unconstrained and the zero-area-field single-
constraint control simulations. Figure 1(a) shows that the
pulse area increases in magnitude with iteration when the
zero-area constraint is not imposed. As can be seen from
Fig. 1(b), the fluence of the optimized pulses in both cases
increases. Figure 1(c) shows the monotonic convergence for
the algorithm, which can be proved from Eq. (2). In the
present simulation, imposing the zero-area constraint does not
affect the convergence rate and the yield of Pi→f = 0.999 is
successfully achieved for both unconstrained and constrained
cases. Figure 2 shows the final time-dependent control fields
and the corresponding Fourier power spectra |E(ω)|2 for the
unconstrained and the zero-area single-constraint optimal con-
trol simulations. The power spectrum beyond 3000 cm−1 is of
little importance, because the corresponding transition dipole
moment, i.e., μ03 = 7.76 × 10−5 a.u. for transitions |0〉 → |3〉
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FIG. 1. (a) Pulse area, (b) fluence, and (c) control objective as
a function of iteration for both the unconstrained and the single-
constraint simulations. The result at the zeroth iteration arises from
the pulse E(0,t). Both unconstrained and constrained optimizations
were stopped at Pi→f = 0.999.

with transition frequency �ω03 = E3 − E0 = 3945 cm−1, is
much smaller than the dominant ones μ01 = 0.9422 × 10−1

and μ02 = 6.945 × 10−3 [41] with the transition frequencies
equal to ∼1360 cm−1 and ∼2600 cm−1, respectively. The
unconstrained final control field in Fig. 2(a) clearly shows
asymmetric oscillations about E = 0 with substantially larger
negative amplitudes and the corresponding power spectrum in
Fig. 2(b) contains a pronounced dc component, in agreement
with the results in Fig. 2(a). On the other hand, the subtle shift
in the asymmetry for the zero-area constrained final control
field in Fig. 2(c) consists of balanced positive and negative
amplitudes and the corresponding power spectrum in Fig. 2(d)
has no dc component (as a result of a nonzero area). Both
power spectra in Figs. 2(b) and 2(d) are extremely broadband.
Specifically, it was found in both cases that the resultant
optimal controls have two dominant transition frequencies,
one at ∼1360 cm−1 corresponding to the |0〉 → |1〉 transition
and the other at ∼2600 cm−1 corresponding to the |0〉 → |2〉
and |1〉 → |3〉 transitions. This circumstance suggests the
presence of two constructively interfering pathways |0〉 → |2〉
and |0〉 → |1〉 → |3〉 leading to the objective state 1/

√
2(| 2〉−

|3〉). The peak at 1600 cm−1 found in the optimal fields
comes from the initial field and does not correspond to
any existing transitions or their combinations and may be
suppressed by including further constraints on the control
field. The latter situation is demonstrated below by adding the
constant pulse fluence constraint described in Eq. (14). Finally,
the frequency-domain constrained D-MORPH scheme [29]
may be solved in conjunction with the present time-domain
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FIG. 2. Final control field and the corresponding Fourier power
spectrum for the (a) and (b) unconstrained and (c) and (d) ac field
single-constraint simulations.

constrained D-MORPH one for removing the frequency
components below ∼1000 cm−1 and above ∼2000 cm−1.
We now consider the double-constraint case of finding an
optimal zero-area control field, while keeping the control
field fluence constant. Figures 3(a) and 3(b) respectively
give the pulse area and fluence as a function of iteration
for both unconstrained and double-constraint simulations,
showing that both constraints are satisfied by removing the
dc component while keeping the fluence of the control field
constant. Figure 3(c) demonstrates that despite the strict double
constraints, monotonic convergence to the optimal yield is
preserved.

Figure 4 shows the final optimized control field and
corresponding power spectrum. The control field in Fig. 4(a)
oscillates nearly symmetrically about zero. The power spec-
trum in Fig. 4(b) consists of a main peak around 1350 cm−1

with a broadband width of 400 cm−1, which can cover all
transition frequencies between neighboring vibrational states,
and a very small peak around 2600 cm−1, which corre-
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FIG. 3. (a) Pulse area, (b) fluence, and (c) control objective
as a function of iteration for both the unconstrained and the
double-constraint simulations. Both unconstrained and constrained
optimizations were stopped at Pi→f = 0.999.

sponds to the direct transition frequencies �ω02 = E2 − E0 =
2675 cm−1 and �ω13 = E3 − E1 = 2586 cm−1. Interestingly,
the highest peak at 1600 cm−1 in Figs. 2(b) and 2(d) is
virtually absent in Fig. 4(b), showing that including the fluence
equality constraint further restricts the available control search
space. The negligible contributions from both low and high
frequencies in Fig. 4(b) does not imply that the inclusion of
the fluence constraint can generally serve to filter the spectrum
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FIG. 4. (a) Optimal control field and (b) corresponding power
spectrum for the double constraints of zero-area field and fixed fluence
constrained simulations.
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of the control field. Additional control simulations (not shown)
have been carried out using initial control fields with higher
fluence and it was found that the peak around 2600 cm−1

was further reduced, suggesting that at the larger field fluence
the corresponding optimal control pathways only involve
single-photon transitions between the immediate neighboring
levels. The final power spectrum depends not only on the
Hamiltonian H0 of the quantum system, but also on the initial
field E(0,t) guess. For example, by varying the frequency as
well as the fluence of the initial field, the frequency distribution
of the optimized control field will be changed, indicating that
there exist multiple transition pathways.

In practice, the dc component along with other unwanted
frequencies can also be removed by adding a spectral con-
straint, e.g., a bandpass filter throughout the optimization
[8–10], or more systematically, using a hybrid time-frequency
D-MORPH scheme that solves simultaneously the cur-
rent time-domain constrained D-MORPH scheme and its
frequency-domain counterpart recently formulated [29].

IV. CONCLUSION

In summary, we have presented a monotonically convergent
quantum optimal control procedure for driving quantum
systems towards desired control objective while taking into

account multiple functional equality constraints on the control
fields. As illustrations, special consideration was given to
finding optimal control fields with (i) exact zero area and
(ii) exact zero area along with a constant fluence. With these
constraints, we performed QOCT simulations to maximize the
vibrational state-to-state transition probability of the diatomic
molecule LiH in the ground electronic state. It was found
that the optimal yield of the target state can be successfully
attained despite the additional constraints on the control field.
The framework presented in this work is amenable to general
quantum control optimal problems subject to an arbitrary
number of equality constraints in both the time and frequency
domains, either separately or simultaneously, and may have
potential applications in quantum physics including quantum
information science [15].
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