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Bimodal momentum distribution of laser-cooled atoms in optical lattices
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We study, numerically and experimentally, the momentum distribution of atoms cooled in optical lattices. Using
semiclassical simulations, we show that this distribution is bimodal, made up of a central feature corresponding
to “cold,” trapped atoms, with tails of “hot,” untrapped atoms, and that this holds true also for very shallow
potentials. Careful analysis of the distribution of high-momentum untrapped atoms, both from simulations and
experiments, shows that the tails of the distribution do not follow a normal law, hinting at a power-law distribution
and nonergodic behavior. We also revisit the phenomenon leading to the existence of an optimal cooling point,
i.e., a potential depth below which the temperature of the atoms starts increasing.
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I. INTRODUCTION

Laser cooling in multilevel atomic systems has been a
well-used technology for the last 25 years; good reviews
of its development are given in Refs. [1–4]. A framework
for the theory was developed early on (see, e.g., [5,6] and
additional references in [1–4]), involving coherences and
optical pumping between levels in the ground-state multiplets.
Although these models have provided great insights, and
reproduce many important experimental findings, they still
fail to explain some experimental results, where finer details of
the cooling mechanism and the resulting velocity distributions
have been studied.

A laser-cooled atomic sample typically has a steady-state
velocity distribution to which a Gaussian function provides
a very good fit. This has made it possible to assign “kinetic
temperatures” to the ensembles, even though a strict thermal
equilibrium does not exist.

When the laser cooling intensity is very low, small
but significant deviations from Gaussian distributions have
been observed experimentally [7–9] and predicted theoreti-
cally [10,11]. The experimental observations have been made
with dissipative optical lattices [12], or a corresponding laser
cooling configuration, and the physical explanation for the
observed non-Gaussian distributions has been a contentious
point.

A. The interest of laser cooling

The lack of a complete understanding of the cooling
mechanisms has not been a major practical problem in cold
atom physics, since laser cooling is a technology that does
work excellently as a tool. It has been the key to the advent
of Bose-Einstein condensation in dilute atomic gases, and is a
major ingredient, for example, in experiments with frequency
standards, quantum information, and fundamental metrology.

Recently, the interest in fundamental laser cooling has been
revived. This is to a large extent due to practical reasons, as
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scientists are turning towards systems that are increasingly
more difficult to laser cool than the alkali-metal atoms that
have been the workhorses in most laser cooling related research
hitherto (Na, Rb, and Cs). As the complexity increases, so does
the need for an understanding of how to adapt the technology in
order to achieve the desired cooling. One example is molecular
laser cooling [13–17], where the presence of vibrational and
rotational degrees of freedom typically result in extremely
complex energy level diagrams.

In the case of atoms, more complex systems than the
staple elements are being studied more closely. Such examples
are Li and K (see, e.g., [9,18–22]), which are alkali-metal
atoms as well, but that have hyperfine structure splittings that
complicate the cooling process. Increased knowledge of the
laser cooling process may also be required when atoms are
cooled in a setting, or geometry, that significantly changes the
conditions, or in the cooling of other types of systems (see,
e.g., [23–28]). With these new challenges to laser cooling,
the motivation for deepening the understanding of the cooling
process increases, as does the need for honing theoretical and
numerical tools for its analysis.

B. Investigating the velocity distribution

In this work, we study the velocity distribution of atoms
laser cooled in a shallow optical lattice in detail, both
experimentally and theoretically. In particular, we address the
issue of whether, for a shallow optical lattice, the entire atomic
population can be adequately described by a single distribution
function, and if spatial averaging can be applied, or if the
fraction of the atoms that are localized at potential minima has
to be accounted for. Thereby, we seek to clarify the impact
of localization on observed non-Gaussian momentum profiles.
These issues were addressed by some of us already in Ref. [7],
with conclusions that have been supported by others [9,29,30].
However, controversies have followed concerning the inter-
pretation of velocity distributions [8,11,31–33], which have
motivated us to revisit the question.
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II. THEORY

A. The standard model of laser cooling—Sisyphus cooling

When sub-Doppler cooling was first discovered experimen-
tally [34], the theoretical explanation that followed shortly
afterwards was based on the concepts of polarization gradients
and atomic state degeneracy. Spatially dependent optical
pumping induces slow time scales and a time lag between
the internal and external evolution of the atoms. The model is
often referred to as Sisyphus cooling [5].

Sisyphus cooling was explained qualitatively by the seminal
model of Dalibard and Cohen-Tannoudji [5]. In its most
simple form, this model assumes that atoms are moving
as classical particles through a one-dimensional modulated
optical potential. The latter emanates from two red-detuned
laser beams with orthogonal linear polarization—the so-called
lin ⊥ lin configuration.

The key to the cooling mechanism is the internal structure
of the atom, coupled to the spatially alternating polarization of
the light. For an atom with a ground-state angular momentum
Jg = 1/2, there exist two magnetic sublevels Mg = ±1/2. The
degeneracy of these two states is broken by the ac Stark shift
arising from the interaction with the laser-cooling light, in such
a way that two sinusoidal potentials, phase shifted by half a
period, are created. Absorption of laser photons followed by
spontaneous emission then leads to optical pumping between
the two magnetic states. For a correctly chosen detuning of
the light, the probability for optical pumping is at its largest
at the peak of the potential, while it is lowest at its bottom. Since
the peak of the potential of, e.g., the Mg = 1/2 state coincides
spatially with the bottom of the Mg = −1/2 potential, this
will have the consequence that the atom on average spends
more time climbing the peaks of the potential than it spends
falling down towards its valleys. After averaging over the two
internal states, and over a spatial period of the lattice, this
therefore leads to an effective friction force. In addition, the
fluctuations induced by the randomness of the optical pumping
process also lead to diffusion. The balance between friction and
momentum diffusion determines the steady-state temperature
of the atoms.

This model, albeit simple, appears to capture the essence of
the physical mechanism behind Sisyphus cooling. It has been
vindicated by good qualitative agreements with more advanced
theoretical simulations, as well as with experiments (see,
e.g., [35]). For instance, the linear scaling between temperature
and potential depth is correctly predicted by this model [36].

However, for a detailed agreement between model and
experiments, there are a number of complications which need
to be considered, and some unresolved problems. This includes
the three dimensionality of the optical potential, the more
complicated level structure of real atoms, the rate of cooling,
quantum effects, and taking the full spatial modulation of
the atomic densities into account. In the 1990s, there was a
considerable effort to enhance the understanding of the cooling
mechanisms involved (see, e.g., [37–43], and other references
within those articles). In these works, different theoretical
approaches (semiclassical as well as fully quantum mechanical
ones) were compared with detailed experiments and important
insights were gained. To our knowledge, an extensive review
of all hitherto known aspects of polarization-gradient cooling

is lacking, and such a treatise is also beyond the scope of
the present work. This study is focused on the issue of
the shape of the steady-state velocity distribution that arises
from the cooling.

The constant friction and diffusion coefficients obtained
by the spatial averaging procedure in Ref. [5] entail a
perfectly Gaussian momentum distribution of the atoms. While
on the whole this profile agrees remarkably well with the
majority of the experimental findings, it cannot explain the
small deviations in the wings of the momentum distribution
found experimentally in, e.g., Refs. [7–9]. This is by no
means surprising, considering the many simplifications of
the theory required to derive the perfectly Gaussian profile,
as summarized below. Deviations from Gaussian velocity
distributions are also noted in some of the works referenced in
the preceding paragraph, as well as Ref. [44].

1. Gaussian velocity distribution

Several works describe how the one-dimensional Sisyphus
cooling model leads to a Gaussian momentum distribution;
see, for example, Refs. [5–7,45,46]. We present here only a
brief outline.

The cooling is expressed as a friction force,

F (p) = −αp

m
. (1)

This is only true within a narrow velocity range, called the
velocity capture range (or momentum capture range pc), and
the assumption is made that the entire sample is within this
domain.

The cooling is counterbalanced by a momentum diffusion
Dp, which is time averaged and taken as independent of
velocity. Dp has two main contributions,

Dp(p) = D(ph)
p + D(pot)

p , (2)

with D
(ph)
p arising from the stochastic nature of light scattering

and D
(pot)
p originating from fluctuations in the instantaneous

potential felt by an atom. The competition between cooling
and heating can then in turn be described by a Fokker-Planck
equation,

∂W (p,t)

∂t
= − ∂

∂p
[F (p)W (p,t)] + ∂

∂p

[
D(p)

∂W (p,t)

∂p

]
.

(3)
In steady state, for a momentum-independent diffusion Dp,
the solution of Eq. (3) leads to a Gaussian distribution,

〈W (p)〉t = W0 exp

(
− αp2

2m3Dp

)
. (4)

Below a certain laser intensity, the Sisyphus cooling
becomes too weak to retain a normalizable momentum
distribution. This means that for weaker laser intensities,
the linear scaling of the temperature is broken, and instead
the temperature increases rapidly with shallower optical
potentials. This has been verified in many experiments, e.g.,
Refs. [36,47].

The phenomenon that, for intensities below a critical one,
the measured temperature quickly increases has often been
referred to as décrochage (see, e.g., [45]) [48]. In the early
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literature, this effect was frequently taken as a consequence of
the velocity capture range becoming too narrow to catch the
entire Boltzmann distribution and thus the sample, the optical
molasses, would disintegrate. In this article, we will a priori
use the term with its phenomenological definition, and we will
discuss its causes in Sec. V.

B. Non-Gaussian velocity tails

A simplification made in Ref. [5] is the assumption that
the total density profile of the atoms (summing both magnetic
states) is spatially uniform, while the spatial dependence of
the two sublevels simply mirror the spatial dependence of the
pumping rates between the two states. A first step towards a
more complete theory, while retaining most of the conceptual
simplicity of the model of Dalibard and Cohen-Tannoudji, is
to include also the effect of the motion in the potentials when
determining the spatial dependence of the density profiles in
the different potentials (while still assuming that the total
population has no spatial modulation) [6]. In doing this, a
momentum dependence is introduced into the populations,
and hence into the friction and diffusion coefficients. When
this momentum dependence is included, the wings of the
atomic momentum distribution change from a Gaussian to
a power-law form [6,10].

Another consequence is more insight into the existence
of a lower limit for the intensity, for which the equilibrium
temperature is minimized. This décrochage phenomenon now
becomes more directly related to the modulation depth of
the optical potentials. As can be expected, the non-Gaussian
features observed in the momentum distributions are especially
prominent for potential depths close to or below this critical
point.

Taking into account momenta beyond pc, the expressions
for friction and momentum diffusion have to be replaced by

F (p) = − αp

m
(
1 + [

p

pc

]2) , (5)

and

Dp(p) = D(ph)
p + D

(pot)
p

1 + (
p

pc

)2 . (6)

1. Tsallis distribution

In Ref. [10], Lutz showed that the semiclassical model of
Sisyphus cooling presented in Sec. II A leads to a steady-state
Wigner function for the momentum distribution of the atoms
[see Eq. (3)] given by

Wq(p) = Z−1
q [1 − β(1 − q)p2]1/(1−q), (7)

which is in the form of a Tsallis function [49]. The factor Z−1
q

corresponds to an amplitude, and the parameters β and q can
be derived from the friction and the diffusion coefficients as

q = 1 + 2m3D
(ph)
p

αp2
c

, (8)

and

β = α

2m
(
D

(ph)
p + D

(pot)
p

) . (9)

We stress that this momentum distribution is obtained when
the possible trapping and localization of atoms in optical lattice
sites has been neglected.

While a Gaussian is recovered from Eq. (7) when q → 0, it
leads to the possibility of non-Gaussian velocity distributions,
especially in the high-velocity part of those distributions (the
“tails”) where trapping is no longer relevant. It has also been
shown to lead to anomalous diffusion [46,50] in the optical
lattice. We note that even in the case where some atoms are
trapped, Eq. (7) may still be a good description for a part of
the atomic population that remains untrapped.

C. Localization at lattice sites

The model using momentum-dependent friction and dif-
fusion in Ref. [6] goes some way to include the effects of
the modulation of the potential on the atomic populations.
However, it still assumes that the total atomic population is
spatially uniform, and employs spatial averaging over a period
of the lattice. In the limit of atomic energies (kinetic+potential)
smaller than the depth of the lattice, the atoms will localize
near the bottom of the potential wells. As the regions close to
the peaks of the lattice will be inaccessible to these atoms
(independently of their internal state), it is clear that the
assumption of a spatially uniform total atomic distribution
will not hold. This localization effect has been theoretically
and experimentally verified in deep optical lattices [51–57].
It is, however, less clear if localization plays an important
role in lattices where the momentum profile of the atoms have
prominent non-Gaussian wings, i.e., at or below dérochage.

With the presence of the optical lattice light, there will
always be heating present, with the possibility for a trapped
atom to become untrapped. This untrapped atom will in turn
be exposed to laser cooling. Thus, we assume that at any
given time, a subset of the atomic population will be moving
across the lattice, whereas another portion of atoms will be
localized. Moreover, there will be transfers between these two
populations and a corresponding steady state (provided no
atom can escape from the optical lattice). For deep optical
lattices, the portion of untrapped atoms will be very small—
typically too small to measure. For very shallow lattices,
however—close to décrochage—there will be a significant
portion of both classes of atoms, and thus a snapshot of
the velocity distribution should show a bimodal distribution.
Under the assumption above, the untrapped atoms ought to
follow a power-law distribution, as in Eq. (7), whereas the
trapped portion should be fitted separately, for example, to a
truncated Gaussian.

III. SEMICLASSICAL SIMULATIONS

A. Numerical methods

We calculate the steady state of atoms in a one-dimensional
optical lattice using the semiclassical method described in
Refs. [6,58–60]. While the lattice is one dimension and only
motion along the lattice axis is considered, photons can be
spontaneously emitted in any direction in three dimensions.
The position and momentum are treated as classical variables,
described by a Wigner distribution, while a quantum represen-
tation is used for the internal state of the atom. We consider two
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cases for the latter: either a Jg = 1/2 ↔ Je = 3/2 transition,
the minimal degeneracy exhibiting Sisyphus cooling, or the
Fg = 4 ↔ Fe = 5 transition corresponding to cesium cooled
on the D2 line, including the presence of the Fe = 4 state [60].
In the first case, the laser does not couple the two ground
states (an atom only shifts between them through spontaneous
emission), such that an atom is found in either of the ±1/2
substates at any given time. In the other case, the atoms end up
in superpositions of either even or odd MF substates (adiabatic
potentials).

The simulations depend on two parameters: the detuning
� of the laser with respect to the atomic transition and �′ ≡
�s0/2, with s0 the saturation parameter [61]. The former is
usually expressed in units of the natural linewidth of the excited
state �, while the latter is directly proportional to the amplitude
of the optical lattice potential. The potential depth is given by

U = A�|�′|, (10)

where A = 2/3 for the 1/2 ↔ 3/2 transition and A = 4/9
(based on the lowest adiabatic potential) for the 4 ↔ 5
transition. Energies are conveniently expressed in terms of
the recoil energy,

Erec ≡ p2
rec

2m
, (11)

i.e., the kinetic energy gained by the atom when spontaneously
emitting a photon, where prec ≡ �k, with k the wave vector of
the optical lattice laser.

Unless otherwise noted, the results are obtained for 200 000
and 100 000 independent atoms for the 1/2 ↔ 3/2 and 4 ↔ 5
transitions, respectively. Momentum distributions along the
axis of the optical lattice are obtained by accumulating the
final momentum of atoms into bins of width prec.

To determine if an atom is trapped or not in one of the
potential wells of the lattice, we need to compare its total
(potential+kinetic) energy with the depth of these potential
wells, Eq. (10). This is straightforward for the 1/2 ↔ 3/2
case, where the amplitude U of the potential is the same for
both internal states. For the 4 ↔ 5 transition, the light shift
varies with the MF substate [12] and an atom is found in
a superposition of MF states, with optical pumping pushing
atoms towards the extreme MF = ±F states [62]. Moreover,
we find that the adiabatic potentials [12] better represent the
interaction of the atom with the laser field. Therefore, for the
4 ↔ 5 transition, we define as trapped atoms that have an
energy lower than the barrier height in the lowest adiabatic
potential. This results in a slight overestimation of the number
of trapped atoms in this case, as some atoms that are not in the
lowest adiabatic state can be counted as trapped even though
they have enough energy to escape to a neighboring well in
another adiabatic state.

We can calculate the maximum momentum ptrap an atom
can have and still be trapped as

ptrap

prec
≡

(
U

Erec

)1/2

=
(

A�|�|′
Erec

)1/2

. (12)

Note that an atom with a momentum 0 � p � ptrap can either
be trapped or untrapped, depending on the amount of potential
energy it has at its current position and state.
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FIG. 1. Simulated momentum distribution of atoms cooled on a
1/2 ↔ 3/2 transition in an optical lattice, for � = −10� and |�′| =
50Erec/�. (a) Total distribution (full black line), trapped (blue +),
and untrapped (red ×) atoms. (b) Same as (a), but in log scale.
(c) Trapped atoms (+) and fit to a Gaussian curve (full line).

B. Numerical results

1. Trapped vs untrapped atoms

We show in Fig. 1(a) a typical momentum distribution for
the 1/2 → 3/2 transition, for all atoms taken together and for
trapped and “free” (untrapped) atoms separately (see Sec. III A
for a definition of those terms).

The central core of the distribution, around p/prec = 0,
is mostly made up of trapped atoms, while the tails of the
momentum distribution are due to untrapped atoms. Apart
from a small transition region, trapped and untrapped atoms
are found at different values of the momentum. Obviously, no
trapped atom can have p > ptrap, but we also find that few
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FIG. 2. Fits to the entire simulated momentum distribution of
atoms cooled on a 1/2 ↔ 3/2 transition in an optical lattice, for
� = −10� and |�′| = 50Erec/�. (b) A zoom-in of the data shown in
(a). In both panels, the simulated data are indicated by crosses, with
fits to a single Gaussian (dotted green line), a Tsallis (dashed blue
line), and a double Gaussian (full red line) function. χ2 values for the
fits are 7.1 × 10−4, 1.0 × 10−4, and 2.7 × 10−5, respectively.

untrapped atoms have a momentum p ∼ 0. This separation
in momentum of trapped and untrapped atoms reinforces the
conclusions of Refs. [7,63], where experimental results and
quantum simulations of the dynamics of the cooling indicated
the presence of “cold” and “hot” modes in the momentum
distribution.

Plotting the same data on a log scale [Fig. 1(b)] the
distribution of trapped atom appears as an inverted parabola,
cutoff at ptrap/prec ≈ 5.78 [see Eq. (12)]. Indeed, the fit to a
Gaussian function is very good, as seen in Fig. 1(c). However,
the tails of the total momentum distribution, corresponding to
untrapped atoms, do not appear to follow a Gaussian function.

To check this further, we fit the full data of Fig. 1 to different
functional forms, namely a single Gaussian, a Tsallis function
Eq. (7), and two Gaussian functions; see Fig. 2.

While both the Tsallis function and the double Gaussian
reproduce quite well the core of the distribution, this is at the
detriment of the tails.

Fitting the entire distribution to a sum of a Gaussian and a
power-law function, or to a Gaussian and a Tsallis function,
gives an excellent fit. However, this means a function with so
much liberty, and so many free parameters, that it is highly
questionable if any pertinent conclusion can be drawn from
such a fit. Moreover, a power-law function has to be truncated
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FIG. 3. Simulated momentum distribution of atoms cooled on
a 4 ↔ 5 transition in an optical lattice, for � = −10� and |�′| =
50Erec/�, shown on a logarithmic scale. Total distribution (full black
line), trapped (blue +), and untrapped (red ×) atoms; including (a) a
single (Fe = 5) excited state; (b) two (Fe = 4, 5) excited states.

at some point. Instead, we find a fit to a double Gaussian a better
indication that the distribution consists of two distinct energy
modes. In order to test the functional form of the tails of the
distribution, a more stringent test is to fit the high-momentum
part of the distribution separately. We will address this point
in more detail below in Sec. III B 2.

Similar results are obtained when considering the level
structure for the Fg = 4 → Fe = 5 transition in cesium, Fig. 3,
whether including one (Fe = 5) or two (Fe = 4, 5) excited
states in the simulation.

Calculating the root-mean-square value of the momentum
prms, we find that the 4 → 5 transition leads to a lower
temperature (prms/prec = 7.52) compared to the 1/2 → 3/2
transition (prms/prec = 9.54), for the same choice of parame-
ters (� = −10� and �′ = 50Erec/�). There is also stronger
trapping for the 4 → 5 transition, with 71.6% trapped atoms,
compared to 65.0% for the 1/2 → 3/2 transition. (This may
be due to an overestimation in the former case; see Sec. III A.)

2. Power-law tails

It was shown in Ref. [10] that, when neglecting the spatial
modulation of the optical lattice and thus the possibility of
trapping, the momentum distribution of atoms is in the form
of a Tsallis function [49]. Considering only untrapped atoms,
this calculation predicts for a 1/2 → 3/2 transition a tail of
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FIG. 4. Simulated tails (×) of the momentum distribution shown
in Fig. 1, for the 1/2 → 3/2 transition (� = −10�, |�′| =
50Erec/�), with fits to Eq. (13) (full line) and to a Gaussian (dashed
line).

the distribution of the form,

W (p) = N

(
1 + 90

41

�2

�2
+ p2

p2
c

)15pc(�/�)/41

, (13)

with pc = ��s0/(36Erec) and N a scaling constant.
We present in Fig. 4 the data for the tails of the momentum

distribution for the 1/2 ↔ 3/2 transition with � = −10� and
|�′| = 50Erec/� (same as in Fig. 1).

We have combined here the data points for both negative
and positive momenta. We have fitted the data for the tail
separately, selecting the part of the distribution with |p|/prec �
10, with Eq. (13), using N as the only free parameter, as
pc can be expressed in terms of the simulation parameters
� and �′. The result (full line in Fig. 4) agrees very well
with the simulated data, especially for smaller values of
the momentum (the statistics get worse as the momentum
increases, as very few atoms reach high momenta in the
simulation). For comparison, we have also fitted the tail to
a Gaussian function (dashed line in Fig. 4), and the result
clearly shows that the momentum of untrapped atoms does
not follow a normal distribution. This would indicate that the
system is nonergodic [64].

While the theory presented in Sec. II B appears to work
well for untrapped atoms, the bimodal nature of the distribution
argues against the use of a single function to describe the entire
momentum distribution, as it appears that a good fit of the core
of the distribution results in an incorrect description of the tail;
see Fig. 2. It is clear that a double Gaussian function cannot
capture all properties of the distribution, but nevertheless it
does capture the bimodality, and it does provide a better fit than
the Tsallis function, when the entire population is included in
the fit.

IV. EXPERIMENTS

In order to further investigate the velocity distribution, we
perform an experiment with a three-dimensional optical lattice.
The experimental setup has been described in detail elsewhere
(e.g., in Ref. [65]), and therefore the present description is kept
brief.

FIG. 5. Configuration of the three-dimensional optical lattice. A
red-detuned beam is split into four beams. These are aligned, and
their polarizations are chosen, as shown in the figure. This provides
a three-dimensional generalization of the one-dimensional lin ⊥ lin
laser cooling configuration.

A cold sample of atoms is prepared by stopping a thermal
beam of cesium, followed by the loading of the atoms in a
magneto-optical trap (MOT). The atoms are then progressively
cooled by going through stages of a low-intensity MOT, a low-
intensity optical molasses, and eventually the atoms are loaded
in a three-dimensional dissipative optical lattice. This traps the
upper hyperfine structure state of the ground configuration,
6s 2S1/2, Fg = 4.

The optical lattice configuration is shown in Fig. 5. Four
laser beams with identical detunings and intensities make an
angle of π/4 with the principal axis (ẑ), with the latter being
parallel to the vertical axis. Two beams are in the xz plane
and are polarized along ŷ, whereas the other two are polarized
along x̂ and propagate in the yz plane. The lasers are typically
detuned by � = −25� from the resonance Fg = 4 ↔ Fe = 5
in the D2 line of Cs (see, e.g., [66]), at λ ≈ 852 nm, but
this may be varied. That is, the light-atom interaction is in a
regime where the kinetics of the atoms are strongly influenced
by incoherent scattering, which includes both laser cooling
and momentum diffusion.

The resulting optical lattice potential is illustrated in
Fig. 6 (the lowest adiabatic potential is shown). Along the
vertical ẑ axis, we have a sinusoidal potential, and a cooling
configuration that closely corresponds to the one-dimensional
lin ⊥ lin configuration, and thus also to the model used in
Sec. III. The potential depth scales proportionally to I/� [see
Eq. (10)], with I the laser irradiance, and is thus tunable.

The velocity distributions are observed by using the time-
of-flight method [65], where atoms are released from the
optical lattice and are allowed to expand under free fall.
The expansion is then measured by a laser probe. In our
experiments, we obtain a signal-to-noise ratio in the measured
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FIG. 6. Two-dimensional projection of the calculated lowest
adiabatic potential (experimentally verified in Ref. [67]) of the optical
lattice. Along the ẑ direction (in the figure, this corresponds to the
diagonal from top left to bottom right), the modulation is purely
sinusoidal.

velocity distributions better than 1:1000 (in a single shot), and a
velocity resolution better than 10 nK. The maximum repetition
rate is of the order of one hertz, and thus, good statistics can
easily be obtained.

A. Experimental results

The velocity distribution has been recorded for a range
of potential depths. In Fig. 7 we show a result, for the case of
very low intensity, and hence very shallow light-shift potentials
(U/Erec = 106, obtained for a laser power of P = 0.13 mW
per beam). As has been previously shown (see, e.g., [7,47,68])
a fit to a Gaussian function of the velocity distribution gives an
estimate of the kinetic temperature of the sample, and above a
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FIG. 7. Velocity distribution recorded for a shallow optical lattice
(U = 106Erec), close to the critical potential depth (average of two
measurements). In the full figure, the dotted green line is a Gaussian
function fitted to the data. Fits to a Tsallis function, or to a double
Gaussian, are visually indistinguishable from the experimental data
at this scale, and are therefore not included. In the inset is a zoom-in
of the wing of the distribution. The dotted green line is still the single
Gaussian, whereas the dashed blue line is a fit to a Tsallis function,
and the full red line one to a double Gaussian.
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FIG. 8. The same data as in Fig. 7, but shown in a logarithmic
scale. The mismatches of the fits, as quantified by their χ2 values are
χ 2 = 0.16 for a single Gaussian (dotted green line), χ2 = 0.0068 for
a Tsallis function (dashed blue line), and χ 2 = 0.011 for a double
Gaussian (full red line). For all fits, the y intercept is a fitting
parameter, which explains why the fits flatten out. The influence
of this on the least-squares fit is negligible, since it concerns data
three decades smaller than the center of the distribution.

certain critical potential depth—of the order of 10–100Erec—
the temperature scales linearly with potential depth (I/�).

For deep potentials, Gaussian fits to the velocity dis-
tributions are excellent. Close to the critical point (as in
Fig. 7), such fits are still fairly good, but there is a systematic
underestimation of the wings of the distribution. There is a
high-velocity tail that cannot be mimicked by a Maxwell-
Boltzmann distribution.

In Fig. 7—and also in Fig. 8, which is the same data plotted
in a logarithmic scale—we show fits of various functions to
the data.

A Tsallis function gives a good fit, and so does a double
Gaussian. However, when the Tsallis function is fitted to the
entire distribution, it gives systematically different fit results
than it does when only the high-velocity tail is fitted. The
double Gaussian is just the simplest bimodal model, and it is
noteworthy that it still provides as good a fit as does the Tsallis
function.

The results support the assumption that a significant part of
the atomic population is localized in optical lattice sites. For
deep lattices, this proportion is close to 100%. Closer to the
critical point, a gradually larger proportion of the atoms will,
on average, be untrapped, and therefore analyzing the entire
population in terms of one single distribution function will
not give a fully pertinent description. This is totally consistent
with the numerical results in Sec. III and with experimental
results reported by others in, e.g., Refs. [9,51].

V. DISCUSSIONS

The observation that the atoms are found in two modes,
trapped and untrapped, allows us to revisit a striking feature
of laser cooling by optical lattices, the décrochage mentioned
in Sec. II B. This phenomenon can be seen in Fig. 9, where
the root-mean-square momentum prms obtained from the
numerical simulations is plotted as a function of �′, which
is directly proportional to the potential depth.
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FIG. 9. Root-mean-square momentum for all atoms (filled sym-
bols), and for trapped (blue open symbols, lower points) and
untrapped (red open symbols, upper points) only. (a) 1/2 ↔ 3/2
transition (simulations done for 50 000 atoms); (b) 4 ↔ 5 transition
(simulations done for 5000 atoms).

It now appears that only untrapped atoms are responsible for
the décrochage phenomenon observed in an experiment. While
the value of prms of the trapped atoms varies monotonously
with �′, the momentum of untrapped atoms increases as the
potential depth goes below the threshold of décrochage. This
effect is magnified by the fact that the proportion of trapped
atoms is significantly reduced for shallow potentials, as seen
in Fig. 10. We notice the greater trapping of atoms with a
higher degeneracy of the ground state. We also point out that
a significant portion of the atoms remain trapped even past
décrochage, and that it is only for extremely shallow potentials
that the majority of atoms are not trapped. In an experiment,
the average of all atoms will be measured, and even though
few atoms are untrapped, the very high momentum of these
will give rise to the observed “unhooking” (departure) of the
recorded data from the linear intensity dependence.

Two additional remarks on Fig. 9 are in order. First, for a
two-level system (1/2 ↔ 3/2 transition) there is only a slight
influence of the detuning � on the values of prms obtained, with
higher values obtained for smaller detunings, at a given value
of �′. Within the range � = −10� to −30�, the values do
not differ by more than the statistical noise of the simulations.
However, a difference becomes clear at � = −5�, while the
values at −2� stand out even at the scale of the figures
presented here. We find a similar result when we consider
the 4 ↔ 5 transition without the presence of the Fe = 4 state
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FIG. 10. Fraction of trapped atoms for 1/2 ↔ 3/2 (filled
symbols) and 4 ↔ 5 (open symbols) transitions (simulations done
for 50 000 and 5000 atoms, respectively).

(see also [69]). This is not the case for the three-level 4 ↔ 5
transition (i.e., with the Fe = 4 state included), Fig. 9(b),
where the position of décrochage is clearly influenced by
the detuning, as previously noted in Ref. [60]. This is in
agreement with experimental results for both cesium [47] and
rubidium [70], where it was found that décrochage appears at
constant laser irradiance (meaning constant s0 in our model,
so that the potential depth becomes directly proportional to the
detuning �). This dependence on the detuning is also reflected
in the fraction of trapped atoms; see Fig. 10.

For full disclosure all data used for the figures in this article
are published in Ref. [71], in order to enable further analysis
by others.

VI. CONCLUSIONS

Our results, both experimental and numerical, strongly
support the assumption that the velocity distribution of atoms
trapped in a shallow, dissipative optical lattice is bimodal. We
have found nothing that supports a hypothesis that at some
potential depth, near décrochage, there is a sudden transition
between a localized regime and a jumping one. Rather, our data
support the theory that atoms that are constantly exposed to
both laser cooling and heating in a dissipative optical lattice go
through periods of being trapped as well as being untrapped.
At any given moment, the entire population will consist of
these two modes.

For deep optical lattices, the untrapped portion will be
very small. Closer to décrochage (i.e., for decreasing potential
depth) a gradually larger subset of the ensemble will have
enough energy to move over more than one lattice site. For
these shallow potentials, a fit to a single distribution function
of the entire population cannot be adequately applied, and any
theory that applies spatial averaging of the atomic density,
over several lattice sites, will fail to account for the significant
portion of the atoms that remain trapped.

For the untrapped atoms, a power-law distribution such
as Eq. (7) gives a good fit to numerical data. Also for the
experimental data, the high-velocity tail of the distribution
clearly deviates from a simple Gaussian, but it is more difficult
to prove a power-law distribution. For a detailed experimental
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study of a sample displaying non-Boltzmann-Gibbs statistics,
as suggested in, e.g., Refs. [32,33,64], a different physical
system than a pure dissipative optical lattice would be
needed. This could, for example, be a weak Sisyphus cooling
configuration superimposed on an external potential. In that
case, trapping could be avoided, and spatial averaging can be
applied in the analysis. Examples of this is a cooling inside an
ion trap, as in Ref. [50], or weak cooling in an external optical
trap, as in Ref. [72].
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(Linköping University).

[1] S. Chu, Rev. Mod. Phys. 70, 685 (1998).
[2] C. N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).
[3] W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).
[4] L. Fallani and A. Kastberg, Europhys. Lett. 110, 53001 (2015).
[5] J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023

(1989).
[6] Y. Castin, J. Dalibard, and C. Cohen-Tannoudji, in Light Induced

Kinetic Effects on Atoms, Ions, and Molecules, edited by L. Moi,
S. Gozzini, C. Gabbanini, E. Arimondo, and F. Strumia (ETS
Editrice, Pisa, 1991), pp. 5–24.

[7] J. Jersblad, H. Ellmann, K. Støchkel, A. Kastberg, L. Sanchez-
Palencia, and R. Kaiser, Phys. Rev. A 69, 013410 (2004).

[8] P. Douglas, S. Bergamini, and F. Renzoni, Phys. Rev. Lett. 96,
110601 (2006).

[9] P. Hamilton, G. Kim, T. Joshi, B. Mukherjee, D. Tiarks, and H.
Müller, Phys. Rev. A 89, 023409 (2014).

[10] E. Lutz, Phys. Rev. A 67, 051402(R) (2003).
[11] E. Lutz and F. Renzoni, Nature Phys. 9, 615 (2013).
[12] G. Grynberg and C. Robilliard, Phys. Rep. 355, 335 (2001).
[13] E. S. Shuman, J. F. Barry, and D. DeMille, Nature (London)

467, 820 (2010).
[14] D. Comparat, Phys. Rev. A 89, 043410 (2014).
[15] V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J.

Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Phys. Rev.
A 89, 053416 (2014).

[16] M. Hamamda, P. Pillet, H. Lignier, and D. Comparat, J. Phys. B
48, 182001 (2015).

[17] P. Yzombard, M. Hamamda, S. Gerber, M. Doser, and D.
Comparat, Phys. Rev. Lett. 114, 213001 (2015).

[18] M. Landini, S. Roy, L. Carcagnı́, D. Trypogeorgos, M. Fattori,
M. Inguscio, and G. Modugno, Phys. Rev. A 84, 043432 (2011).

[19] D. Rio Fernandes, F. Sievers, N. Kretzschmar, S. Wu, C.
Salomon, and F. Chevy, Europhys. Lett. 100, 63001 (2012).
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