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Floquet surface hopping: Laser-driven dissociation and ionization dynamics of H2
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A quantum-classical approach is developed to describe the strong-field molecular dynamics of H2
+, taking into

account all degrees of freedom and simultaneously dissociation as well as ionization. The electron and nuclei are
treated correlated, by propagating the nuclei stochastically on potential energy surfaces. It is demonstrated that
Floquet surface hopping (FSH) is particularly well suited to describe the laser-driven dynamics. The method is
tested against exact solutions of the time-dependent Schrödinger equation, where available. In addition, the FSH
results are in excellent agreement with recent experimental data of the dissociation and ionization dynamics of
H2

+. As an additional issue of this work, the primary importance of the focal volume average is worked out for the
understanding of experimental results. It determines the gross features of the experimental spectra and provides
also a natural explanation of the puzzling saturation effect in the dissociation spectra, observed experimentally.
Future applications and further extensions of the method are discussed.
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I. INTRODUCTION

The exact and complete description of the strong-field
molecular dynamics requires the solution of the time-
dependent Schrödinger equation (TDSE) for electrons and
nuclei, taking into account all degrees of freedom (DOF) as
well as all fragmentation and ionization channels. As is well
known, this is an inaccessible goal for realistic systems due
to the exponential scaling of the numerical effort with the
number of DOF and/or the complexity of the contributing
reaction channels. Only for the smallest molecule, H2

+, full-
dimensional solutions of the TDSE do exist, restricted, how-
ever, to laser fields where ionization can be neglected [1–7].
Inclusion of this channel and, in particular, the description of
larger systems requires inevitable approximations.

In recent years, surface hopping (SH), in particular Tully’s
fewest switching algorithm [8], became a very popular method
of solving the many-body TDSE, approximately. In any SH ap-
proach, the electrons are treated quantum mechanically and the
nuclei are propagated by classical trajectories on potential en-
ergy surfaces. The coupling between the quantum and classical
systems is mediated by stochastically switching (“hopping”)
between these surfaces. In this way, quantum effects in the
nuclear dynamics (respectively, electron-nuclear correlations)
are approximately included. Consequently, SH goes clearly
beyond the so-called Ehrenfest dynamics, in which the nuclei
are treated solely classically and are deterministically propa-
gated on only one, mean, explicitly time-dependent electronic
potential energy surface, obtained, however, nonambiguously
by the variational principle [9]. In contrast, SH is intuitive, as is
the choice of the electronic surfaces, which should preferably
be adapted to the problem at hand.

A number of different SH schemes which can take into
account a laser field explicitly have been developed [10–23].
Here, the hitherto applied surfaces can be divided into two
classes:

(1) Field-free potentials, which as a rule represent bare
Born-Oppenheimer (BO) surfaces, calculated on different
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levels of time-independent electronic (ab initio) many-body
theories [13–15,17,19–23].

(2) Field-induced potentials, which include the laser field,
and therefore are explicitly time dependent [10–12,16,18].

In the first case, the laser field is taken into account only
in the electronic equations of motion (EOM). It induces
electronic transitions and nuclear “hops,” but will not affect
the nuclear motion directly on an actual surface. Consequently,
hopping schemes with field-free potentials are well suited to
describe realistically the initial electronic excitation process
(population of electronic eigenstates) as well as the random
choice of the corresponding potentials, at which the nuclear
relaxation will start with. Their applications, however, are
restricted to laser fields with pulse durations distinctly shorter
than the nuclear time scale, typically a few fs [20,22].
Otherwise such approaches can lead to unphysical behavior
of the nuclear motion during the laser pulse [12,18].

Laser-driven molecular dynamics can realistically be de-
scribed only if the laser field is explicitly taken into account
in the classical EOM of the nuclei. However, the choice of the
field-induced potentials is ambiguous.

One natural way is to diagonalize the instantaneous Hamil-
tonian including the laser interaction [10,11,16,18]. This yields
surfaces arising from so-called “instantaneous BO states” [10],
also termed “instantaneous Stark states” [12] or “quasistatic”
states [10]. The nuclei are propagated stochastically on
this surface, which are called “quasistatic potentials” [11],
or simply “laser-induced potentials” [18]. These surfaces
oscillate rapidly with the carrier frequency of the laser, which
complicates the construction of a clear physical picture of the
nuclear dynamics and may lead to serious numerical problems
within the hopping [12].

On the other hand, Floquet surfaces have turned out to be
extremely useful to illustrate qualitatively different nuclear
mechanisms. These, in principle time-independent, surfaces
are obtained by diagonalizing the Floquet Hamiltonian [24,25]
for a time-periodic laser field. In case of a finite laser pulse,
however, they are slowly time dependent via the envelope
of the pulse. For diatomic molecules, Floquet surfaces have
been widely used from the very beginning of strong-field
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molecular physics to interpret and to understand effects like
bond softening [26] and bond hardening [27], multiphoton
dissociation [28] and zero-photon dissociation [27,29], dy-
namical alignment [2,30], and antialignment [31]. Moreover,
dynamical calculations on single Floquet surfaces predicted
and revealed new effects, like “rotational destabilization” [5]
and, very recently, the “elevator effect” [32].

Somewhat surprisingly, up to now, there are only very few
attempts to treat the laser-driven molecular dynamics directly
on Floquet surfaces, including electron-nuclear correlations
via SH [12,18]. Moreover, the hitherto investigations are
restricted to one-dimensional model systems, i.e., to diatomic
molecules aligned along the laser polarization axis and
neglecting ionization [12,18].

In this work, a Floquet surface hopping approach (FSH)
is presented which describes the laser-driven dynamics of
H2

+, taking into account all DOF as well as dissociation and
ionization, simultaneously. Subsequent nuclear and electronic
relaxation after the pulse is included as well. First, the
reliability of the method is successfully demonstrated by
comparing the results with exact solutions of the TDSE
(without ionization). Second, it is shown that the full FSH
calculations (including ionization) are in excellent agreement
with recent measurements of the dissociation and ionization
dynamics of H2

+ [7].
As an additional but important issue of the paper, it is

demonstrated that the focal volume effect determines the gross
features of the experimental spectra. In particular, it explains
the puzzling saturation in the dissociation spectra, observed
experimentally.

The paper is organized as follows: In Sec. II the relevant
surfaces (Sec. II A) and the FSH method (Sec. II B) are
presented. In Sec. III the FSH method is validated by
comparing the results with existing exact solutions of the full-
dimensional TDSE for highly differential resolved dissociation
probabilities. In Sec. IV elaborate Franck-Condon and focal
volume averaged FSH calculations are employed to analyze
recent experimental data on kinetic energy release (KER)
spectra for dissociation as well as ionization. Summary and
outlook are given in Sec. V. Computational details are outlined
in Appendix A. In Appendix B the focal volume average
procedure is specified.

Atomic units are used unless stated otherwise.

II. THEORY

A. Electronic surfaces and appendant states

Electronic surfaces and their corresponding states play a key
role in any mixed quantum-classical approach, in particular
and obviously in SH schemes. Different, and in principle
arbitrary (approximately) complete sets of states can be used
to expand the time-dependent electronic state in order to solve
the TDSE by coupled differential equations for the expansion
coefficients. In contrast, the surfaces on which the classical
nuclei are propagated, and thus the corresponding states, are
by no means arbitrary and their choice depends strongly on
the particular physical situation or phenomena to be described
as realistic as possible.

In this work it is intended to simultaneously treat the
electronic excitation and the laser-driven nuclear dynamics,
the ionization and following Coulomb explosion, as well

as the field-free electronic and nuclear relaxation for the
H2

+ molecule exposed to intense fields. Obviously, different
surfaces must be employed to realistically describe the whole
scenario.

In this subsection, all surfaces and states which will be
implemented to formulate the electronic and nuclear EOM
are defined in advance. Also their suitability to describe
realistically the coupling between the quantum and classical
system via SH during the different stages of the dynamics is
discussed. Computational details are given in Appendix A.

1. Born-Oppenheimer surfaces

As fundamentals of molecular physics, BO surfaces E and
states |ϕ〉 are obtained by diagonalizing the electronic part of
the field-free molecular Hamiltonian,

H 0
el( �R)|ϕi( �R)〉 = Ei( �R)|ϕi( �R)〉, (1)

where H 0
el is given by

H 0
el( �R) = Te + Vee + Ven( �R), (2)

with Te the electronic kinetic energy operator, Vee the electron-
electron, and Ven the electron-nuclear interaction, treating
the nuclear coordinates �R as parameters. These, in general
multidimensional, surfaces are often used to propagate the
nuclei in SH methods, where they are usually calculated
“on-the-fly” using different methods and levels of ab initio
electronic many-body theory [33]. In the case of diatomic
molecules they depend only on the internuclear separation
R. In the simplest case of H2

+, the field-free center-of-mass
electronic Hamiltonian reads

H 0
el = −��r

2
− 1∣∣�r + 1

2
�R∣∣ − 1∣∣�r − 1

2
�R∣∣ + 1

R
, (3)

where �r is the electronic position operator, the classical
Coulomb repulsion 1/R is included for convenience.

In Fig. 1, the two lowest BO surfaces are shown together
with the locations of the one- and three-photon resonances
for a λ = 800 nm laser. Around these distances (R ≈ 3.3

FIG. 1. The two lowest BO surfaces σg and σu for H2
+, dressed

with different photon numbers for a laser with λ = 800 nm. The
arrows, each with a length of �ω, mark the points of resonant one-
and three-photon absorption, which are also easily identified via the
crossings between different dressed state surfaces.
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and R ≈ 4.7) electronic transitions will preferentially happen.
However, in a hopping scheme between BO surfaces, for the
nuclear motion these distances are by no means distinguished
from other regions and, thus, hops can be expected to
occur at arbitrary distances (see also Sec. II B 3). Moreover,
well-established strong-field phenomena of the nuclei, like
dynamical alignment [2,30] and antialignment [31] or bond
softening [26] and bond hardening [27] can trivially not be
described, since BO surfaces do not depend on the molecular
orientation and the field strength, respectively. BO surfaces
are, however, an extremely useful starting point to construct
realistic, field-dependent potentials for the nuclear motion, as
will be discussed in the next subsection.

2. Dressed state and Floquet surfaces

Floquet surfaces have been widely used to discuss, to
interpret, and to visualize many strong-field phenomena in
the past (see references in Sec. I and, e.g., [34,35]). Properties
of Floquet states and surfaces, as well as dressed states and
surfaces, are discussed in the following.

For electrons in a laser field the Floquet Hamiltonian is
defined as

HF = H 0
el − �μ · �F cos(ωs) − i∂s . (4)

The interaction of electrons and laser is included in the
length gauge, �μ is the dipole operator, and �F is the amplitude
of the electric field of the laser with carrier frequency ω,
the time is denoted by s. In this subsection, only cw lasers
are considered, where Floquet theory applies exactly. The
Floquet Hamiltonian depends parametrically on the nuclear
coordinates and the orientation towards the laser polarization
direction, in case of a diatomic molecule the bond length R

and the alignment angle ϑ , as well as the laser amplitude �F
and the laser frequency ω. Note that the Floquet Hamiltonian
acts on an enlarged Hilbert space, the product space of the
electronic Hilbert space and the space of all square-integrable
2π
ω

-periodic functions, H = Hel ⊗ L2
2π/ω. Using the set of

functions {einωs : n ∈ Z} as orthonormal basis in L2
2π/ω, the

term −i∂s is interpreted as an operator describing the amount
of energy (�ω times the number of photons n) exchanged
between molecule and laser field. The reader interested in the
mathematical details is encouraged to have a look at [25].

The Floquet Hamiltonian in case of vanishing interaction
is used to define dressed BO states (short, dressed states) |φ〉
and the corresponding energy surfaces:

H 0
F |φim〉 = (

H 0
el − i∂s

)|φim〉 = (Ei + mω)|φim〉, (5)

where m is a photon number index. Like the BO states,
the dressed states |φ〉 = |φ( �R)〉 depend parametrically on
the nuclear geometry. Using the BO states |ϕ〉, a coordinate
representation of the dressed states is given by

〈�r,s|φim( �R)〉 = ϕi(�r, �R)eimωs .

The dressed state |φ1,−3〉, for instance, describes a situation
where the electron is in the first excited BO state with three
photons absorbed from the field (although not including any
interaction). The full set of dressed states {|φim〉} yields an
orthonormal basis in H, which, due to its simple relation to
BO states, can be used, e.g., to calculate an explicit matrix

FIG. 2. Four Floquet surfaces for H2
+, arising from the two

lowest BO surfaces, calculated for I = 1012 W/cm2, λ = 800 nm,
and ϑ = 0. For lucidity only the one- and three-photon crossings are
included.

representation of the Floquet Hamiltonian. Some surfaces
appendant to the dressed states are shown in Fig. 1. Besides
the energy shift of multiples of �ω, they are identical to BO
surfaces, and thus not suited to describe laser-driven molecular
dynamics.

Solving the eigenvalue equation for the Floquet Hamilto-
nian, including the interaction between electron(s) and laser,
yields Floquet states |�〉 and Floquet energies E :

HF|�a〉 = Ea|�a〉. (6)

The parametric dependencies of HF are passed to the
Floquet states and energies. For a diatomic molecule, in
principle, they depend on the four parameters R,ϑ,F , and
ω. However, restricting all Floquet-related calculations to the
lowest two BO states of H2

+, σg , and σu (which are coupled by
the component of �μ parallel to the bond axis only), allows for
a description using only three parameters R,Feff = F cos ϑ ,
and ω. Fixing the laser frequency, as done in this work, the
Floquet surfaces are effectively two-dimensional. Like the
dressed states, the full set of Floquet states {|�a〉} yields an
orthonormal basis in H.

In Fig. 2 a cut along ϑ = 0 for some Floquet surfaces
is shown. In wide ranges of R, the Floquet surfaces and the
dressed state surfaces coincide. However, there is a remarkable
difference: While there are exact crossings between dressed
state surfaces at the points of resonant photon absorption,
these crossings between Floquet surfaces are avoided. The
shape and position of this avoided crossings changes with the
(effective) laser intensity I (respectively, Ieff) and the laser
frequency ω. With increasing intensity, higher order avoided
crossings will shift their position towards larger R and will start
to open, which leads to an overall less clear physical picture
than for lower intensities (for further information see [36]). In
Fig. 3, some two-dimensional Floquet surfaces are shown. For
intensities below I � 1013 W/cm2 the angular dependence is
relatively weak. Given a high enough intensity, qualitatively
new effects, like barriers and trenches in an angular direction,
arise. In clear contrast, the BO surfaces, per definition, have
no angular dependence at all.
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FIG. 3. The Floquet surfaces corresponding to σg + 0ω and
σu − 1ω as a function of R and ϑ for two different laser intensities;
the wavelength is λ = 800 nm. The trench (dashed white line) in
the second from top panel is used to explain the angular-resolved
dissociation yield in Sec. III. In contrast to Fig. 2, all crossings up
to the nine-photon crossing are included, which is necessary for the
large intensities used here.

For vanishing intensity I → 0, apart from the avoided
crossings, the Floquet surfaces coincide with dressed state
surfaces. This is used to label the Floquet surfaces in the
following way: If for I → 0 and R > R1ω for a Floquet surface
E(R) = Eσg/σu

(R) + mω holds, the Floquet surface is called
“Floquet surface corresponding to σg/σu + mω.” Here R1ω

denotes the position of the one-photon resonance.

3. Ionized surfaces

A complete description of the laser-molecule interaction
requires the inclusion of ionization. In principle, SH between
Floquet surfaces is in particular suited to include this process,
which happens preferentially during the laser pulse. In contrast
to the mean-field (Ehrenfest) description of ionization [37],

SH between Floquet surfaces offers the possibility to decide
explicitly between single-, double-, and higher ionization
channels by including the corresponding ionized Floquet
surfaces. Their correct calculation for many-electron systems,
however, is a highly nontrivial task and represents a great
challenge for the future. Thereby, approximations will become
unavoidable. A reasonable assumption should be to neglect
all residual interaction between the ionized electrons and
the remaining molecular system. For the one-electron system
H2

+, as considered in this work, this naturally leads to
the bare Coulomb surface V = 1/R, which determines the
nuclear motion after ionization. The coupling between Floquet
surfaces and this ionized surface, however, remains a nontrivial
problem, even in this simplest case (see Sec. II B 3).

To summarize this part, the SH approach presented in this
work is based on the ad hoc assumption that the nuclear
dynamics proceeds on Floquet surfaces during the pulse. A
justification of this assumption can be obtained by comparing
the results with exact solutions of the TDSE, where available
(i.e., without ionization). Ionization can be approximately
taken into account in the present scheme by including the
Coulomb surface.

B. Equations of motion

In principle, the Schrödinger equation for the molecule
interacting with a laser field has to be solved. Using the dipole
approximation, a linear polarized laser, and the length gauge,
for H2

+ in the center-of-mass frame this equation reads

i∂t |�(t)〉 = [
TN + H 0

el − �μ · �F (t) cos ωt
]|�(t)〉, (7)

with H 0
el as introduced in (3), TN the (relative) nuclear kinetic

energy operator, and �μ = q�r .
A common starting point for the derivation of practical

solvable equations of motion is an expansion of the molecular
state |�(t)〉 into a suitable basis, e.g., the basis of field-dressed
BO states |φim〉 introduced in Sec. II A. This expansion reads

|�(t)〉 =
∞∑

j=0

∞∑
n=−∞

χjn( �R,t)|φjn(R)〉, (8)

where the expansion coefficient χjn( �R,t) is identified with the
position representation of the nuclear state corresponding to
the dressed state |φjn〉. Inserting this ansatz in the molecular
Schrödinger Eq. (7) yields EOM for the coefficients χjn.
Starting at (8), quantum-classical EOM can be derived in
different ways, e.g, by a partial Wigner transformation of the
molecular wave function (as done in [12]), or, as done in this
work, by assuming localized nuclei (χjn( �R,t) → cjn(t)δ( �R −
�R(t)), a step which was mathematically rigorously investigated

in [38]). The latter approach results in the following.
(1) Hamiltonian equations of motion for the nuclei, which

are approximated as purely classical point masses;
(2) a Schrödinger equation for the electronic part of the

molecular state;
(3) the need for a self-consistent coupling of electronic and

nuclear equations, dealing with the parametric dependencies
of the electronic Hamiltonian and establishing a connection
between the classical potential surfaces and the electronic
state.
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FIG. 4. A sketch of the nuclear degrees of freedom R, ϑ , and
ϕ when considering H2

+ in the center-of-mass frame with a fixed
direction given by the amplitude �F of the linear polarized laser field.

The actual way in which 1, 2, and especially 3 are treated
defines the FSH method and is presented in the reminder of
this section. Computational details are given in Appendix A.

1. Nuclear equations of motion

For the nuclei of a diatomic molecule in the center-of-mass
frame, the relevant degrees of freedom are reduced to R,ϑ ,
and ϕ, where R denotes the internuclear separation, and the
angles ϑ and ϕ denote the orientation of the internuclear axis
to some fixed direction (see Fig. 4). For H2

+, a homo-nuclear
molecule, the relative nuclear coordinates do not couple to the
laser field.

With the reduced nuclear mass M and potential surfaces
Va , the classical Hamiltonian in spherical coordinates reads

H = P 2
R

2M
+ P 2

ϑ

2MR2
+ P 2

ϕ

2MR2sin2ϑ
+ Va(R,ϑ,ϕ,b),

where an index a and a parameter set b (which may be empty)
are introduced for later purposes. With the canonical momenta,

PR = MṘ; Pϑ = MR2ϑ̇ and Pϕ = MR2sin2ϑϕ̇,

Hamilton’s equations of motion are

Ṙ = PR

M
; ṖR = −∂RVa + P 2

ϑ

MR3
+ P 2

ϕ

MR3 sin2 ϑ
,

ϑ̇ = Pϑ

MR2
; Ṗϑ = −∂ϑVa + P 2

ϕ cos ϑ

MR2 sin3 ϑ
, (9)

ϕ̇ = Pϕ

MR2 sin2 ϑ
; Ṗϕ = −∂ϕVa.

Defining ϑ as the angle between �μ and �F , ϕ becomes
cyclic and Pϕ becomes constant, since none of the surfaces
employed in this work depends on ϕ. It remains to choose
the energy surfaces Va adapted to the physical situation. The
following surfaces are used:

(1) Floquet surfaces during the laser pulse,

Va(R,ϑ,ϕ,b) = Ea(R,ϑ,F,ω).

(2) Born-Oppenheimer surfaces when no laser is present,

Va(R,ϑ,ϕ,b) = Ea(R).

(3) The Coulomb surface after ionization,

Va(R,ϑ,ϕ,b) = 1/R.

The surface index a is determined by a surface hopping
scheme, which is discussed in Sec. II B 3.

2. Electronic equations of motion

The surface for the propagation of the classical nuclei (see
last section) is determined by the time-dependent electronic
state |ψ( �R,t)〉 via a surface hopping scheme (see next section).
For this purpose, |ψ( �R,t)〉 is expanded into dressed states
|φim(R)〉. To deal with additional time dependencies, not
governed by the Floquet theorem, the (t,t ′) [in our case
(t,s)] method [39,40] is used. While Floquet theory is exact
for strictly time-periodic systems, Floquet-based approaches
where shown to give reliable results even for short laser pulses
including only a few optical cycles [12,41].

The expansion into dressed states reads

|ψ( �R,s,t)〉 =
∞∑

j=0

∞∑
n=−∞

cjn(t)|φjn(R)〉

=
∞∑

j=0

∞∑
n=−∞

cjn(t)|ϕj (R)〉einωs . (10)

The dressed states |φjn〉 are chosen over the Floquet
states |�a〉 because of their simpler parametric dependencies.
Note that |ψ〉 is a state in H = Hel ⊗ L2

2π/ω, as briefly
discussed in Sec. II A 2. The expansion (10) corresponds to (8)
with the further restriction of localized nuclei χjn( �R,t) =
cjn(t)δ( �R − �R(t)). Thus, |ψ( �R,t)〉 is the solution of the
electronic Schrödinger equation along the classical path �R(t):

i∂tψ( �R(t),�r,t) = i(∂t + ∂s)ψ( �R(t),�r,s,t)|s=t

= Hel( �R(t),�r,s,t)ψ( �R(t),�r,s,t)|s=t

=
(

Te − 1∣∣�r + 1
2

�R(t)
∣∣ − 1∣∣�r − 1

2
�R(t)

∣∣
− [ �μ · �F (t)]( �R(t)) cos ωs

)

×ψ( �R(t),�r,s,t)|s=t . (11)

For the ansatz (10), the Schrödinger equation reads

i∂t |ψ〉 = i∂t

∑
j,n

cjn(t)|φjn〉 = HF

∑
j,n

cjn(t)|φjn〉

= (
H 0

el − �μ · �F cos(ωs) − i∂s

) ∑
j,n

cjn(t)|φjn〉.

Using the eigenvalue equation for the dressed states (5) and
the chain rule for the parametric R dependence yields∑

j,n

ċjn|φjn〉 = − i
∑
j,n

cjn

{
Ej + nω

− �μ · �F
2

(eiωs + e−iωs) − iṘ∂R

}
|φjn〉.
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After applying the scalar product with another dressed state
|φim〉,

〈φim| · |φjn〉 = ω

2π

∫ 2π/ω

0
dse−imωs〈ϕi | · |ϕj 〉einωs,

the final result is

ċim = −icim(Ei + mω) + i
∑
j,n

cjn

{
�μij

�F
2

(δn,m−1 + δn,m+1)

+ iṘ〈ϕi |∂R|ϕj 〉δnm

}
. (12)

3. Coupling between nuclei and electrons

The impact of the classical motion on the electronic state
is accounted for by an alternating propagation of classical and
quantum-mechanical EOM, where the nuclear parameters in
the electronic EOM are updated with appropriate time steps.

The time-dependent electronic state determines the force
in the classical EOM via the (index of the) potential surface.
As discussed in Sec. II A, the choice of the surfaces has to be
adapted to the physical situation. During the pulse, hopping
between Floquet surfaces by an adaption of Tully’s fewest
switching algorithm [8] is used. The hopping probability
to the Coulomb surface is based on the time-dependent
ionization probability. Tully’s fewest switching algorithm with
BO surfaces is used when no laser is present.

Hopping between Floquet surfaces. For the hopping be-
tween Floquet surfaces E , the electronic state is expanded into
Floquet states |�a〉:

|ψ( �R,t)〉 =
∑

a

da(t)|�a( �P )〉, (13)

where �P = (P1,P2,...) stands for multiple parameters, e.g.,
R,F,ϑ , and ω, which may be time dependent. With the
abbreviation 〈�a|∂P |�b〉 = (∂P )ab, the time derivative of the
expansion coefficients reads

ḋa = −idaEa −
∑

i

Ṗi

∑
b

db(∂Pi
)ab.

The probability to find the electron in a certain Floquet state
|�a〉 changes by

∂t (da
∗da) =

∑
b

∑
i

−2Re
(
Ṗida

∗db(∂Pi
)ab

) =:
∑

b

∑
i

f i
ab.

Assuming the nuclei are currently on the Floquet surface
Ea , according to [8] for a �= b the quantity gab is defined as

gab := �t

∑
i f

i
ab

|da|2 = −2�tRe

(
db

da

∑
i

Ṗi(∂Pi
)ab

)
, (14)

with �t the time step in the numerical implementation. In case
of gab < 0, gab is set to zero. Then, for 0 � b � N , b �= a (with
N < ∞ the size of the Floquet state basis used in the imple-
mentation),

∑b
j=0 gaj is compared to an uniform random num-

ber 0 < ζ < 1. For the first value of b (if there is any) where the
sum is larger than ζ , the surface index is switched from a to b.
Sometimes gab is called “hopping probability.” It can, however,

take numerical values gab > 1, especially at narrow avoided
crossings. Comparing

∑b
j=0 gaj to 0 < ζ < 1 will thus lead

to problems whenever more than one gaj gets large at a time.
Fortunately, this does not occur in this work. The velocity
adjustment in case of a hop is discussed in Appendix A.

Writing all parameters �P = (R,ϑ,F,ω) relevant for the
Floquet states explicitly, (14) reads

gab = −2�tRe

(
db

da

(Ṙ〈�a|∂R|�b〉 + Ḟ 〈�a|∂F |�b〉

+ ϑ̇〈�a|∂ϑ |�b〉) + ω̇〈�a|∂ω|�b〉)
)

. (15)

It should be noted that (∂F )ab, arising from the laser field,
is often considerably larger than (∂R)ab, arising from the
molecular structure, such that for short (≈ 25 fs total time) and
intense (I ≈ 1014 W/cm2) pulses typical values of Ṙ(∂R)ab

and Ḟ (∂F )ab are of the same order of magnitude. For the
situations considered in this paper ϑ̇(∂ϑ )ab is rather small
compared to the former terms and ω̇ = 0 holds.

The coupling (∂R)ab for two different laser intensities is
shown in the lower panel of Fig. 5 together with the amplitude
of the dipole coupling between the two lowest BO states
〈σg| �μ · �F |σu〉. There is a remarkable difference, particularly
important for SH. The amplitude of the dipole coupling
is nearly a straight line; the physical important regions of
resonant photon absorption are not distinct from other regions.

FIG. 5. (Upper panel) The BO surfaces σg and σu (thick gray
lines) and three Floquet surfaces for λ = 800 nm and I = 1012

W/cm2 (thin colored–black lines) as well as I = 1013 W/cm2 (thick
colored–black lines). The vibrational energies for ν = 3,9,14 are
indicated for the discussion in Sec. III. (Lower panel) The amplitude
of the dipole coupling between σg and σu for I = 1013 W/cm2 (dashed
gray line) and the coupling between the Floquet surfaces as discussed
in the text (thin lines for I = 1012 W/cm2 and thick lines for I = 1013

W/cm2; the coupling at the one-photon crossing is scaled by a factor
of 5 for both intensities).
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This is one reason why hopping between the BO surface
in the presence of a laser fails. For the Floquet surfaces,
the coupling Ṙ〈�a|∂R|�b〉 is shown for an arbitrary, yet
reasonable, Ṙ = 0.01. In clear contrast to the dipole coupling,
it is located at the regions of resonant photon absorption. It is
extremely narrow and large for a closed avoided crossing,
practically always leading to a nonadiabatic transition (a
“hop”). When the avoided crossing opens with increasing
laser intensity, the coupling gets smaller and more widespread.
This comes with a finite probability for a hop in the vicinity
of the points of resonant photon absorption. However, the
wider the crossing opens, the more probable the adiabatic
passage through the avoided crossing (no hop) becomes. This
behavior of the couplings allows for a surface hopping-based
propagation which exactly leads to the dissociation pathways
often used in the discussion of laser-driven dynamics of H2

+

(see, e.g., Sec. III or the references in Sec. I).

Hopping to the Coulomb surface. Treating H2
+ with FSH,

ionization is described by hopping to the Coulomb surface
V = 1/R. The hopping criterion for this is as follows: With
N (t) the probability for the electron to be found in any bound
state, the probability for ionization during a finite time step �t

is

Pi(�t) = N (t − �t) − N (t). (16)

This Pi is compared to a uniform random number 0 <

ζ < 1, and if ζ < Pi holds, the propagation of the nuclei is
continued with the Coulomb surface. In the other case, for
ζ � Pi , the considered trajectory stays bound, thus N (t) is set
to 1. Note that, after the evaluation of (16), there are only two
valid values for N (t). Either the trajectory is bound (N (t) = 1)
or it is ionized (N (t) = 0). Allowing for 0 � N (t) � 1 leads
to serious physical problems, e.g., for long pulses [36]. For
practical reasons it is beneficial to allow for 0 � N (t) � 1 and
change the hopping criterion (16) to

Pi(�t) = N (t − �t) − N (t)

N (t − �t)
. (17)

The question remains of how N (t) can be modeled during
the propagation. One approach is to use a rather large dressed
state basis (at least several hundred) including continuum
states in the expansion (10), allowing for transitions away
from bound states and thus an on-the-fly calculation of N (t).
Another possibility is to approximate N (t) using fixed-nuclei
ionization rates in a cw laser. Both methods are described and
compared in detail in [36]. The approach using (precalculated
and pulse-shape independent) ionization rates � turns out to
give surprisingly good results and is much faster than the
approach with the large dressed state basis, therefore it is used
in the following. With � known, N (t) is modeled as

N (t) = e
− ∫ t

t0
dt ′�(t ′) ≈

n−1∏
i=0

e−�t�(t0+i�t), (18)

where �t is the numerical time step for the hopping, n = (t −
t0)/�t and �(t) is the cw-laser ionization rate with the laser
intensity matching the pulse envelope at time t . Using (18),
the hopping criterion reads

Pi(t,�t) = 1 − e−�t�(t). (19)

Later recombination or re-scattering of the electron is
neglected. Some details about the calculation of the rates are
given in Appendix A.

Hopping between Born-Oppenheimer surfaces. With no
laser present, Tully hopping with BO surfaces is used to
determine the surface index for, e.g., the relaxation dynamics.
In principle, the hopping criterion reads like (15), where now
�P stands for the nuclear coordinates only. However, since the

nonadiabatic coupling 〈σg|∂R|σu〉 vanishes exactly for H2
+,

the field-free relaxation dynamics in all cases considered in
this paper reduce to a propagation of the nuclei either on the
σg or σu surface.

III. COMPARISON WITH EXACT
QUANTUM-MECHANICAL CALCULATIONS

As mentioned in Sec. I, there do exist several full dimen-
sional solutions of the TDSE for H2

+ exposed to moderate
laser fields, where dissociation dominates and ionization can
be neglected [1–7]. These results can serve as useful reference
calculations to test approximate methods. In this section, we
compare the FSH results with the exact solutions of the TDSE
given in Ref. [6], rather than present new physical results.

The laser pulse has a total duration of T = 25 fs (with sin2-
shaped envelope), a wavelength of λ = 800 nm, and a central
peak intensity of I = 2 × 1014 W/cm2 in all calculations. The
FSH results are obtained by propagating 1000 trajectories for
each initial vibrational level, with random initial orientations
and initial internuclear distances randomly chosen from clas-
sical orbits corresponding to different vibrational levels. For
consistency, ionization is switched off in the FSH calculations;
further details of the calculations are given in Appendix A.
All TDSE results are taken from our previous studies [6].
The comparison is presented systematically, by increasing the
differential resolution of the dissociation probabilities.

A. Total dissociation probabilities Pd(ν)

In Fig. 6, the total dissociation probabilities Pd (ν) as a
function of the initial vibrational level ν are shown. Obviously,
the agreement between TDSE and FSH results is nearly
perfect. In both calculations the probability increases smoothly
up to ν = 9 and decreases for higher ν.

Whereas a physical interpretation of this behavior can
hardly be obtained from the exact quantum-mechanical so-
lution, the Floquet picture delivers a transparent explanation
in terms of the bond softening [26] and bond hardening [27]
mechanisms (see Fig. 5).

For the chosen laser frequency, the vibrational energy of
the ν = 9 state is very close to the crossing between the
dressed states σg and σu − ω (Fig. 1). With increasing laser
intensity during the pulse, the avoided crossing between the
corresponding Floquet surfaces opens up and lowers the barrier
at the one-photon crossing [black (middle) Floquet surface
in Fig. 5]. This allows FSH trajectories nearly freely to
move to larger R, leading to large dissociation probabilities
around ν = 9 (bond softening). On the other side, for larger ν

values (ν = 14 in Fig. 5) the upper Floquet surface forms
a potential well [green (upper) Floquet surface in Fig. 5]
leading to trapping and a decreasing dissociation probability
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FIG. 6. The total dissociation probabilities Pd (ν) as a function of
the initial vibrational level calculated with the TDSE and the FSH
method.

with increasing ν (bond hardening). Finally, ν values well
below ν = 9 (see ν = 3 in Fig. 5) dissociate preferentially via
the three-photon resonance (see Fig. 1) on the corresponding
Floquet surface [blue (lower) Floquet surface in Fig. 5] and,
thus, with distinctly lower probability, as will be shown in the
next section.

B. Photon-resolved dissociation probabilities Pd(ν,nω)

Both methods, FSH and TDSE, allow one naturally to
further analyze and decompose the total dissociation proba-
bilities Pd (ν) into contributions of individual photon channels
Pd (ν,nω). In the TDSE calculations, the photon-resolved
dissociation probabilities Pd (ν,nω) are obtained by expanding
the nuclear wave function in field-dressed BO states (see [6] for
details). In the present FSH calculations, the photon channel is
naturally obtained, since for every dissociating trajectory the
number of contributing photons is automatically known.

In Fig. 7, the photon-number-resolved dissociation prob-
abilities Pd (ν,nω) contributing to the total probability Pd (ν)
are shown. Again, a very good agreement between FSH and
TDSE calculations is observed.

The one-photon dissociation is peaked around ν = 9 due to
the bond softening effect discussed above. The two-photon
dissociation peaks around ν = 4, which is due to bond
softening at the three-photon crossing. An FSH trajectory
taking the adiabatic passage at this crossing (no hop) will end
up in the two- or three-photon dissociation channel, depending
on the subsequent passage (hop or no hop) at the one-photon
crossing.

The zero-photon dissociation (ZPD) is most effective for
ν > 9, since vibrational trapping is the essential first step for
this dissociation mechanism. In the raising edge of the pulse,
the deformation of the potential well above the one-photon
crossing [see thin and thick green (upper) Floquet surface in
Fig. 5] lifts trapped FSH trajectories to higher energies. For
some trajectories the energy gain is sufficient to overcome the
dissociation barrier, leading to ZPD.

FIG. 7. The photon-resolved dissociation probabilities Pd (ν,nω)
with contributions of the zero-, one-, and two-photon channels to the
total dissociation probabilities, presented in Fig. 6, calculated with
TDSE and FSH.

C. Photon- and angle-resolved dissociation probability densities
pd(ν,nω,ϑ)

In Figs. 8–10, the angle- and photon-resolved dissociation
probability densities pd (ν,nω,ϑ) are shown for ν = 4,9,12.
Even for these highly differential quantities a satisfactory
agreement between FSH and the TDSE results is found.
The dissociation probabilities Pd (ν,nω) and the probability
densities shown in this section are related via

Pd (ν,nω) =
∫ π/2

0
dϑ sin ϑ pd (ν,nω,ϑ), (20)

in case of the TDSE results and via

Pd (ν,nω) =
k∑

i=1

�ϑ sin ϑ pd (ν,nω,i�ϑ), (21)

in case of the binned FSH results.

FIG. 8. Photon- and angle-resolved dissociation probability den-
sity pd (ν,nω,ϑ) for ν = 4, calculated with TDSE and FSH.
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FIG. 9. Photon- and angle-resolved dissociation probability den-
sity pd (ν,nω,ϑ) for ν = 9, calculated with TDSE and FSH.

For ν = 4 (Fig. 8), the results are dominated by the two-
photon channel. A typical path for a trajectory to end up in this
dissociation channel is to take the adiabatic passage (no hop)
at both the three-photon and one-photon avoided crossing.
The adiabatic passage at the three-photon crossing needs a
large Ieff = I cos2 ϑ . This leads to an enhanced multiphoton
dissociation probability for aligned trajectories, resulting in
strongly forward peaked angular distributions.

For ν = 9 (Fig. 9), the one-photon channel dominates
the dissociation. With the initial vibrational energy for ν =
9, already a small bond softening effect is sufficient for
an adiabatic passage at the one-photon crossing, thus only
weak alignment is expected. However, for the chosen laser
parameters, the dissociation probability shows a prominent
peak at ϑ ≈ π/4. This peak can be explained with the help
of the angular dependence of the Floquet surfaces, as already
given intuitively in [6]. It is due to trajectories getting aligned
along the trench marked with the dashed line in Fig. 2. For this
peak to emerge, quite special laser parameters, tuned to the
dissociation dynamics itself, are necessary. An experimental
observation of this peak is probably very challenging.

For ν = 12 (Fig. 10), the calculations predict enhanced ZPD
for aligned molecules. For small angles ϑ , due to the large
effective intensity Ieff = I cos2 ϑ , the potential well above the
one-photon crossing lifts considerably within a few fs, leading
to a larger probability for ZPD. During the trailing edge of the
pulse, however, trajectories contributing to the ZPD channel
will be dynamically de-aligned by the laser, resulting in ZPD
contributions also at larger angles.

Summarizing this part, a nearly perfect agreement be-
tween the approximate FSH and the exact TDSE results
for dissociation can be stated. We note in passing that this
agreement has been also observed for other pulse lengths
(T = 50 and T = 100 fs) as well as a different intensity
(I = 1014 W/cm2) [36]. To what extent the FSH method
also applies to describe ionization, can only be proofed by
comparing with experimental data, as will be presented in the
next section.

FIG. 10. Photon- and angle-resolved dissociation probability
density pd (ν,nω,ϑ) for ν = 12, calculated with TDSE and FSH.

IV. ANALYSIS OF EXPERIMENTAL DATA

Recently, the dissociation and ionization dynamics of H2
+

has been systematically studied in experiments, where the
angle-resolved nuclear KER spectra for an 800-nm laser with
7-fs pulse duration are measured within a broad range of in-
tensities (from 2 × 1013 W/cm2 up to 7.5 × 1015 W/cm2) [7].
In the first instance, the experimentally observed trends can be
summarized as follows.

(i) Weak intensity dependence is observed in the angle-
integrated KER spectra for dissociation, showing always a
pronounced peak at low energies (centered around 0.8 eV).
The spectra exhibit, however, a distinct tail towards larger
energies, which is growing up with increasing intensity.

(ii) Strong intensity dependence is observed for the KER-
integrated angular distributions for dissociation, which change
their functional form, with the general tendency to become
narrower with increasing intensity.

(iii) Surprisingly, all these trends are saturated at a certain
laser intensity (around I ≈ 1015 W/cm2), above which no
further changes in the experimental spectra for dissociation
have been observed (saturation effect).

(iv) The angle-integrated KER spectra for ionization,
however, show an intensity-dependent peak (located at several
eV), which continuously moves towards larger energies with
increasing intensity. A saturation effect has not been observed.

In [7], the experiments have been beneficially accompanied
by theoretical calculations, in which the full-dimensional elec-
tronic and nuclear TDSE is solved [3,42]. However, because
ionization is not included, the calculations are restricted to low
intensities, where dissociation dominates the mechanism. In
addition, because the focal volume average is not taken into
account, a direct comparison with the experiment is virtually
impossible.

In the following, we present a FSH analysis of the data
covering the whole range of intensities, including ionization
as well as Franck-Condon (FC) and focal volume averaging,
allowing also a direct comparison with the experiment.
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FIG. 11. Total dissociation and ionization probabilities as a
function of intensity, calculated without (upper panel) and including
(lower panel) the focal volume average.

Even for the high intensities considered in this section
the two-state model (Appendix A) is used. In [7] it was
found that for certain initial vibrational levels and KER
ranges the contribution of higher states can even dominate
the dissociation spectra. These contributions are, however,
strongly suppressed in the FC average [7] and even further
in the focal volume average.

All results shown in this section (Figs. 11–17) are FC
averaged and refer to calculations with the upper given
experimental laser parameters, i.e., 800-nm wavelength and
7-fs pulse duration. The factors for the FC average are
taken from [43]. For each considered initial vibrational level
(0 � ν � 14) and each considered peak intensity (see Fig. 11),
3000 FSH trajectories are propagated. Further details of the
calculations are given in Appendix A; the focal volume
procedure is outlined in Appendix B.

A. Total dissociation and ionization probabilities

For a first orientation, in Fig. 11 the total dissociation
(Pd ) and ionization probabilities (Pi) as a function of the
intensity are shown, calculated without and including the focal
volume average. Enormous differences are seen between both
calculations. Besides the (more or less expected) differences in
the absolute values, the intensity dependence of both quantities
Pd and Pi is qualitatively different. Whereas ionization
dominates above I ≈ 2 × 1015 W/cm2 and reaches a saturated
value of about Pi ≈ 1 without focal volume average, ionization
and dissociation probabilities have nearly equal values at this
intensity, if the focal volume effect is included.

FIG. 12. Angle-integrated probability densities for dissociation
(upper panel) and ionization (lower panel) as a function of the KER
for different intensities.

Most important, however, the dissociation probability is
saturated above an intensity of about I ≈ 1015 W/cm2 with
a constant Pd ≈ 0.04, whereas the ionization probability still
increases. This is consistent with the experimentally observed
saturation in the dissociation spectra, and naturally explains its
origin. In this range of intensities, all dissociating molecules
feel the same spatial tail of the laser field, and thus the
dissociation mechanism becomes independent from the central
peak intensity of the laser. This conclusion is indisputably
confirmed by looking at more differential quantities, as
discussed in the next sections. In the following, the focal
volume average is included in all presented theoretical results
(Figs. 12–17).

B. Angle-integrated KER spectra

In Fig. 12, the calculated angle-integrated KER spectra
(probability densities) are shown for different central peak
intensities. The results are in very good agreement with the
experimental findings.

The dissociation KER spectra are strongly peaked at an
energy of about 0.8 eV, independent on intensity. They exhibit
a long-range tail towards larger energies, which becomes more
pronounced with increasing intensity. The distributions finally
saturate at large intensities, also in accord with experiment. We
note that, however, the focal volume-induced saturation effect
seems to occur already at somewhat lower intensities in the
calculations, as compared to the experiment (see also below).
The continuous evolution of the spectra towards higher ener-
gies has been qualitatively interpreted in [7] as the consequence
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FIG. 13. Ionization probability density pi(R) as a function of the
bond length R (at the time of ionization).

of the increasing role of the 2- and 3-ω dissociation channel.
Our photon-resolved calculations confirm this interpretation
(see below and [36]). The contribution of the higher-order
photon channels are also responsible for the evolution of
the KER-integrated angular distributions, as will be shown
explicitly in the next section.

The ionization KER spectra in Fig. 12 show a maximum at
(naturally) larger energies, with the clear tendency of raising
with increasing intensity. This behavior is in accord with the
experiment, although the positions of the calculated maxima
are slightly shifted towards larger energies as compared to the
experimental data (see Fig. 16 in [7]). In [7], the progressive
shift towards higher KER with increasing intensity has been
qualitatively discussed with the R dependence of the ionization
threshold. With increasing intensity, ionization becomes more
probable at relatively small internuclear distances (where the
ionization threshold is relatively large), leading to higher KER
values through the stronger nuclear repulsion. This qualitative
interpretation is confirmed by our calculations, where the
internuclear distance at ionization is known. As shown in
Fig. 13, with increasing intensity the probability for ionization
at relative small R grows considerably, naturally leading to
a shift towards higher energies in the ionization KER. The
low ionization probability for larger R is characteristic for
short pulses, where dissociating trajectories reach R � 7 in
the trailing edge or after the pulse, where no ionization will
happen. This does not apply to longer pulses, where the
ionization KER looks considerably different [36].

C. KER-integrated angular spectra

First and for completeness, we present in Fig. 14 the
pure KER-integrated angular distributions for dissociation
and ionization as a function of the intensity. In both cases,
these distributions become distinctly narrower with increasing
intensity. Again, the basic difference between dissociation and
ionization consists in the saturation effect for dissociation,
which is lacking for ionization.

FIG. 14. KER-integrated angular probability densities for disso-
ciation (upper panel) and ionization (lower panel) as a function of the
intensity.

Experimentally, the evolution of the angular distributions
as a function of the intensity has been analyzed in more detail
for dissociation. It was found empirically that the general form
of the angular distributions can be fitted by a sum of different
cosk ϑ terms, with a single k = 2 term for low intensity (I =
1013 W/cm2), k = 2 and k = 10 contributions for intermediate
intensities (I = 6 × 1014 W/cm2), as well as k = 2 and
k = 14 for the large intensities (I = 2.5 × 1015 W/cm2), with
no further changes above this intensity. Supported by the
theoretical calculations, performed at small intensities in [7], it
has been argued that this behavior can be possibly understood
by the increasing importance of the 3-ω resonance with
increasing intensity, together with geometric and dynamical
alignment which increases the effective intensity according to
Ieff = I cos2 ϑ .

In Fig. 15, we present a detailed theoretical, photon-
resolved analysis of the angular distributions for dissociation.
Evidently, at low intensity the one-photon channel determines
the distribution, whereas the two- and three-photon channels
become more and more important with increasing intensity.
They dominate at the highest intensity and lead to narrow
angular distributions. Also shown in Fig. 15, the general
form of the calculated distributions can be numerically fitted
by exactly the same cosk ϑ terms as found empirically in
the experiment, demonstrating impressively a quantitative
agreement between theory and experiment.

We note that any direct comparison between theory and
experiment must be taken with some caution. In the experi-
ments, events are counted for dissociated or ionized fragments.
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FIG. 15. Photon- (n = 1,2 and 3) and angle-resolved dissocia-
tion probability densities for different intensities. As done in the
experimental analysis (Fig. 10 in Ref. [5]), the angular distributions
are fitted by individual cosk ϑ contributions with k = 2,10, and 14,
respectively.

Theoretically, normalized probability densities are calculated.
In the angular distributions, these densities exhibit a 1/ sin ϑ

singularity at ϑ = 0, which explains the deviations between
the cosk ϑ fits and calculated distributions for the lowest bin
at ϑ ≈ 0 in Fig. 15.

D. Angle-resolved KER spectra

Finally, we compare directly the theoretical and measured
angular-resolved KER spectra for dissociation and ionization
in Figs. 16 and 17. Obviously, a nice agreement can be stated.
We summarize here the remaining differences and discuss
future possible improvements of the theoretical analysis.

In the case of dissociation, the theoretical intensities have
been chosen slightly lower as compared to the experimental
ones, in Fig. 16. This has been done because theoretically
the focal volume saturation effect occurs at slightly lower
intensities as compared to the experiment (see also above).
In experiments, the peak intensity for each laser shot is known
only within an uncertainty (of the order of ±50%). This
leads to a distribution of effective peak intensities during
the experiment similar to, but independent of, the focal
volume effect. The saturation in the dissociation KER will
thus shift to slightly larger intensities, where the desired peak
intensity is not reached only for a small fraction of the laser
shots. In addition, improvements in the fixed-nuclei ionization
rates, used for the ionization hopping, are possibly necessary
(see below). Furthermore, the calculated spectra show larger
multiphoton contributions than the experimental data (see

FIG. 16. Experimental (left; adapted from Ref. [7]) and theo-
retical (right) angle-resolved dissociation KER spectra for different
intensities.

Fig. 16 at KER ≈ 3 eV). This difference is, at least partially,
due to the finite temperature in the experiment (e.g., rotational
initial excitation of the molecules) [36].

In the case of ionization, the theoretical calculations
overestimate the energetic position of the peak in the spectrum
as compared to the experimental value (Fig. 17), as mentioned
also above. This clearly indicates that the ionization rates over-
estimate ionization especially at small internuclear distances,
which can be further improved.

Summarizing this part, the following has become apparent.
(1) Disregarding all subtleties, the overall agreement be-

tween theory and experiment impressively demonstrates the
power of the developed FSH method.

(2) The focal volume average determines the gross features
of the experimental trends as a function of the intensity

FIG. 17. Experimental (upper panel, number of counts, adapted
from Ref. [7]) and theoretical (lower panel, 1/eV) angle-resolved
ionization KER spectra.
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and, in particular, explains definitely the saturation effect for
dissociation.

V. SUMMARY AND OUTLOOK

We have developed a methodology (Floquet surface hop-
ping) to describe the laser-driven dynamics of H2

+. It takes into
account all DOF, simultaneously dissociation and ionization as
well as electron-nuclear correlations. The heart of the method
consists in a hopping scheme between Floquet surfaces during
the laser pulse.

The FSH method is successfully tested against exact
solutions of the TDSE at moderate laser intensities (without
ionization). In addition, it delivers a quantitative analysis and
allows for a detailed interpretation of recent experimental data
on dissociation and ionization in strong laser pulses.

As a second issue of the present work, it has become appar-
ent that the focal volume effect determines the gross features
of the experimental spectra. In particular, this unavoidable
experimental circumstance explains the saturation effect in
the dissociation spectra, observed at high intensities.

There remains plenty of room for further extensions and
future applications of the method. As an ultimate goal of
the theoretical development, the FSH formalism should be
extended to include also explicitly the description of the
photoelectron spectra. A further desired extension of the
existing FSH method consists in its application to many-
electron systems. Work in both directions has been started.

Finally we note, despite the successful applications of the
FSH approach, demonstrated in this work, it still remains an
intuitive method, as any surface hopping approach inherently
is. The arbitrary use of Floquet surfaces, instead of others (see
introduction), is theoretically by no means founded.

Recently, an alternative quantum-classical approach has
been developed, which describes the laser-driven electron-
nuclear correlated molecular dynamics without any surface
hopping mechanism [44,45]. Here, the nuclei are propagated
on a single, so-called “exact” surface. To what extent this
method can justify the FSH approach (and/or surface hopping
methodology at all) is the subject of ongoing, more fundamen-
tal studies [46].
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APPENDIX A: COMPUTATIONAL DETAILS

1. Born-Oppenheimer states and surfaces

To calculate BO states and surfaces, a basis of Gaussian
states |g〉, consisting of 36 states at each nuclear position (same
basis as in [6]) is used. BO states |φ〉 = ∑

a ca|ga〉 and energies
E are obtained by calculating the overlap matrix Sab =
〈ga|gb〉, the matrix representation of the BO Hamiltonian (3)
Hab = 〈ga|H 0

el|gb〉, and solving the generalized eigenvalue

problem, ∑
a

ca(R){Hba(R) − ESba(R)} = 0, (A1)

for 0 < R � 100.

2. Floquet states and surfaces

Floquet states and surfaces are obtained by diagonalizing
the Floquet Hamiltonian (4) in the basis of dressed states
Fim,jn = 〈φim|HF|φjn〉 (Floquet matrix). Fixing the frequency
of the laser field, restricting the BO index in the dressed
state basis to i = 0,1 and using spherical coordinates with
�F ‖ �ez and �μ · �eR ≡ μz, the Floquet matrix is effectively

two-dimensional, since

�μ · �F = μzF cos ϑ + μxF sin ϑ cos ϕ + μyF sin ϑ sin ϕ

= μzF cos ϑ (A2)

holds (μx = μy = 0 for i = 0,1). It is thus sufficient to
diagonalize the Floquet matrix as a function of R and F ,

Fim,jn(R,F ) = 〈φim(R)|HF(R,F )|φjn(R)〉
= (Ei(R) + mω)δij δmn

+ μz
ij (R)F

2
(δm,n+1 + δm,n−1), (A3)

which yields Floquet states |�(R,F )〉 = ∑
i,m cim|φim〉 and

surfaces E(R,F ). The ϑ dependence is regained by switching
from F to Feff = F cos ϑ . In order to get the coupling matrices
for the hopping, 〈�a|∂R|�b〉 and 〈�a|∂F |�b〉, the derivatives
of the Floquet states are calculated by taking the corresponding
derivative of the bi-cubic spline representation of the expansion
coefficients cim(R,F ).

Care has to be taken when choosing the maximal pho-
ton number −mmax � m � mmax. For vanishing interaction
( �μ · �F = 0), a Floquet state locally coincides with a dressed
state (cim(R) = δij (R),mn(R), with j and n changing at each
avoided crossing). With increasing interaction ( �μ · �F > 0),
more and more photon numbers m contribute. Choosing mmax

too low will eventually lead to errors in the Floquet states
and surfaces, noticeable, e.g., in an unphysical behavior of the
latter [instead of converging to Ei + mω for large R, they bend
to higher (m > 0) or lower energies (m < 0)]. In this work a
rather large mmax = 30 is used. Together with some additional
steps [36], this assures a high quality of the Floquet states
(crucial for the hopping) and surfaces (crucial for the nuclear
dynamics).

The most demanding task in the calculation of Floquet
states and surfaces is to connect the results obtained by
diagonalizing the Floquet matrix for fixed parameters R and
F in such a way that the result is differentiable with respect to
these parameters [36].

3. Fixed-nuclei ionization rates

To model the probability for the ionization hopping, ioniza-
tion rates �(R,ϑ,F ) are calculated by solving the fixed-nuclei
TDSE for a cw laser in basis expansion. Following [47],
the nuclei-centered basis (see Appendix A 1) is augmented
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by space-fixed Gaussians, which yields a relatively dense
structure of energy levels around E = 0 and appendant states.

In principle, localized Gaussian basis functions are not
a good choice to represent continuum states (E > 0). This
prevents us from discussing the dynamics of the ionized
electron. To ensure the validity of this method for the
calculation of ionization rates, the fixed-nuclei ionization
probability in a finite laser pulse is compared to the results of
other methods. Very good agreement is found in [36], where
also more details of the calculation are given.

4. Trajectory calculations

a. Laser pulses

In Sec. III, a pulse envelope,

F (t) = Fmax sin2

(
t

T
π

)
, (A4)

with a total time T = 25 fs and Fmax = 0.075 (Imax = 2 ×
1014 W/cm2) is used. In Sec. IV the pulse envelope reads

F (t) = Fmaxe
−((t−T/2)/τ )2

, (A5)

where τ is related to the full width at half maximum (FWHM)
of the intensity as TFWHM = √

2 ln 2τ = 7 fs. A total time

T = 2
√

ln 100
2 ln 2 TFWHM is chosen, such that the intensity at the

beginning and the end of the pulse I (0) = I (T ) = 10−4Imax is
very small compared to the peak intensity.

b. Nuclear EOM

The classical nuclear EOM (9) are solved with the leap-frog
algorithm. During the laser pulse, a time step �tcl = 0.01
is used. Ionized trajectories are propagated on the Coulomb
surface V = 1/R (during and after the pulse), dissociated
trajectories on BO surfaces (during and after the pulse), and
all other trajectories are propagated on Floquet surfaces during
the pulse and on BO surfaces after the pulse. The forces are
calculated by taking the derivative of the cubic (bi-cubic) spline
representation of the BO (Floquet) surfaces. The dissociation
threshold is taken to be Rdiss = 10. Trajectories which are not
bound at the end of the pulse are propagated until they reach
R = 100. Here, the time step 0.01 � �tcl � 0.5 is adapted to
the gradient of the potential.

The radial classical initial conditions R0 and Ṙ0 are sampled
with classical trajectories, propagated in the BO ground-state
surface with energies matching the quantum mechanical
vibrational energies of H2

+. This yields different initial
conditions for different initial vibrational levels ν. Calculations
are done for 0 � ν � 14. Higher initial vibrational levels are
not suspected to give qualitatively new effects; furthermore
they have only a small impact on FC-averaged results.

Only rotationally cold initial conditions (ϑ̇0 = 0, ϕ̇0 = 0)
are considered, thus the initial angles ϑ0 are uniformly
distributed between 0 � ϑ0 < π/2. The ϕ distribution is
accounted for by a weight sin ϑ0 for each trajectory.

c. Electronic EOM

The set of equations (12) for the expansion coefficients of
the electronic state into the dressed state basis is solved using

ZVODE [48]. The two-state model (i = 0,1) is combined with
photon numbers −20 � m � 11, resulting in 64 basis states.
Half of the states, however, can be omitted from the calculation,
since states with i = 0 and odd m as well as i = 1 and even
m are not populated during the dynamics. Updating the BO
energies and the dipole coupling (which are interpolated from
the precalculated data) with a relatively large time step �tqm =
5 is sufficient for convergence of the hopping.

The electronic state at the start of the calculation is the BO
ground state dressed with zero photons, |φ00〉. The allocation
of this initial state to a field-free Floquet state is possible, but
depends on R.

d. Hopping

At each classical time step �tcl during the pulse, all
not already ionized trajectories get a chance to hop to the
Coulomb surface. The hopping probability is given by (19),
which is calculated using fixed-nuclei ionization rates �(t) =
�(R(t),ϑ(t),F (t)). No velocity adjustment is done in case of
a hop to the Coulomb surface. The ionization KER is solely
determined by the kinetic energy of the trajectories at the
ionization hop and the subsequent relaxation dynamics on the
Coulomb surface.

At each classical time step �tcl during the pulse, all not
already dissociated trajectories get a chance to hop to another
Floquet surface E with the hopping procedure described in
Sec. II B 3. The hopping probabilities (15) are calculated by
transforming the time-dependent electronic state to the Floquet
basis. The necessary coupling matrices are calculated prior to
the propagation. If a hop (from Ea to Eb) occurs, the velocity
�v = Ṙ�eR + Rϑ̇ �eϑ is adjusted along the nonadiabatic coupling
vector,

�dab = 〈�a|∂R|�b〉�eR + 〈�a|∂ϑ |�b〉�eϑ + 〈�a|∂F |�b〉�eF ,

such that the total energy is conserved. If the velocity
adjustment would result in a negative kinetic energy, the hop
is rejected. The direction �eF is taken parallel to the actual
velocity.

During the laser pulse, the field amplitude 0 � F � Fmax

changes by orders of magnitude. At the highest Fmax = 0.25
(Imax = 2.2 × 1015 W/cm2) considered in the calculations,
all avoided crossings between neighboring Floquet surfaces
up to the seven-photon crossing start to open considerably.
Thus, all crossings up to the nine-photon crossing are included
in the Floquet surfaces, states, and coupling matrices. For
higher Imax, e.g, to match the experimental values used
in [7] Imax = 7.5 × 1015 W/cm2, even higher order crossings
(11ω,13ω, . . .) have to be included. All these photon crossings
are inevitably present in the calculation also in the leading and
trailing edge of the pulse, where most of them are practically
closed and the trajectories are supposed to hop with 100%
probability. Above hopping procedure can, in principle, deal
with this situation. There is, however, a more straight-forward
way. In the vicinity of practically closed avoided crossings, a
Floquet state |�〉 = ∑

im cim(R)|φim〉 locally coincides with
a dressed state |φjn〉, thus cim(R) ≈ δij (R),mn(R), with j and
n changing exactly at the closed avoided crossing. If such a
change occurs a hop is invoked, otherwise the trajectory is
subject to the hopping procedure discussed in Sec. II B 3.
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APPENDIX B: THE FOCAL VOLUME AVERAGE

The high laser intensities used in modern experiments are
achieved by a temporal and spatial focusing of the laser.
The spatial focusing leads to a distribution of effective peak
intensities I eff

max “seen” by the molecules in the target area,
depending on their distance to the laser focus, where the
nominal peak intensity Imax is reached (focal volume effect). In
experiments, the obtained data, gathered by measuring many
events, is inevitable averaged over these different I eff

max (focal
volume average). Suppressing the focal volume effect directly
in the experiment is difficult, since a narrow laser focus is
necessary to get high peak intensities. Lowering the target
size, if possible at all, comes with lower count rates since the
target density has to be kept low enough to prevent interactions
between the target ions.

When comparing theoretical calculations to experimental
data, the focal volume effect has to be considered either by
averaging the results obtained from calculations with different
peak intensities (as done in this work), or, the other way around,
by an “inverse” focal volume average using experimental data
obtained by conducting the same experiment with multiple
peak intensities (see, e.g., [49]). To emphasize the importance
of the focal volume average, in Fig. 18 the focal volume
averaged dissociation KER, discussed in Sec. IV, is compared
to the KER calculated for Imax only. The striking differences
arise from dissociation contributions at I eff

max, often well below
Imax. The disagreement ranges from quantitatively (lower
panels, where bond softening is dominant for all intensities up
to Imax) over qualitatively (middle panels, where multiphoton
dissociation dominates at Imax but is negligible for most I eff

max),
up to the point where the not focal volume averaged result is
totally meaningless if compared to experimental data (upper
panels, where at Imax the dissociation channel is depleted by
ionization).

FIG. 18. (Left column) The FC-averaged angular resolved dis-
sociation KER calculated for the peak intensities given in the plots.
(Right column) The FC-averaged angular resolved dissociation KER,
focal volume averaged to match experimental peak intensities given
in the plots (same as Fig. 16).

The main problem when including the focal volume average
is the increase of the computational effort, since calculations
for different peak intensities are needed. Calculating the
weighting factors itself is, with some basic assumptions, a
relatively easy task. In the following, it is outlined for an
experiment with a collimated ion beam. The situation is
simplified by the following considerations.

(1) A homogeneous distribution of the molecules within
the beam is assumed; their center-of-mass motion during the
pulse is neglected.

(2) For a Gaussian laser beam ‖ �ez with peak intensity I0

and focused to a focal radius w0, the intensity reads

I (�,z) = Imax

(
w0

w(z)

)2

e−2(�/w(z))2

. (B1)

The profile along the z axis is determined by w(z) =
w0

√
1 + ( z

z0
)2, where the Rayleigh length z0 = πw2

0
λ

is the point

at which the focal radius has broadened to w(z0) = √
2w0.

With a typical z0 much larger than the ion beam width in the
z direction, w(z) ≈ w0 may be used, hence it is sufficient to
consider a two-dimensional intensity profile,

I (�,z) ≈ I (�) = Imaxe
−2(�/w0)2

. (B2)

There are two qualitatively different situations, determined
by the ratio of the ion beam width b and the diameter of the
iso-intensity circle of the onset intensity for, e.g., dissociation.
These situations are illustrated in the inset of Fig. 19, where a
broad (b = 8w0) and a narrow (b = 2w0) ion beam is shown
together with the intensity profile of the laser. A peak intensity
of Imax = 2.2 × 1015 W/cm2 and a cutoff intensity of Imin =
8.75 × 109 W/cm2 is used as for the calculations in Sec. IV.
The green circles are iso-intensity lines with equal spacing �I

[which is also the intensity spacing between the cutoff intensity
(black line) and the first green line]. It becomes immediately
clear that the majority of ions are subjected to intensities I eff

max

FIG. 19. The focal volume average weights (calculated for a
narrow and a wide ion beam; see inset), given in units of the maximal
involved weight (belonging to the lowest intensity bin of beam 1).
Equidistant bins dF = 0.001 are used for the calculation; the bins
dI are illustrated by the dashed black line. For both ion beams, the
gray area under the curves is normed to 1 (sic). The inset shows the
intensity profile (B2) of the laser; some iso-intensity lines (green) are
drawn in the pulse area.
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much lower than Imax in such a situation. As discussed above,
quantities of interest P are automatically averaged according
to

P =
∫

A

dAP (A).

If the width of the ion beam is large enough, such that
the surfaces dA of all relevant iso-intensity shells are circular
rings, a simple substitution using (B2) yields

dA ∼ dI

I
∼ dF

F
.

In order to employ the focal volume average, the pulse
area is divided into circular rings corresponding to the
peak intensities of single calculations I eff

max ∈ [Imin,Imax) by

solving (B2) for �. The weight for a single calculation is given
by the normalized overlap of the corresponding circular ring
and the ion beam surface. For a wide ion beam (ion beam 1 in
Fig. 19) the whole ring surface has to be taken, which leads
to focal volume average weights ∼1/I . The same holds for a
narrow beam at high intensities (ion beam 2 in Fig. 19), where
for low intensities two segment surfaces have to be subtracted.

The resulting weights are shown in Fig. 19 in multiples
of the largest involved weight. Since for the width of the
narrow beam b = 2w0 is chosen, there is a cusp in the weights
located at I = Imaxe

−2 ≈ 0.3 × 1015 W/cm2, the simple 1/I

dependence only holds for larger I . The quantitative difference
in the weights for both ion beams stems from the increasing
differences at low intensities. Due to the normalization, this
affects the ratio of the weights even when the behavior ∼ 1/I

holds for both ion beams. For the focal volume average applied
in Sec. IV a wide ion beam is assumed.
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Koutecký, L. Wöste, and J. Jortner, J. Phys. Chem. A 115, 3755
(2011).
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