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Many systems under control with an applied field also interact with the surrounding environment.
Understanding the control mechanisms has remained a challenge, especially the role played by the interaction
between the field and the environment. In order to address this need, here we expand the scope of the
Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a
theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum

systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights

into the roles played by a Markovian environment. Two model open quantum systems are considered for

illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or
Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct
cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD
methodology introduced here is considered in simulations, it has an analogous direct experimental formulation,
which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.

DOI: 10.1103/PhysRevA.93.053407

I. INTRODUCTION

The control of quantum systems, particularly utiliz-
ing optimization techniques, is showing increasing success
[I-11]. Understanding the underlying mechanisms that
achieve optimal control is a subject of much interest [2,12—17].
The Hamiltonian-encoding and observable-decoding (HE-
OD) methodology has provided a feasible means for system-
atic mechanism extraction in closed quantum systems [18-26].
In HE-OD, a quantum pathway is defined as a set of physically
relevant transitions connecting an initial to a final state(s), and
the associated pathway amplitudes each have a modulus and
phase extracted from the Dyson expansion that quantifies the
pathway’s importance in the underlying dynamics [18,27]. The
mechanism extracted through the HE-OD procedure is given as
the set of pathway amplitudes of significant magnitude. During
an HE-OD experiment or simulation, the system Hamiltonian
is perturbated (encoded) in a specific manner such that the
resultant nonlinear distortion of a recorded output signal of
the system can be analyzed (decoded) to extract the pathway
amplitudes. In addition to mechanism extraction [25], this
technique has also been further developed into a tool to guide
the controls for the experimental or simulated manipulation
of the significant pathways taken by the dynamics through the
system’s coupled set of states [26].

In practice, many quantum systems interact with their
environment during the time that the control field is on.
To explore the control mechanism in such open quantum
systems, the effects of dissipative and dephasing processes
have to be considered [28-35]. As a specific example, in
the context of population transfer in multilevel systems,
Shuang and Rabitz observed that optimal control fields and
decoherence processes can cooperate with each other in the
case of achieving modest control yields utilizing a strongly
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interacting environment [36]. However, the detailed nature of
this cooperation reflected in the contributions of various types
of quantum pathways (i.e., induced either by the external field
or by the decoherence terms due to the environment) was
not determined. Here, we revisit these circumstances to reveal
the distinct cooperative contributions of the applied field and
decoherence processes through an extension of HE-OD that
allows for the treatment of open quantum systems. First, the
theoretical framework of HE-OD for open quantum systems is
developed. Then two simple model open quantum systems are
considered to illustrate the treatment of environmental effects
in the expanded open HE-OD technique. The results from
application of HE-OD quantitatively demonstrate the nature
of the cooperation between the field and the environment,
confirming the previous qualitative analysis [36].

The paper is organized as follows. Section II introduces
the theoretical framework of HE-OD for open quantum
systems. Although HE-OD could be adopted to a variety of
system-environment models, the present treatment considers
the Markovian limit with a Lindblad term added to the
dynamical equations. Section III illustrates the concepts
with two multilevel quantum systems interacting with the
environment, and HE-OD is employed to extract amplitudes
clearly characterized as quantum pathways induced by either
(1) the dipole, (ii) mixed dipole-environment interactions,
or (iii) the environment. A discussion of the results and
concluding remarks are given in Sec. IV. The latter section
also provides a sketch of how HE-OD may be applied directly
in the laboratory to open quantum systems.

II. HE-OD METHODOLOGY FOR OPEN
QUANTUM SYSTEMS

A. The Lindblad equation in Liouville space

The state of a closed quantum system can be represented
by a wave function [y (¢#)) whose evolution is governed by the
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Schrodinger equation:

d
i @) =1Ho — pEOIY@). ey

Here Hj is the unperturbed Hamiltonian, w is the transition
dipole operator, E(¢) is the control field, and & has been
absorbed into Hy and u for convenience.

With the eigenstates of H, as the basis set
{ln),n = 1,2, ...,d}, the wave function can be expanded as
[¥ (1)) = ), In)cu(t). The corresponding density operator

o) =YY@l = Z Prm()|n) {m| )
with
Pum (1) = ca(t)cy, (1)
evolves as
d
i% = [Ho — nE(). p(1)]. 3)

In the absence of interactions with the environment the
evolution of the system is unitary. On the other hand, when the
environmental effects are not negligible the system will follow
nonunitary evolution. Assuming a Markovian environment, the
evolution can be described by the Lindblad master equation
[37]

0
D0 —ilHy ~ REDp0) +nF o), @)
where
= +_ Loy Loy
Flo} =) <Lijj —5LiLip = 3pL] Lj), Q)

Jj=1

with {L;} and n being, respectively, Lindblad operators and
the system-environmental coupling strength parameter.

The density operator p can conveniently be written with
double-bracket notation in Liouville space [38],

1p)) =) pun(®)lmn)), 6)
and then Eq. (4) can be further simplified as
 dpji(r)
l p;—l; = Z ij,mn(t)pmn(t)a (7)

m,n

which is similar to Eq. (1) except that the dimension here is
the square of the corresponding dimension in Hilbert space.
The structure of H is specifically shown in the illustrations in
Sec. III.

B. HE-OD procedures

The definition of quantum pathways for open quantum
systems is analogous to that for closed systems [18-20,22], but
with the addition of environmentally induced transitions along
with those that have the dual character of being associated with
the system (i.e., dipole) and the environment simultaneously.
In Liouville space, the density operator |p(¢))) at time ¢
evolves from the density operator |p(0))) at time 0, through
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the generally nonunitary evolution operator U(¢),

lp())) = U@)]p0))). (®)

The time dependence of the evolution operator can be derived
from Eq. (7),

idZ/I(t)

T H@OU®@), (€))

which can be expressed through a Dyson expansion in
Liouville space,

Uy =1+ (—i)/ H(t1)dt
0

+(—i)2/ H(tz)/zH(tl)dtldtz—i-u-. (10)
0 0

The transition amplitude from the the initial state |aa)) (i.e.,
state |a) in Hilbert space) to the final state |bb)) (i.e., state |b)
in Hilbert space) is given by ((bb|U(t)|aa)), which can be
written as a summation of quantum pathway amplitudes,

(Wbl laa) = Y- Uy, an

nlplg....)
with

YCART N N PN (4 1)
ubbaaln 1 2 2 ]l(t)

— (—i)" /O (BbIHED 1))
x / s T, yln2))
0

5]
X .o X / (L H () aa))dt, . . . dt,_dt,.
0

. Uy lae byl
Here the amplitude L{Z;;;l Haabe2hD (4 corresponds to

the transition from state |aa)) to state |bb)) through
the sequence of n intermediate steps |aa)) — |ljl1)) —
coe > I oL 0)) = | _yl,—1)) — |bb)), which constitutes
an nth-order pathway linking state|aa)) and state|bb)).

Similarly to the operations of HE-OD in a closed Hilbert
space, the HE-OD methodology in Liouville space also con-
sists of encoding the Hamiltonian 7 (¢) — H(¢,s) in a special
fashion as a function of a variable s such that each relevant
pathway amplitude in Eq. (11) has a unique signature in the
output ((bb|U(t)|aa)) — ((bb|U(t,s)|aa)) [18,23,25,26]. In
our simulations, an encoding is performed with the aid of the
elements in the matrix I'

Vit YiLe Y1l,dd
V12,11 Y1212 - VI12,dd

I'= . ) ) ) , (12)
Ydd11  Vdd,i2 Ydd,dd

and the detailed use of I" is evident below and in the figures.
Importantly, there is flexibility in the choice of the elements
of I' (some of which may be 0) in keeping with the goal
of uniquely identifying the desired pathway amplitudes in
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Eq. (11) from the output ((bb|U(t,s)laa)) as a function
of s.

In simulations, the HE-OD procedure consists of a sequence
of N calculations at s = 1,2,...,N, each resulting in an
encoded system output [i.e., here, an element of U(t,s), on
the left-hand side of Eq. (15)]. During the encoding step, any
desired element of the Hamiltonian matrix (H) ., can be
modulated with an encoding function of s conveniently taken
to have the Fourier form exp(27iy i mns/N) such that

(H)jk,mn g (H)jk,mnezmwk’mnsﬂ\], § = 1721 ...,N. (13)

Then Eq. (9) becomes

LdU(t,s)
! dt

H lleZNiyn,nX/N 21iyin,aas/N

Hit,qae
= : : : Utt,s),

Haa 116277%4.115/1\/ Haa ddeZHi}’dd,ddS/N

(14)
whose solution is given by
"(ln et ol yln—a, . lyly)
{(bblU(t,s)|aa)) Z bbaal 1 2eslil) gy
nilplg...}
USRS LUl
X MZénmi 1shyaln 1)( ) (15)
with
n(,_ o1 _ylaa,.. 1 1)
Mbb,aa (s)
= eXP [271¥u 11l sbyatiinS/ N, (16)

Yol b1l yla—a,. 1i11)

= Vobt! ey t Vi lr ol T Vil aa 17

The frequencies {yji .} are chosen as special positive
integers (or 0 in some cases) to make the set of relevant
frequencies Y, 1, _,i,....1;1;) unique for each investi-

gated speciﬁc pathway. As a result, the decoding functions
}’l(l” l’l 1s Z“_,,l,, Dyeeny l 11)

Mbb

1nvest1gated pathways:

are orthogonal and unique for the

N
l n(l/,lln—l:l/,zln—Zsma[{ll) * ﬂ/(P/,ll)n—l:P/,zpnfzwmp/ll’l)
WZMbb,aa (S) Mbb,aa (S)

= 0, o1 )yl ) (D) Pact Py Pazeves P P (18)

Due to their orthogonality, the amplitudes

(RN (AP | .
I/{Z;’L’ml Hin2n 1)(t) in Eq. (15), and, as a result,

those in Eq. (11), can be readily computed by the inverse
fast Fourier transform of the modulated matrix elements
Upp.aa(t,s). The physical interpretation of the extracted
amplitudes can be understood through knowledge of the
relation between the frequencies Yuq_ 1, .0 ,1,...;1;) and
the corresponding pathways driven by the structure of the
Lindblad equation and the meaning of the terms in Eq. (11).
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FIG. 1. Structure of the two quantum systems: model (a) and
model (b). Arrows indicate dipole allowed transitions in each model.

III. ILLUSTRATIONS

In this section, the effect of the environment on the
controlled quantum dynamics is explored in the context of
population transfer from an initial state |aa)) to a final state
|bb)). For convenience, the density operator in Liouville space
is arranged as

P11
P12

o)) = | o |. (19)
021

Pdd
Two different open quantum systems are employed to demon-
strate the capabilities of the HE-OD procedure to extract the
pathway amplitudes in Liouville space. As shown in Fig. 1,
models (a) and (b) have, respectively, one and two routes
linking the initial and target states. The figure shows that
only the nearest-neighbor transitions are induced by dipole
coupling in these systems. The Lindblad operators along with
the numerical values of the parameters are chosen to induce the
same transitions (i.e., only between nearest-neighbor levels)
with comparable amplitudes as those by corresponding terms
in the Hamiltonian. In this case, the environmental coupling is
strong, consistent with the systems explored earlier [36]. The
control fields E(¢) are taken to have the form

E(y=e "3 Z A, cos(uit + 6)), (20)

where T = 8268.221 (200 fs) and o = 1240.23 (30 fs). Unless
otherwise noted, all the quantities in this paper are given
in atomic units. In the following simulations, only resonant
frequencies {v;} of the allowed transitions are included in
the control fields, and the corresponding amplitudes {A;} and
phases {6;} are optimized with a genetic algorithm [39]. The
objective functional subjected to minimization is

JIE()] = |O[E(t),n] — Or|* + BF (21)
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with

O[E(t),n] = Tr[p(Ty)Ib)(b]] = (blp(Ty)Ib),

F=) (A
1

(22)

Here Or is the target yield, and 7 is the coupling strength
between the quantum system and the environment [see Eq. (4)].
By projecting the density matrix o(7y) at the final time T
onto the target state |b), we can obtain the outcome O[E(t),n]
produced by the laser field E(¢) along with coupling to the
environment of strength n. F is the fluence of the control field
weighted by a positive constant 8. Therefore, the minimization
of the objective functional J[E(¢)] aims to achieve the
target yield with a bias towards a lower laser intensity. In
our previous work [36], cooperation between environmental
processes and laser fields was found when seeking modest
control yields Or with a strongly interacting environment.
The mechanistic origin of this finding was hidden in the overall
dynamics, and HE-OD is employed here to reveal its nature.
J

B1 £12 0 —&12
e12 B2 £23 0

0 £23 B3 0

—&12 0 0 Ba

H@) = | inan  —¢n 0 £12
0 0 —€12 0
0 0 0 —E&23
0 0 0 0
0 0 0 0

with

. . a3 [ . a3
Bi = —inap, pr=—wy— l77<0512 + —>, B3 = —w3 — —n(ap +a23), Ba=awr— H7<Ollz + —>,

2

Bs

Bo = —inas,

and &;; = p;jE(t). The parameters in the simulations
are w, = 0.0365493, w; = 0.0651164, i, = 0.069061 1,
a3 = 0.083498 5, ajp = 0.0895 and a3 = 0.1942.

With the target yield Or being 5% and the spectral
amplitudes {A;} each having an upper limit 0.005, numerical
simulations are performed to seek optimal laser fields for dif-
ferent decoherence strengths (1) and circumstances. As shown
in Table I, there is clear evidence for cooperation between
the dynamics induced by the laser field and the environment.
For example, when 7 = 4.8378 x 1073, the yield of the
field optimized with the environment present [O[E°P(t),n] =
5.00%] is much larger than that either through the environment
acting alone (O[E(¢) = 0, n] = 2.07%) or in the case of the
field alone (O[EP(¢t), n = 0] = 0.92%), and the cooperative
result of 5.00% is larger than the sum of the latter two yields
(2.99%). The cooperation effect for modest control yields is
consistent with a previous study [36], while the cooperative
effect will generally be absent when seeking high yields, where
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A. Model (a)

The first model, (a), in Fig. 1 is a three-level system with
target state |3), and the corresponding matrices in Eq. (4) are

0O 0 0 0 wup O
0 w 0 w=\unr2 0 uxl|,
0 w3

Hy = ,
0 0 w3 O
0 12 0
Li=Ly=1]0 0 0],
0 0 0
0 0 0
Ly=L;f=10 0 o],
0 0 0

where only Lindblad operators associated with the nearest-
neighbor transitions are considered.

The matrix form in Liouville space of the Hamiltonian ()
in Eq. (9) is

in()llz 0 0 0 0
—€12 0 0 0 0
0 —&12 0 0 0
€12 0 —&23 0 0
Bs 23 0 —&3  inaxy |, (23)
£23 Be 0 0 —&n3
0 0 B e12 0
—£23 0 €12 Bs €23
inay; —&xs 0 €23 Bo

2 2

. . (o i . (o
—in(ap +a3), Ps=wr— w3 — l77<7 +0123), Br=w3 — 577(0!12 +a3), Pyg=w3—wy— ”7(7 +0623),

(

the environment will often fight against the influence of the
field. In the following, the case of n = 4.8378 x 1078, giving
the yield O[EP(r) = 0, n] = 5%, is taken as the example to
quantitatively identify the cooperation mechanism.

In order to illustrate the flexibility of HE-OD and its ability
to give different perspectives on the mechanism, two types of
encoding schemes are adopted for this open quantum system,
and the encoding matrices are, respectively, taken to be

o 1 0 5 17 0 0 0 0
1 0 21 0 33 0 0 0 0
0 21 0 O 0 41 0 0 0
5 0 0 0 59 0 68 0 0
=117 33 0 59 0 77 0 83 101
0O o0 41 o0 77 0 0 0 109
0O 0 0 68 O 0 0 111 0
0o o0 o0 0 83 0 111 0 127
o o o0 o0 100 109 o0 127 O
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TABLE I. Yields (in percentage) of model (a) from various laser fields with different environmental strengths for the low objective yield
of Oy =5.0%. The column “O[EP(t),n]” gives the yield from the optimal field E°P(¢) determined in the presence of an environment of
strength n; the column “O[E(t) = 0,n]” is the yield obtained with the systemly driven by the environmental Lindblad term; the column
“O[E®°®(t),n = 0]” is the yield from the control field alone, where the field is determined in the presence of the Lindblad term at the specified
value of 7 (i.e., the field is taken from the corresponding cases in the column labeled O[EP(¢),n]). The yield with E°P(¢) at n = 0 is only 2.68%
due to the limitation on the field amplitudes in Eq. (20). The collective results show clear cooperation between the coherent dynamics and the
environment, as explained in the text. The last column presents the fluence F' determined from the optimal fields in the cases O[E(¢),n],
clearly showing that a diminished fluence is sufficient when the field cooperates with the environment.

n O[E®(1),n](%) O[E(@) = 0,n](%) O[E(t),n = 01(%) F

0.00 2.68 0.00 2.68 5.00 x 1073
1.20945 x 1073 5.02 0.61 2.55 4.875 x 1073
2.4189 x 1078 5.02 1.14 1.7 3.981 x 1073
4.8378 x 1078 5.00 2.07 0.92 2.850 x 1073
and of all key “inelastic” transitions (e.g., ((ii|{{|jj))), including

0
1
0
1
=123
0
0
0
0

coco~ocwo~
coo~ococowo
cowo—~coor~
Swowo~o~8
Noocowo~oo
oc—ococowocoo
~“or~owcooco
N

The original Hamiltonian 7 (¢) is non-Hermitian, as will
be the case for its modulated form H(t,s). Despite the
non-Hermitian nature of H(¢) and H(z,s), both matrices are
bounded such that the respective Dyson expansions converge
in Egs. (11) and (15). However, some numerical stability
concerns can arise when solving the dynamical equations
for U(t) and U(t,s). A similar special case of non-Hermetian
modulation was treated in closed system dynamics [18]. The
diagonal elements of I' are all taken to be 0, corresponding
to no modulation of the diagonal elements of H(¢), and this
was done to avoid numerical stability issues. These missing
modulation terms correspond to “elastic” transitions of the
type ((ii|l{|ii)) in one or more places possibly occurring
in the individual Dyson terms in Eq. (11). Although their
presence will be hidden in the extracted pathway amplitudes,
the lack of diagonal modulation will still permit determination

any relevant elastic contributions, in the mechanism. This
conclusion is evident later from the fact that the extracted
Dyson amplitudes sum up to the true value obtained by directly
solving the Lindblad equation. In the first type of encoding
scheme, I'|, each independent nonzero and nondiagonal ele-
ment of the Hamiltonian H(¢) (i.e., M, j;») will be modulated
by a specially chosen frequency (i.e., y;iv,jj-). In particular,
as mentioned in Sec. II, we select y;; ;i carefully so that
each pathway of potential interest has a unique modulating
frequency, Yl luer L hy2vlil1)s in Eq. (17). Table II shows
the pathways extracted by HE-OD with amplitudes having
magnitudes larger than 0.001. These significant pathway am-
plitudes all have essentially zero phase, thereby demonstrating
a high degree of constructive interference regardless of the
physical origin of the pathway leading to the target state. The
pathways can be classified into three types: (i) dipole-induced
pathways, (ii) dipole-environment-induced pathways, and (iii)
exclusively environment-induced pathways. For example, the
dipole-induced pathway |11)) — |12)) — [13)) — |23)) —
|33)) utilizes the two dipole operators (1415 and pi73) according
to Eq. (23), the dipole-environment-induced pathway |11)) —
[12)) — |22)) — |33)) exploits both the dipole operator (i,
and the Lindblad coupling term o3, and the exclusively
environment-induced pathway |11)) — |22)) — |33)) is only
related to the two Lindblad coupling terms o, and «p3. We
also note that symmetric pathways have the same magnitude

TABLE II. Magnitudes and phases of significant quantum pathway amplitudes of model (a) when 1 = 4.8378 x 10~ in Table I with the

encoding matrix I';.

Type Pathway Pathway frequency Magnitude Phase
Dipole induced [11)) — [12)) — |13)) — |23)) — |33)) 172 1.222 x 1073 1.683 x 1072
[11)) — |21)) — |31)) — |32)) — |33)) 311 1.225 x 1073 —1.692 x 1072
[11)) — 12)) — |22)) — |32)) — |33)) 244 1.216 x 1073 6.861 x 1072
[11)) — |21)) — |22)) — |23)) — |33)) 250 1.221 x 1073 —6.776 x 1072
[11)) — |12)) — |22)) — |23)) — |33)) 220 1.195 x 1073 2.428 x 1072
[11)) — |21)) — |22)) — |32)) — |33)) 274 1.197 x 1073 —2.417 x 1072
Dipole environment induced [11)) — |12)) — |22)) — |33)) 135 9.069 x 1073 8.126 x 1072
[11)) — |21)) — |22)) — |33)) 165 9.069 x 1073 —8.126 x 1072
[11)) — |22)) — |23)) — |33)) 203 5.526 x 1073 —5.462 x 1072
[11)) — 122)) — |32)) — |33)) 227 5.525 x 1073 5.466 x 1072
Exclusively environment induced [11)) — |22)) — |33)) 118 2.045 x 1072 6.638 x 1071
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TABLE III. Magnitudes and phases of significant quantum pathway amplitudes of model (a) with the encoding matrix I', for n =
4.8378 x 1078 in Table I. The amplitude in each case reflects the sum of all terms of a particular pathway type; taking a sum of the amplitudes
is meaningful, as the phases are all essentially 0. The results are in accord with summing the like pathway types in Table I1.

Type Pathway

Pathway frequency Magnitude Phase

Dipole induced [11
[11
[11

) — (12

)

)
[11)

)

)

- 21

) — [13)

)
— |12)

)

)

— |31)
- 22)
— |22)
— [12)) — [22)
- 21)) — [22)
111)) — [12)) — |22)
I11)) — [21)) — |22)
I11)) — [22)) — |23)
111)) — [22)) — |32)

[11)) — |22)) — [33))

- 21
11
11

vvvvvv
=SS
RS

Dipole environment induced

= = = =

Exclusively environment induced

— |23)) — |33
— 132)) — |33
— |32)) = |33
— [23)) — |33
— [23)) — |33
— |32)) = |33
— |33)
— |33)
— |33)
— |33)

16 7.258 x 1073 —4.312 x 1077

===
===

99 1.808 x 1072 —2.033 x 1071

37 1.103 x 1072 —2.537 x 1075

= = = =

120 2.045 x 1072 3.294 x 10714

and phases of opposite sign, although the latter difference
is small. For example, pathways |11)) — |22)) — |23)) —
[33)) and |11)) — |22)) — |32)) — |33)) only differ in the
symmetric intermediate states |23)) and [32)). All of the
amplitudes in Table II add up to give ~ 5.68%, and the
difference from the correct total value of O[EP(t),n] =
5% comes from a large set of other pathways (not shown
here) with much lower amplitudes but with opposite phases
~ m. For example, the magnitudes for pathways |11)) —
[22)) — |12)) — |22)) — |33)) (pathway frequency, 184)
and [11)) — |22)) — |21)) — |22)) — |33)) (pathway fre-
quency, 236) are both ~ 0.6 x 1073, with respective phases
~ g £+0.1 x 107", Similarly, the respective magnitudes and
phases of pathways|11)) — |22)) — |23)) — [22)) — |33))
(pathway frequency, 272) and |[11)) — |22)) — |32)) —
[22)) — |33))(pathway frequency, 284) are ~ 0.75 x 1073
and ~ 7 +0.066 x 107!, The collective set of additional
pathways makes a slightly destructive interference contri-
bution, to finally yield the correct total amplitude of 5%.
Thus, the dominant picture is one of constructive cooperative
interactions between the dynamics induced by the field E(¢)
and the environment.

With the first encoding scheme, '}, symmetric transitions
associated with the same dipole matrix element (i.e., |[11)) —
[12)) and |11)) — |21)) are both induced by i) can be
distinguished. However, this is not the case in the second type
of encoding scheme, I', which produces a reduced image
of the mechanism. The frequencies for w», w3, o2, and
a3 are 1, 7, 23, and 97, respectively. Table III shows the
extracted pathways and magnitudes of the amplitudes that are
higher than 0.001. Their cooperative behavior can be clearly

J

60 0 0 O 0 w2 pi3
{0 @ O 0 _m2 0 0
Ho=1o 0 o o] *=|us o o
0 0 0 oy 0 pos s

0O 0 O 0 0

0o 0 O 0
L=Li=|g o o Yo | Bs=Li=|o
o 0 O 0 0

seen in their phases’ all essentially being 0. The sum of the
amplitudes of each separate class of pathways in Table II
coincides with the corresponding summed values listed in
Table III. This confirmation supports the freedom in choosing
encoding schemes.

B. Model (b)

The second model (b) in Fig. 1 is a double-route open
quantum system. We assume different decoherence strengths
along the two routes, leading to the Lindblad equation’s having
the form

ad

% = —ilHo—pE(®),p(0] + 1. FL{p(®)} + neFrip(®)},
(24)

with

1 1
Frip@®)} = Z (L_/'PLf —=LTLjp— —PLj-rLJ)

j
j=1, 4 2 2
(25)
and
Frlo®}= Y (L, = Lpn o — Lo,
RP = iPL; St iP 2,0 jLi)-
j=5,-.8
(26)

The distinctions in Eqgs. (25) and (26) reflect the prospect
that different states can interact in particular ways with the
environment, with accordingly distinct Lindblad operators and
associated strengths n; and ng along the two routes [i.e., left
and right, respectively, in Fig. 1(b)]. The target state is |4), and
the corresponding model matrices in Eq. (24) are

0 0 A X12 0 0
24 o+ 0 0 0 0
we ] BT =1o o0 o o
0 0 0 0 0
0 Jas 0 000 0
0o 0 0 000 0
o o ol “=L=l0 0 0 vml
0o 0 0 000 0

where only Lindblad operators associated with the nearest-neighbor transitions are included.
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The Hamiltonian H(#) in Liouville space is the 16 x 16 matrix

PHYSICAL REVIEW A 93, 053407 (2016)

Bi g2 €13 0 —epn inap 0 0 —&13 0 ingays 0 0 O 0 0
€12 ,32 0 E24 0 —€12 0 0 0 —&13 0 0 0 0 0 0
€13 0 /33 €34 0 0 —€&12 0 0 0 —&13 0 0 0 0 0
0 €24 €34 ﬂ4 0 0 0 —€&12 0 0 0 —&13 0 0 0 0
—€12 0 0 0 ,35 £12 €13 0 0 0 0 0 —&24 0 0 0
inpoary  —epp 0 0 e Bs O £24 0 0 0 0 0 —e 0 N
0 0 —€12 0 €13 0 ,37 E34 0 0 0 0 0 0 —&24 0
H(t) _ 0 0 0 —€12 0 €24 €34 ,38 0 0 0 0 0 0 0 —&24
—&13 0 0 0 0 0 0 0 ,39 €12 €13 0 —&34 0 0 0 ’
0 —&13 0 0 0 0 0 0 €12 ,3]0 0 €24 0 —E&34 0 0
ingeys 0 —ei3 0 0 0 0 0 €13 0 Bu esa 0 0 —ex ingoss
0 0 0 —&13 0 0 0 0 0 €24 €34 ,312 0 0 0 —&34
0 0 0 0 —&24 0 0 0 —&34 0 0 0 ﬂ13 €12 €13 0
0 0 0 0 0 —&4 0 0 0 —&34 0 0 €12 ,314 0 €24
0 0 0 0 0 0 —exu 0 0 0 —e3 0 e3 O /315 €34
0 0 0 0 0 inposs 0 —&24 0 0 ingozs —e34 0 ex £34 Bis
with
B = —i(nra +nraiz), fr=—wr— i(ﬂLOllz + w), B3 = —w3 — i(nROlm + w>,
Bs = —ws — %(ﬂLalz + nrai3 + Nros + nros),  Ps = wr — i<77La12 + w>, Be = —inL(aiz + a24),

i )
Br=wr — w3 — E(nLaIZ + nrous + Npoas + NRrozs), Pg = wr — w4 — i (ﬂLOé24 +

. NLo2 + NRO34

Bo = w3 _l<77R0513 + — 5
. NROY3 + NL24

Bio = w3 —wy — i (UROZ34 + —
N2 + NRA34

> >, Bis = w4 — w3

Bla = w4 — w3 — i(ﬂLOl24 +

and ¢;; = p;; E(t). The parameters of the system are w, =
0.0583965, w3 = 0.0573139, ws = 0.1171, p1n = 4.2275,
M3 = 2.9931,M24 = 10216, MU34 = 0.9,&12 = 0.0895,0[24 =
0.1942, oj3 = 0.1164, and a34 = 0.0885.

In the optimizations, the target yield Or and upper limit
of the spectral amplitudes {A;} are, respectively, set to 5%
and 0.00005. The results are listed in Table IV, and there is
evidence for cooperation between the dynamics induced by
the optimum field and the environment. For example, when

053407

NLo2 + NRA34
2

)

I .
), Blo = w3 —wy — E(nLO‘IZ + nrouz + npoos + nrozs), P = —ingr(az + ass),

I
>, Bz = w4 — E(nL(XlZ + nros + Npoos + NRo4),

NROI3 + NL04

> >, Bie = —i(Npot24 + Nrozs),

- i(’?ROm +

(

nL = ng = 2.4189 x 1078, the yield of the field determined in
the presence of the environment is O[ E°P(¢),n.,nr] = 5.00%,
which is much larger than for either the environment acting
alone (O[E(t) = 0,n.,nr] = 1.68%) or the field acting alone
(O[E°P(t),n. = ng = 0] = 0.45%); the sum of the latter two
cases (2.13%) is also much smaller than the situation produc-
ing 5.00% where the field and environment cooperate. The lat-
ter case of O[EP(t),n,nr] = 5.00% atny = ng = 2.4189 x
108 is subjected to an HE-OD mechanism analysis below.
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TABLE IV. Yields (in percentage) of model (b) from various laser fields with different decoherence strengths for the low objective yield
of Oy = 5.0%. Due to the imposed constraints of pulse amplitudes {A;}, the yield induced by the optimal field determined at n, =ng =0
can only reach a value of 1.05%. The column “O[E°P(t),n.,ng]” gives the yield from the optimal field E°P(¢) determined in the presence
of the environment of strengths 7, and ng; the column “O[E(t) = 0,n.,nr]” is the yield obtained with the system exclusively driven by
the environmental Lindblad terms; the column “O[E°’(t),n, = ng = 0]” is the yield from the control field without system-environmental
coupling, but the control field is determined in the presence of the Lindblad term at specified values of 1, and 5z (i.e., the field comes from the
corresponding cases in the column “O[E°P(¢),n.,nr]).” The collective results show clear cooperation between the coherent dynamics and the
environment, as explained in the text. The last column gives the fluence F determined from the optimal fields in the cases O[EP(¢),n.,nr],
showing that a modest reduction in fluence is still sufficient when the field cooperates with the environment.

e Nk O[E*®(t),nL,nr1(%) O[E(@) = 0,n.,nr1(%) O[E(1),n = ng = 0](%) F

0.00 0.00 1.05 0.00 1.05 9.803 x 10~°
2.4189 x 1073 0.00 5.00 1.14 0.662 8.911 x 107°
0.00 2.4189 x 1078 1.72 0.718 0.683 9.997 x 10~°
2.4189 x 1073 2.4189 x 1078 5.00 1.68 0.45 9.153 x 10~°

For simplicity of presentation, only the second type of encoding scheme described in Sec. III A is adopted here,

0O 1 17 0 1 33 0
1 0 0 3 0 1 0

17 0 0 21 0 0 1

0O 3 21 0 0 0 0

1 0 0 0 o0 1 17

33 1 0 0 1 0 0

0O 0 1 0 17 0 0
|0 0 0o 1 0 3 2
37117 o 0o 0 0 0 O
0O 17 0 0 0 0 0

59 0 17 0 0 0 0

0O 0 0 17 0 0 0

0O 0 0 0 3 0 0

0O 0 0 0 0 3 0

o 0 0 0O 0 0 3

0O 0 0 0 0 42 0

where the modulating frequencies for w2, o4, K13, K34,
a2, 04, 13, and asq are 1, 3, 17, 21, 33, 42, 59, and 68,
respectively.

Table V lists the extracted pathway amplitudes whose
magnitudes are larger than 0.001; only the amplitude sums
are shown for each class of pathway. The dipole-environment-
induced pathways have two types, with phases either near 0
or near ir. There is overall constructive interference, with the
pathway amplitudes having phases near 0 being dominant,
although the amplitudes near m destructively interfere with
the latter ones. As both types simply have phases of ~ 0
or ~m, we may conclude clear balanced cooperation in
the dynamical mechanism, regardless of its origin being in
the system and/or the environment. We also note that the
pathways modulated at frequencies 75 and 77, which are
along the left route in Fig. 1(b), have the same net transition,
[11)) — |22)) — |44)), and thus can be assigned to the “com-
posite pathway” (|[11)) — |22)) — |44)))*, in accord with the
analogous terminology in closed-system HE-OD analysis [18].
There are extra Rabi-like transitions along the pathways with
frequency 77. For example, the mechanistic pathway |11)) —
[12)) — |11)) — |22)) — |44)) involves a transition from
[11)) to |12)) and then a return from |12)) back to |11)).

Noo~ooco

WO OO ODODOOO

7 0 59 0 0 0 0 O
o 17 0 O O O 0 O
o o 17 0 0 0 0 O
o o o0 17 0 O O0 O
o o o o0 3 0 0 O
o o o0 o0 o 3 0 42
o o o o o o 3 o0
o o o0 o0 o o o0 3
o 1 17 0 21 0 O OF
1 0 0 3 0 21 0 O
17 0 0 21 0 O 21 68
0o 3 21 0 0O O O 21
2.0 0 O O 1 17 O
0o 21 0 0 1 O O 3
0o o 21 0 17 O O 21
0 0 68 21 0 3 21 O

(

This Rabi flop is induced by the transition dipole operator
12- A related situation is along the right path in Fig. 1(b).
The composite pathways of (|11)) — [33)) — |44)))* have
a lower amplitude than those of (|11)) — [22)) — |44)))*
(not shown in Table V). In summary, although mechanistic
contributions along the left and right routes in Fig. 1(b) are
not equal (i.e., due to distinctions in the dipole elements
and Lindblad coefficients), they still cooperate to achieve the
control goal. Similar behavior has been found in the optimal
quantum control of a similar closed system [24].

IV. DISCUSSION AND CONCLUSIONS

The nature of control mechanisms in open system dynamics
is of much interest in a variety of physical circumstances,
and this paper extends the HE-OD methodology to allow
for the treatment of such systems. The open-system HE-OD
procedure illustrated here to analyze the population transfer
in two simple multilevel systems may be easily generalized to
more complex open systems, environments, observables, and,
especially, non-Markovian models. In the present work, three
types of pathways are studied: (i) dipole-induced pathways,
(i1) dipole-dissipation-induced pathways, and (iii) exclusively
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TABLE V. Magnitudes and phases of significant quantum pathways of model (b) with the encoding matrix I's when n, = ng = 2.4189 x
1073, Only the sum of amplitudes is shown for each type of mechanism. Cooperation, including constructive and destructive interference, is

evident, with the pathway phases being either ~ 0 or ~ .

Type Pathway

Pathway frequency Magnitude Phase

Dipole induced [11
[11
[11
|11
[11
[11

Dipole environment |11)
induced [11)
[11)) — [12)
[11)) — |12)
[11)) — |12)
[11)) — [12)
)
)
)
)

Yy — |12
Yy — |21

) — |14
)

) — [12)
)
)

— |41

)) — [24
)
— |22)
)
)

— (42

)y — |21
Yy — [12)) — |22
Yy — |21)) — |22)
— [12)) — |22)
— 21)) = |22
— |11)) = |12
— [11)) — |21
— [22)) — |12
— 122)) — |21
— [22)) — |12
— 122)) — |21
[11)) — |21)) — [11)) — |12
[11)) — |21)) — |11)) — |21)
[11)) — |12)) — |11)
[11)) — |21)) — |11)
[11)) — |22)) — |21)
[11)) — |22)) — |12)
— [13)) — |11)) — |12)
— |31)) = [11)) — |12)
— |13)) — |11)) — |21)
— [31)) — |11)) — |21)

[11)) — 13)) — |33)) — |44
[11)) — |31)) — |33)) — |44

11)) — 122)) — [44))
[11)) — 133)) — [44))

— |22)) — |24

— |24

—_— — ~— ~— ~— ~—
= ==
=SS

— |44
— |22
— |22
— |22
— |22
— |22
— |22
— |22

[11)) — [21)
[11)) — [21)

TS
—_— — T — ~— ~—
e — = — = — — ~—

T -

— [22)

vvvv
= = = =

[11)
[11)
[11)
[11)

— |22
=22

= = = <
===
Pt i

Exclusively environment
induced

V) — |44
)y — |44
— |42)) — |44
)y — |44
)y — |44
— |42)) — |44
— |44)

)
)
)
)
)
»

— |44)
— |44)
— |44)
— |44)
— |44)
— |44)
— |44)
— |44)

oS
TS

— [22)
— [22)) — |44)) 77
— [22)) — |44))

) — |44))
— [22)) — |44))
— |22)) — |44))
— |44))
— |44))
— |44))

=SS =

)
)
- [22)
)
)

8 2.279 x 1072 1.085 x 1071

44 3.443 x 1072 1.476 x 10714

46 5.009 x 107° 7 +4.441 x 107

)
)
)
)
)
)
)
)

2,641 x 107* 7 —2.857 x 107

78 1.848 x 1073 7 +5.136 x 1071

102 4.670 x 1073 1.778 x 10714

3.945 x 1075
—7.565 x 10715

75 1.031 x 1072
127 6.336 x 107*

dissipation-induced pathways. Under the conditions studied
with a strongly interacting environment, the extracted pathway
amplitudes show that the three types of pathways generally
interfere constructively when modest control yields are sought.
The detailed cooperation between the optimal laser fields
and the environment identified by HE-OD is consistent with
the previous conclusion [36], although the origin of the
phenomenon was not understood before. Naturally, upon the
seeking of high yields cooperation will likely break down,
but HE-OD may be applied as well in these circumstances to
reveal the detailed nature of the mechanism. In our work, only
Lindblad operators associated with nearest-neighbor transi-
tions are considered. Moreover, the dephasing effect associated
with diagonal Lindblad operators is absent in the present
model. For simulations of non-Markovian quantum systems,
master equations involving memory terms appear, and even
more complex models may be necessary in some cases.
Nevertheless, the general HE-OD principles and procedures
may be appropriately extended to analyze the mechanistic
pathway dynamics for any such models.

HE-OD for open systems could be amenable to experimen-
tal implementation with appropriate operations. Experimental
demonstration of HE-OD in closed systems has already been
realized by modulating the field, and the same procedure
would apply to the system (i.e., Hamiltonian) portion of the
dynamical mechanism analysis of open dynamics. For a fuller

picture of the mechanism, access to environmental modulation
will also need to be available. In many situations, the sample
temperature or pressure can be readily manipulated as a partial
form of environmental modulation. In this circumstance,
the environmental modulation consists in dialing the overall
strength of the environmental interactions by modulating 7 in
Eq. (4) (e.g., in the context of a gas phase system colliding
with the atoms or molecules of a buffer gas, an increase in
pressure results in a corresponding increase in the collision
rate). It is also possible to perform a series of experiments
in which the types of atoms or molecules that make up the
environment are systematically changed (i.e., similarly to
changing the “solvent” containing the system under study).
This situation may allow addressing some specific matrix
elements of the Lindblad operator (e.g., by systematically
choosing environmental atoms or molecules with increasing
environmental medium polarizability that could strengthen
the coupling to the system’s electronic states). It is similar
to the modulation introduced in this paper, but with only a
discrete number of points (i.e., there is no continuous way
of modulating the environment in this fashion). On the other
hand, in some situations it may be feasible to dynamically
modulate the environment (e.g., through separate encoded field
excitation that has a negligible direct effect on the system) in
much the same fashion as done with the control interacting with
the system itself. In this case there may be continuous access
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over some of the matrix elements of the Lindblad operator,
allowing for environmental modulation similar to that outlined
in this paper.

In conclusion, we have introduced a practical tool for
the study of environmental interactions and demonstrated
its application in the context of numerical simulations of
the Lindblad equation. The versatility of HE-OD can enable
a variety of additional analyses of open-system dynamics
simulations as well as the prospect of direct implementation
in the laboratory.

PHYSICAL REVIEW A 93, 053407 (2016)
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