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Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field
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Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and
multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field
of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of
the Schrödinger equation and the Green’s function for the electron moving in an arbitrary laser field and crossed
constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum
of the ejected electron are derived. Using the “imaginary-time” method, the extremal subbarrier trajectory of
the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within
the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the
Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the
Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of
numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the
tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary
angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and
low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary
laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The
analytical consideration and numerical calculations also showed that the difference between the ionization rates
for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the
multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper
generalizes the results obtained earlier [V. M. Rylyuk, Phys. Rev. A 86, 013402 (2012)].
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I. INTRODUCTION

The interaction of an intense laser radiation field with matter
has been investigated extensively during the past 30 years
[1–11]. This was particularly supported by the rapid develop-
ment of lasers producing high intensities (1014–1015 W/cm2)
that generate forces comparable to intra-atomic forces and
ultrashort pulse durations of the order of femtoseconds (10−15

s) down to attoseconds (10−18 s) [12,13]. Ionization is one of
the effects which characterizes the interaction of light with
matter. The basic concepts of the theory of ionization were de-
veloped by Keldysh [14], who demonstrated that the tunneling
effect and the multiphoton ionization are two limiting cases
of the common process of nonlinear photoionization, whose
character depends on the magnitude of the adiabatic parameter
(Keldysh parameter)

γ = ω
√

2m|E0|
eF

, (1)

where ω is the laser frequency, |E0| is the binding energy of
the level, and F is the magnitude of the perturbing field. The
adiabatic Keldysh parameter can be interpreted as a ratio of
the time τ = b/vat of flight of the electron under the barrier
of the width b = |E0|/eF , moving with the atomic velocity
vat = √

2|E0|/m, to a half period of the laser field (the electron
ejected from under the barrier with highest probability near the
maximum of the electric field): γ = 2ωτ . The dimensionless
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Keldysh parameter (1) also can be defined as

γ =
√

|E0|
2Up

, (2)

where Up = e2F 2/(4mω2) is the ponderomotive (quiver)
energy for a linearly polarized laser field. Tunneling ionization
of atomic states takes place when γ � 1 (so-called adiabatic
regime). This inequality means that the electron overcomes
the barrier for the time which is less than a period of the laser
field, i.e., the ionization proceeds similarly to the case of a
constant electric field. In the opposite case, i.e., for γ � 1
the ionization is a multiphoton process, which is realized
at a relatively high-frequency and low-intensity laser field.
In Ref. [14] was used a tunneling approximation requiring
Up � |E0| and |E0| � �ω.

In the case of a low-intensity laser field, the ionization pro-
cess can be described within the perturbation theory [15]. But,
for a high-intensity laser field it is better to use nonperturbative
methods to calculate the ionization rates. Such is the method
of zero-range potential [16–19], which is an approximate
model for a negative ion. The method of zero-range potential
consists of replacing a deep potential well of a small radius
by a boundary condition at the point of the center of the
well. However, the results of numerical calculations indicate
that the zero-range potential model in which the Coulomb
interaction of the photoelectron with the atomic or ionic
core is disregarded provides only a qualitative description
of the nonlinear ionization even in the simplest case of the
hydrogen atom. Therefore, in the case of ionization of neutral
atoms and positive ions, the long-range Coulomb interaction
of the photoelectron with the parent ion has to be taken into
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consideration. Impressive progress in strong-field laser physics
in recent years has led to the emergence of powerful sources
of coherent radiation in the UV and x-ray wavelength ranges.
Such sources are based on free-electron lasers [20–22]. Typical
values of the Keldysh parameter in experiments [23,24]
amount to γ ≈ 30–100, which correspond to the multiphoton
ionization regime. In this regard, arises the question about
the development of a multiphoton ionization theory in this
range of parameters. The questions considered above were
also expounded in reviews [25–30].

In this paper, we consider the ionization of atoms and
ions in the wide range of the Keldysh parameter subjected
to a perturbation by a high intense elliptical laser beam,
propagating at an arbitrary angle to the constant magnetic
field, with taking into account the Coulomb interaction of the
photoelectron with the parent ion. For this purpose, we find
the exact solution and the Green’s function of the Schrödinger
equation for an electron moving in these fields. On their
basis, using the QQES formalism [31,32] and the method of
imaginary time, we derive the ionization rate with Coulomb
corrections in the tunneling and the multiphoton regimes. In
order to find the Coulomb factor in the tunneling regime as
the first-order correction to the classical action, we employ the
quasiclassical perturbation theory and the method of subbarrier
trajectories, generalized to the case of the presence of a
nonstationary laser field and a constant magnetic field. In
order to correctly describe the Coulomb correction in the
multiphoton regime must be taken into account the distortion
of the subbarrier electron trajectory by the Coulomb field. With
this aim we are making an attempt to generalize the approach
developed in Refs. [33–36] for the case of a linearly polarized
laser field, to the case of an elliptic laser field and a constant
magnetic field. We analyze in details analytical expressions for
the exponential and preexponential factors in the ionization
rate with the Coulomb correction in the tunneling and the
multiphoton limits for small and large magnetic fields. These
expressions show that contrary to the widespread view, the
effect of a constant magnetic field does not always lead to the
suppression of the ionization rate of a weakly bound level. Our
consideration is also completed by numerical calculations of
ionization rates and so-called “stabilization factor” in the field
of UV and x-ray lasers and comparison with the results from
ab initio numerical solutions, and with the experiment where
the interaction of a high-intensity x-ray laser radiation field
with rare gas atoms was investigated. Note also that the effect
of the magnetic field on the ionization probability has been
studied in [37–42].

This work generalizes the results obtained in Ref. [42],
where the tunneling ionization of atoms and ions in an elliptical
electromagnetic wave propagating along a constant magnetic
field was considered, to the case of the multiphoton ionization
and arbitrary angles between a laser beam and the magnetic
field. On the other hand, the ionization probability and the
Coulomb corrections in the tunneling and the multiphoton
regimes obtained in this paper, in the limit H → 0 and for the
special case of a linearly polarized laser field (g = 0), coincide
with the corresponding results obtained in Refs. [34,35].
Besides, the ionization rates obtained in this paper, in the static
limit (ω → 0), coincide with the ionization rates obtained
in Ref. [39] for the case of constant electric and magnetic

fields. Thus, the unified approach adopted in this paper,
basing on the QQES formalism and the exact solution of the
Schrödinger equation for the electron moving in an arbitrary
laser field and constant magnetic field, allows (i) to investigate
peculiarities of the strong-field atomic ionization in the wide
range of the Keldysh parameter in the case, when an elliptically
polarized laser field and a constant magnetic field are present
simultaneously, (ii) to investigate the energy spectrum of
photoelectrons in the presence of the constant magnetic field,
(iii) in the limit when the constant magnetic field vanishes
(H → 0) to get the saddle-point equation and all the known
PPT expansions for ionization rates in the case of an elliptical
laser field [27], and (iv) in the static limit (ω → 0) to get the
known results for the ionization rate in the case of constant
electric and small and large magnetic fields, obtained in the
framework of the “imaginary-time” method and the method of
zero-range potential.

Here, we note the ionization problem induced by an
electromagnetic wave and a magnetic field is also of great
practical importance. Weaker magnetic fields may have a
great effect in semiconductors [43]. Strong magnetic fields
of some mega-Gauss may also be observed in laser-produced
plasmas [44]. The method of magnetic cumulation (explosion-
assisted compression of an axial magnetic field), proposed by
Sakharov in [45,46], made it possible to obtain the record-high
magnitudes H = 15–25 MG. Further progress in this area
gives the hope of achieving 30–100 MG fields [47]. Ultrastrong
magnetic fields can been countered in astrophysics. For
instance, at the surface of white dwarf stars may also be
observed magnetic fields ranging from 2 MG to roughly
1000 MG [48]. White dwarf stars are remarkable in that it is
possible to observe their optical spectra [48,49] which allows
us to study the effect of large electric and magnetic fields on
the atomic levels, primarily for the atoms of hydrogen and
helium. The approach developed in this paper also can be
used for the investigation of the effect of a magnetic field
on the thermally stimulated ionization of impurity centers
in semiconductors by submillimeter radiation [40,50,51] and
the Poole-Frenkel effect [52]. The special case of calculating
the ionization probability in the magnetic field is so-called
the Lorentz ionization, i.e., ionization of atoms and ions
as a result of their motion in a constant or quasistationary
magnetic field [53]. Another interesting area of application
of this approach, based on knowledge of the exact Green’s
function for the electron moving in an arbitrary laser and
the magnetic fields, can be investigation of the high-order
harmonic generation (HHG) in the magnetic field. In particular,
in Refs. [54,55] was shown that a properly chosen combination
of the static electric and magnetic fields can increase both
the harmonic intensity and the harmonic order. Also, the
approach adopted here, on the basis of the numerical analysis
of subbarrier Coulomb-corrected trajectories considered in
Refs. [56,57], can be used for the explanation of the too
large width of the electron momentum distribution during the
tunneling under the influence of a circularly polarized light
pulse [58], an extra longitudinal momentum spread of the
electron arising from strong-field ionization of helium [59,60],
and significant deviations for the location of the center of the
electron momenta distribution at low values of ellipticity of
laser light [61].
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The paper is organized as follows. In Sec. II, we derive the
equation for the complex quasienergy. Section III represents
analytical results in the case of an elliptically polarized laser
beam propagating at an arbitrary angle to the constant magnetic
field. These include (i) energy spectrum of photoelectrons,
(ii) tunneling regime, (iii) multiphoton regime, (iv) the limit
of low frequencies (ω � ωH ), and (v) the limit of large
magnetic fields (ωH � ω). Section IV represents the method
of imaginary time to calculate the Coulomb correction. These
include (i) Coulomb correction in the tunneling regime and
(ii) Coulomb correction in the multiphoton regime. Section V
concludes the work. Appendix A presents the exact solution
of the Schrödinger equation and the Green’s function for an
electron in an electromagnetic wave and crossed constant elec-
tric and magnetic fields. Appendix B presents two approaches
to the determination of ionization rate. Appendix C presents
Kapitza’s method for the calculation of the imaginary part
of the classical action. In the Supplemental Material [63],
the following are considered: (A) energy spectrum of pho-
toelectrons in the quasiclassical case; (B) some limiting cases
of the ionization rate; (C) some limiting cases of Coulomb
factors; and (D) width of the barrier and the emission angle of
photoelectrons.

II. EQUATION FOR THE COMPLEX QUASIENERGY

Let us consider the decay of a weakly bound level induced
by a monochromatic laser field having an arbitrary elliptical
polarization with the electron initially bound by a zero-
range potential and the constant magnetic field H . In the
integral form, the Schrödinger equation for the wave function
�ε(r,t) = exp(−iεt/�) �ε(r,t) of an electron in the field of
potential U (r) reads as

�ε(r,t) =
∫ t

−∞
dt ′eiε(t−t ′)/�

∫
d r ′G(r,t ; r ′,t ′)U (r ′)�ε(r ′,t ′),

(3)
where ε is the complex quasienergy and G(r,t ; r ′,t ′) is the
retarded Green’s function which obeys the equation

(
i�

∂

∂t
− 1

2m

{
−i�∇ + e

c
[A(t) + AH ]

}2)
G(r,t ; r ′,t ′)

= δ(r − r ′)δ(t − t ′). (4)

In Eq. (4), A(t) and AH are the vector potentials of the laser
field and the constant magnetic field H . Here and below,
we neglect the electron spin and indicate explicitly that the
electron charge is negative. The retarded Green’s function
G(r,t ; r ′,t ′) can be represented in the form (see Appendix A)

G(r,t ; r ′,t ′) = − i

�
θ (t − t ′)

(
m

2πi�

)3/2 1√
(t − t ′)

× ωH

2 sin ωH (t−t ′)
2

exp

{
i

�
S(r,t ; r ′,t ′)

}
, (5)

where θ (t − t ′) is the Heaviside function (step function),
ωH = |e|H/mc is the cyclotron frequency, and S(r,t ; r ′,t ′)
is the classical action (A19) for an electron moving in the net
electromagnetic field of the above-mentioned configuration.

For calculating the decay rate we use the QQES formal-
ism [31,32] (see also Refs. [62,64–68]). In this approach,
the real and imaginary parts of the complex quasienergy ε

determine the position and the total decay rate of the bound
level. In the zero-range potential model, the wave function
�ε(r,t) from Eq. (3), for the electron in s state, satisfies the
boundary condition at r → 0 [16,17,31,32]:

�ε(r,t) 	
(

1

r
− 1

a
− 2i

e

�c

r Af

r

)
fε(t) + O(r),

fε(t) = fε

(
t + 2π

ω

)
(6)

and the following relation:

U(r)�ε(r,t) = −2πδ(r)fε(t), (7)

where a = �/
√

2m|E0| is the so-called scattering length,
E0 is the energy of an electron bound by the zero-range
potential alone, Af is the sum of the vector potentials of
laser and constant magnetic fields, and fε(t) is the new
unknown function. Using Eqs. (6) and (7), we get from Eq. (3)
the integral equation for the unknown complex quasienergy
ε = E − i� and the function fε(t):

(
√−ε −

√
|E0|)fε(t) = 1

2

√
�

πi

∫ ∞

0
dt ′ exp

(
i

�
εt ′
)

×
{
G(0,t ; 0′,t−t ′)fε(t−t ′)−fε(t)

t
′3/2

}
,

(8)

where the function G(0,t ; 0′,t − t ′) is given by Eq. (A18) in
the limit r → 0 and r ′ → 0. This equation has not only the
solution {ε,fε(t)}, but also the set of solutions

{ε + �lω,fε(t) exp(ilωt)}, l = ±1, ±2, . . . (9)

corresponding quasienergies. Equation (8) is the starting point
for the two basic analytical approaches to the determination
of ionization rates. In the next section, we consider each of
these two approaches in details for the case of an elliptically
polarized laser beam propagating at an arbitrary angle to the
constant magnetic field.

III. ANALYTICAL RESULTS FOR THE CASE OF
AN ELLIPTICALLY POLARIZED LASER BEAM

PROPAGATING AT AN ARBITRARY ANGLE
TO THE CONSTANT MAGNETIC FIELD

Now, consider an elliptically polarized monochromatic
laser beam, of frequency ω, which propagates at an angle
θ to the constant magnetic field H (we choose the direction of
H as the z axis). The components of its vector potential are

Ax(t) = − F

ω
cos(θ ) sin ωt, Ay(t) = g

F

ω
cos ωt,

Az(t) = − F

ω
sin(θ ) sin ωt, (10)

where F is the laser field amplitude and g is the ellipticity of
the laser field (−1 � g � +1).
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A. Energy spectrum of photoelectrons

Within the framework of the first approach (see Ap-
pendix B) from Eq. (8) we arrive at the expression for the
ionization rate � in the form of the standard PPT theory [69]:

� 	
∞∑

n=0

∞∑
m>mn

�(n)
m (F,H,ω),

mn = ω0

(
n + 1

2

)
+ λ

(
1 + 1 + g2

2γ 2

)
, (11)

where ω0 = ωH/ω is the ratio of the cyclotron frequency to the
laser frequency, λ = |E0|/�ω is the multiquantum parameter,
mn is the photoionization threshold, and

�(n)
m (F,H,ω) = |E0|

2

(
�

2π

)3/2 ∫ ∞

−∞

Lz

2π�
dpz

×
∫ ∞

−∞

Lx

2π�
dpx

∣∣F (n)
m (px,pz)

∣∣2
× δ

[
En + κ2

4γ 2
(1 + g2) + |E0| − m�ω

]
(12)

are the ionization probabilities for the Landau energy level
with the number n with the absorption of m photons. At the
same time, we note that the functions F (n)

m (px,pz) describe the
probability of each multiphoton process and can be represented
as the product of an oscillating function and exp{−λFq(v)}
(v = Im t), where

Fq(v) =
[

1 + 2εn + 1 − ω2
0 + G2(g,ω0,θ )

2γ 2
(
1 − ω2

0

) ]
v

−
(
1 − ω2

0

)2 − (1 + ω2
0

)
G2(g,ω0,θ )

4γ 2
(
1 − ω2

0

)2
× sinh(2v) − ω0G2(g,ω0,θ )

γ 2
(
1 − ω2

0

)2 sinh2 v (13)

and 2εn = k2
z + (n + 1

2 )/λH , kz = pz/κ , λH = |E0|/�ωH ,
and G(g,ω0,θ ) = g + ω0 cos(θ ). The maximum of this func-
tion is defined by the condition F

′
q(v0) = 0, i.e., by the

saddle-point equation[
1 − 1 + ω2

0(
1 − ω2

0

)2 G2(g,ω0,θ )

]
sinh2(v0) − G2(g,ω0,θ )(

1 − ω2
0

)2
× [1 − ω0 sinh(2v0)] = (1 + 2εn)γ 2. (14)

Let us consider some special cases. In the case of a linearly
polarized laser field (g = 0), in the tunneling regime (γ � 1)
for small magnetic fields (ω0 � 1), the saddle point reads as

v0 	 γ (1 + 2εn)

[
1 −

√
1 + 2εn

6
γ 2 + 3

40
(1 + 2εn)3/2γ 4

]

+ cos2(θ )

2

[
1

γ
√

1+2εn

+γ

2

√
1 + 2εn−γ 3

4
(1 + 2εn)3/2

]

×ω2
0. (15)

The function F (n)
m (pz) = (Lx/2π )

∫∞
−∞ |F (n)

m (px,pz)|2dpx

gives the distribution over Landau energy levels. With taking
into account Eq. (13) in the first order of εn we derive that

F (n)
m (pz) 	 ωH

Lz

γ

λ
exp

{
−2F0

3F
fq(γ,θ,ω0)

}
exp

{
−F0

F
c0εn

}

× [eβ0Ln(−β0) + cos(φ0)], (16)

where F0 is the magnitude of the inner-atomic field, Ln(x) are
the Laguerre polynomials, and

fq(γ,θ,ω0) 	 1 − γ 2

10
+ 9

280
γ 4

+ 3

2

cos2(θ )

γ 2

(
1 + γ 2

6
− γ 4

40

)
ω2

0,

c0 	 1−γ 2

6
+ 3

40
γ 4 + cos2(θ )

2γ 2

(
1+γ 2

2
− γ 4

8

)
ω2

0,

β0 = 2λ cos2(θ )ω3
0,

φ0 	 2kz

γ
sin(θ )

[
2 + cos2(θ )ω2

0

]− πk2
z . (17)

Note that the function Fq(v) in Eq. (13) and the saddle-point
equation (14) depend on the ellipticity g and the angle θ

only via the factor G(g,ω0,θ ). The case G(g,ω0,θ ) = 0 is of
special interest. The condition g + ω0 cos(θ ) = 0 is satisfied
for a linearly polarized laser beam (g = 0) propagating
perpendicularly (θ = π/2) to the constant magnetic field H .
Another more interesting case, where G(g,ω0,θ ) = 0 for a
left-elliptically polarized laser field (g < 0) if the inequality
|g| � ωH /ω holds. In this case the saddle point for γ � 1
takes the simple form

v0 	 γ (1 + 2εn)

[
1 − 1 + 2εn

6
γ 2 + 3

40
(1 + 2εn)2γ 4

]
(18)

and

F (n)
m (pz) 	 ωH

Lz

γ

λ
exp

{
−2F0

3F
(1 + 2εn)3/2

×
[

1 − γ 2

10
(1 + 2εn) + 9

280
(1 + 2εn)2γ 4

]}
.

(19)

In the first order of εn, we have

F (n)
m (pz) 	 ωH

Lz

γ

λ
exp

{
−2F0

3F

[
1 − γ 2

10
+ 9

280
γ 4

]}

× exp

{
−F0

F

(
1 − γ 2

6
+ 3

40
γ 4

)
εn

}
. (20)

Note that the exponential factor in Eq. (20) coincides with the
corresponding expression in Eq. (36) in Ref. [69].

Let us consider the case of constant electric and magnetic
fields. Then, Eq. (13) can be written as

Fq(v,ϕ) =
[

1 + 2εn + sin2(ϕ)

γ 2
H

]
v − v2

γ 2
H

sin2(ϕ)

− v3

3γ 2
H

cos2(ϕ), (21)
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where ϕ = π/2 − θ is the angle between the constant electric
and magnetic fields and γH = √

2|E0|ωH/F is the magnetic
Keldysh parameter which is the ratio of the cyclotron fre-
quency to the inverse tunneling time. The Keldysh parameter
γH also can be represented as the ratio 2b0/RL, where
b0 = F

2/3
0 /(2F ) is the width of the barrier in the adiabatic

limit and RL = F
1/3
0 /H is the Larmor radius. In turn, the

saddle-point equation (14) takes the form

(1 − v0)2 sin2(ϕ) = −(1 + 2εn)γ 2
H + v2

0 (22)

and can be solved exactly

v0 = − tan2(ϕ) + sec(ϕ)
√

(1 + 2εn)γ 2
H + tan2(ϕ). (23)

For large magnetic fields, i.e., for γH � 1, and at ϕ 
= π/2 we
have

F (n)
m (pz) 	 ω

Lz

γH

λH cos(ϕ)
exp

{
−2F0

3F
fs(γH ,ϕ)

}

× [eβs Ln(−βs) + cos(φs)], (24)

where

fs(γH ,ϕ) 	 (1 + 2εn)3/2

cos(ϕ)
− 3 tan2(ϕ)

2γH

[
1+2εn−

√
1 + 2εn

γH cos(ϕ)

]
.

(25)

In the first order of εn we obtain

F (n)
m (pz) 	 ω

Lz

γH

λH cos(ϕ)
exp

{
−2F0

3F
f (0)

s (γH ,ϕ)

}

× exp

{
−F0

F
cεn

}
[eβs Ln(−βs) + cos(φs)], (26)

where

f (0)
s (γH ,ϕ) 	 1

cos(ϕ)
− 3 tan2(ϕ)

2γH

[
1 − 1

γH cos(ϕ)

]
,

βs 	 2λH tan2(ϕ),

c 	 2

cos(ϕ)

[
1 − tan(ϕ)

γH

sin(ϕ) + tan2(ϕ)

2γ 2
H

]
,

φs 	 4kz

γH

ω0 cos(ϕ) − πk2
z . (27)

For crossed constant electric and magnetic fields, i.e., at ϕ =
π/2, the saddle point for γH � 1 is

v0 	 1 + (1 + 2εn)γ 2
H

2
(28)

and

F (n)
m (pz) 	 ω

Lz

γ 2
H

λH

exp

{
− F0

4F
f (0)

s (γH ,π/2)

}

× exp

{
−F0

F
c̃εn

}
[eβ̃s Ln(−β̃s) + cos(φ̃s)], (29)

where

f (0)
s (γH ,π/2) 	 γH + 1

γH

(
1 + 1

γ 2
H

)
, c̃ 	 γH + 1

γH

,

β̃s 	 F0

4F
γH , φ̃s 	 πk2

z . (30)

Here and above, we use the atomic units e = m = c = � = 1.
Equations (16), (20), (26), and (29) give the distribution
over the Landau energy levels, i.e., the energy spectrum of
photoelectrons. The rapidly oscillating factors ∼ cos(φ) in
these equations occur due to the contribution of the two saddle
points at Re t = 0 and Re t = π and describe the so-called
tunneling interference [30,69]. According to Eqs. (16), (17),
and (20), the width of photoelectrons energy spectrum in the
tunneling regime is

�εn 	 F√
2|E0|

(31)

and it coincides with the typical value of the transverse energy
of photoelectrons in the quasiclassical case in the absence of
a magnetic field [see Eq. (14) in Ref. [25]]. As can be seen
from Eqs. (26) and (27), the width of photoelectrons energy
spectrum in the case of constant electric and magnetic fields
at ϕ 
= π/2 is

�εn(ϕ) 	 F cos(ϕ)

2
√

2|E0|
. (32)

At the same time, as follows from Eqs. (29) and (30), in the
case of crossed constant electric and magnetic fields (ϕ = π/2)
the typical value of the energy of photoelectrons for γH � 1
is the order of

�εn(π/2) 	 F

γH

√
2|E0|

� �εn(ϕ), (33)

i.e., it is small compared to the case ϕ 
= π/2. In other
words, in the case of crossed electric and magnetic fields,
the subbarrier trajectory of the electron is strongly “pressed”
to the magnetic field. The energy spectrum of photoelectrons
in the quasiclassical case is considered in the Supplemental
Material [63] (see Sec. A).

Neglecting by the oscillating factor and integrating the
expressions in Eqs. (16), (20), (26), and (29) over pz and
summing their over the Landau energy levels n and over all
multiphotons processes (over m), we arrive from Eq. (11) at
the total ionization rate for an s electron in the form

� 	 P
exp

{− 2F0
3F

f
}

1 − exp(−2γH c)
exp

{
−c(2γ + γH )

+ β

1 − exp(−2γHc)

}
�

[
exp(−2γ c),

1

2
,1 − δ

]
, (34)

where P is the preexponential factor and f , c, and β are defined
by Eqs. (17), (27), and (30) and

�(z,s,v) =
∞∑

m=0

zm

(v + m)s
(35)

is the generalized ζ function [70], 0 < δ < 1. In the following
two subsections we consider analytical expressions for the total
ionization rate in the tunneling and the multiphoton regimes.

B. Tunneling regime

Within the framework of the second approach, using the
expressions for the classical action from Eqs. (A19) and (A20)
far from the resonance ω = ωH , we transform the integral over
t in Eq. (B8) into one in the complex plane z. Applying the
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modified saddle-point method [71] we obtain the width of the
bound s electron level:

Imβ =
√

πωH

2
√

2z0|E0| sinh(ω0z0)
Re

{
[3λF (z0)]1/6√

|F ′′(z0)|
Ai(ν2)

}
,

(36)

where

Ai(ν2) = 1

2πi

∫
L

exp

(
u3

3
− ν2u

)
du (37)

is the Airy function depending on ν2 = [3λF (z0)]2/3,

F (z0) =
[

1 + 1 − ω2
0 + G2(g,ω0,θ )

2γ 2
(
1 − ω2

0

) ]
z0

−
(
1 − ω2

0

)2 − (1 + ω2
0

)
G2(g,ω0,θ )

4γ 2
(
1 − ω2

0

)2 sinh(2z0)

− ω0G2(g,ω0,θ )

γ 2
(
1 − ω2

0

)2 coth(ω0z0) sinh2 z0 (38)

and the saddle point z0 is determined by the condition F
′
(z0) =

0, i.e., by the equation

sinh z0

{
1 − G2(g,ω0,θ )(

1 − ω2
0

)2 [coth z0 − ω0 coth(ω0z0)]2

}1/2

= γ.

(39)

Note that the saddle point z0 has a simple physical interpreta-
tion: t0 = −iz0/ω is the time of the subbarrier motion of the
electron [72–74]. It should be noted that the function F (z0)
in Eq. (38) differs from the function Fq(v) in Eq. (13) by
coth(ω0z0) in the last term, which arises due to the summation
over Landau energy levels. At the same time, we note that the
condition coth(ω0z0) ∼ 1 is equivalent to the limit of strong
magnetic fields. Equation (36) with the Airy function can be
used to calculate the ionization rate beyond the quasiclassical
approach.

For further simplifications, consider the case of weak
electric fields F � F0 and use the well-known asymptotic
of the Airy function [75] for large arguments (ν2 � 1) to
obtain the quasiclassical ionization rate (B9). In the adiabatic
limit, where the inequality γ � 1 holds, the saddle point z0 in
Eq. (39) can be represented in the following analytical form:

z0 	 γ − γ 3

6

[
1 − G2(g,ω0,θ )

3

]
+ 3

40

{
1 − 58

81

[
1 + 4

29
ω2

0

− 35

174
G2(g,ω0,θ )

]
G2(g,ω0,θ )

}
γ 5. (40)

Then, from Eq. (B9) for the ionization rate we obtain

� 	 |E0| F

2F0
P (γH ,γ,g,θ ) exp

{
−2F0

3F
f (γ,g,ω0,θ )

}
, (41)

where the exponential factor is

f (γ,g,ω0,θ ) 	 1 − γ 2

10

[
1 − G2(g,ω0,θ )

3

]
+ 9

280

{
1 − 58

81

[
1 + 4

29
ω2

0 − 35

174
G2(g,ω0,θ )

]
G2(g,ω0,θ )

}
γ 4 (42)

and the preexponential factor reads as

P (γH ,γ,g,θ ) 	 1 − γ 2
H

6

(
1 − 7

60
γ 2

H

)
+ γ 2

H

18

[
1 − 7

30
γ 2

H − 7

15

(
1 − 563

1470
γ 2

H

)
G2(g,ω0,θ )

]
γ 2

+ 1

30

{
1 − 19

18
γ 2

H − 7

9

[
1 − 2131

1470
γ 2

H − 5

21

(
1 − 49

30
γ 2

H

)
G2(g,ω0,θ )

]
G2(g,ω0,θ )

}
γ 4. (43)

Equations (40)–(43) show that the ionization rate (41) depends
on the ellipticity g and the angle θ only via the factor
G(g,ω0,θ ) = g + ω0 cos(θ ). Note that, replacing in Eqs. (40)
and (42) the factor G(g,ω0,θ ) to g and dropping the magnetic
term ∼4/29ω2

0, we obtain the well-known expansions for
the case of an elliptically polarized electromagnetic wave in
the tunneling limit in the absence of a magnetic field [see,
e.g., Eq. (3.7) in Ref. [27]]. Since for an elliptical laser
beam propagating perpendicularly (θ = π/2) to the constant
magnetic field H the factor G(g,ω0,π/2) = g, the influence
of the constant magnetic field in the tunneling limit on the
saddle point and the exponential factor, in this case, is reduced
to the term ∼4/29ω2

0. In the next orders of γ n>4 in the
tunneling expansion of f (γ,g,ω0,θ ) the constant magnetic
field gives the terms ∼ωn>2

0 . In contrast, the preexponential
factor (43) strongly depends on the constant magnetic field. In
particular, P (γH ,γ → 0,g,θ ) 	 1 − γ 2

H (1 − 7γ 2
H/60)/6 de-

scribes the diamagnetic shift in the ionization rate. Some

limiting expressions of Eqs. (38)–(43) are considered in the
Supplemental Material [63] (see Sec. B).

As follows from Eqs. (41) and (42), in the case of a
low-frequency monochromatic laser field at θ 
= π/2, due to
the terms proportional to g, the constant magnetic field causes
the reduction or enhancement of the ionization probability.
This effect can be explained by the distortion of the subbarrier
trajectory due to the screwlike electron motion. As a result,
the subbarrier motion of the electron in the right-elliptically
polarized laser field (g > 0) becomes longer and the ionization
rate decreases. But since a left-elliptically polarized laser field
(g < 0) rotates the electron against the constant magnetic field,
the subbarrier electron trajectory becomes shorter and the ion-
ization probability increases. Let us define the factor R(γ,g,θ )
as follows: R(γ,g,θ ) = �−/�+. Here, �− and �+ are the
ionization rates for a left- and right-elliptically polarized laser
field, respectively. This factor shows the difference between the
ionization probabilities for the cases of left- and right-polarized
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laser fields. In the adiabatic limit (γ � 1) for small magnetic
fields (γH � 1) the factor R(γ,g,θ ) can be represented in the
form

R(γ,g,θ ) 	 1+|g| 4F0

45F

[
1+|g| 2F0

45F
cos(θ )γHγ

]
cos(θ )γHγ

+ 14

135
|g|
[

1 − 10

21
g2 − 29F0

49F

(
1 − 35

87
g2

)]

× cos(θ )γHγ 3. (44)

In Refs. [8,76] has been shown that during the tunneling
under the influence of a circularly polarized laser field (in
the absence of a constant magnetic field) for the electron with
the angular momentum m 
= 0, �− > �+. This means that the
counter-rotating electron with the angular momentum m 
= 0
has significantly better chances to penetrate the barrier than the
corotating electron. As follows from Eq. (44), for small electric
fields F � F0, R(γ,g,θ ) > 1 even for s electrons (m = 0).
But in the adiabatic limit for small magnetic fields (γH � 1)
the factor R(γ,g,θ ) weakly deviates from unity. However, in
Sec. IV, we show that in the multiphoton regime the difference
between �− and �+ may be significant.

Some results of numerical calculations for the ionization
probability of the negative ion H− (the weakly bound level
with the binding energy |E0| = 0.7542 eV) in the field of
a CO2 laser (ω ≈ 0.117 eV, λ0 ≈ 10.6 μm) are shown in
Figs. 1 and 2. The ionization rates �ai and � are calculated
according to Eqs. (36) and (B9), respectively. As can be seen
from Figs. 1 and 2, the ionization probabilities �ai and � in the
tunneling regime (γ � 1) weakly decrease with increasing the
magnetic field H . The magnitude of the Keldysh parameter
γ = 0.0776 corresponds to the boundary between the weak
and strong electric fields: F = F0. Figures 1 and 2 show that
for F = F0 and 0.5F0 the quasiclassical ionization probability
� in Eq. (B9) calculated within the framework of the standard
saddle-point method with a quadratic expansion is very close
approximation to the ionization rate �ai calculated beyond the
quasiclassical picture according to Eq. (36).

FIG. 1. Ionization rates �ai [Eq. (36)] (solid line) and � [Eq. (B9)]
(dashed line) vs ω0 for the negative ion H− at θ = 0 and g = −1, λ ≈
6.45; γA = 0.0776 (F = F0) and γB = 0.0388 (F = 2F0). Arbitrary
units are used for �ai and �.

FIG. 2. Ionization rates �ai [Eq. (36)] (solid line) and � [Eq. (B9)]
(dashed line) vs ω0 for the negative ion H− at θ = π/4 and g =
+1, λ ≈ 6.45; γA = 0.0776 (F = F0) and γB = 0.155 (F = 0.5F0).
Arbitrary units are used for �ai and �.

C. Multiphoton regime

In the multiphoton regime, i.e., for γ � 1 the ionization
rate (B9) far from the resonance ω0 = 1 (ω = ωH ) can be
represented in the form

�M 	 ωH exp{−2λFM (γ,g,ω0,θ )}
4
√

zM (γ,g,ω0,θ ) sinh[ω0zM (γ,g,ω0,θ )]
, (45)

where

FM (γ,g,ω0,θ ) 	
[

1 + 1 + G2(g,ω0,θ )
(
1 − ω2

0

)
2γ 2

]

× zM (γ,g,ω0,θ ) + SM (g,ω0,θ )

2
(46)

and

SM (g,ω0,θ ) = −[1 − G2(g,ω0,θ )(1 − ω0)2]A−1,

A = 1 − G2(g,ω0,θ )

(1 + ω0)2
, (47)

zM (γ,g,ω0,θ ) 	 ln (2γ /
√
A) is the saddle point in the multi-

photon limit (γ � 1). Equations (45)–(47) are generally valid
for ω0 > 1, but nonetheless they have the right limit at ω0 → 0
(H → 0). Indeed, from Eqs. (45)–(47), in this limit we obtain

�0,M 	 ω

4z
3/2
M (γ,g,0,0)

exp {−2λFM (γ,g,0,0)}, (48)

where

FM (γ,g,0,0) 	
(

1 + 1 − g2

2γ 2

)
zM (γ,g,0,0) − 1

2
(49)

and zM (γ,g,0,0) 	 ln (2γ /
√

1 − g2) is the saddle point for
γ � 1 [under the condition 1 − g2 � 1/ ln(2γ )] at ω0 = 0
[see, e.g., Eq. (3.8) in Ref. [27]]. The multiphoton ionization
rate (48) differs from the corresponding result obtained in
Ref. [77] [see Eq. (33a)] only by the factor |Cκ0|2/

√
2πλ.

Equation (48) reproduces a power law typical of perturbation
theory of order N0

min in the multiphoton regime [25]

�0,M ∼ F 2N0
min, (50)
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where N0
min = [λ] + 1 is the minimal number of photons

required for ionization in the absence of a magnetic field ([λ]
is the integer part of number λ). Note that Eqs. (46) and (47)
are valid if A 
= 0. The parameter A = 0 only in the case of
a right-circularly polarized laser beam (g = +1), propagating
along (θ = 0) the constant magnetic field H . As was proved
in Ref. [42] the saddle point for the case g = +1 at θ = 0 and
for ω0 > 1 exists only for γ < γcr , where γcr = 1/

√
ω0 − 1.

For γ � γcr the saddle-point equation (39) has no roots.
This means that this case can not be considered within the
framework of the quasiclassical approximation.

For large magnetic fields (ω0 � 1) at θ 
= 0,π/2 the
ionization rate in the multiphoton limit takes the form

�M 	 ωH

2
√

ln[2γ csc(θ )]

[
sin(θ )

2γ

]ω0+2λ

× exp{−λSM (g,ω0 � 1,θ )}, (51)

where

SM (g,ω0 � 1,θ ) 	 cot2(θ )

[
ω0 + 4

g − cos(θ )

sin(θ ) sin(2θ )

]
ω3

0. (52)

For an elliptical laser beam propagating perpendicularly to
the constant magnetic field, i.e., at θ = π/2 the ionization
probability for ω0 � 1 is

�M 	 ωH

2
√

ln(2γ )

exp
{−λ

(
g2ω2

0 − 1
)}

(2γ )ω0+2λ
. (53)

For an elliptically polarized laser beam (g 
= ±1) propagating
along the constant magnetic field, i.e., at θ = 0 (crossed

electric and magnetic fields) the ionization rate for ω0 � 1
can be represented in the form

�M 	 ωH

2
√

zM (γ,g,ω0,0)

(
1 − g

2γ γH

)λ+ω0/2

× exp{−λSM (g,ω0 � 1,0)}, (54)

where

zM (γ,g,ω0,0) 	 ln

(
γ

√
2ω0

1 − g

)
,

SM (g,ω0 � 1,0) 	 1

2(1 − g)

(
ω0 + 3g − 1

2

)
ω4

0. (55)

Note that Eqs. (51), (53), and (54) represent a power law of
perturbation theory in the multiphoton regime in the presence
of large magnetic fields:

�M ∼ F 2Nmine−aλωn
0 , (56)

where Nmin = [λ + ω0/2] + 1. Equation (54) for the multi-
photon ionization rate is incorrect for the cases g = ±1 at
θ = 0 since these cases are the peculiar ones. As mentioned
above, in the case of a right-circularly polarized laser beam
(g = +1) propagating along (θ = 0) the constant magnetic
field, the saddle-point equation (39) in the multiphoton regime
for ω0 � 1 has no roots. In contrast, in the case of a left-
circularly polarized laser beam (g = −1) propagating along
the constant magnetic field for ω0 � 1 the saddle point exists
for each γ . However, due to the term ∼ coth(ω0z0) in Eq. (39),
analytical consideration of this case is rather difficult. Besides,
here we note that the preexponential factors in the multiphoton
regime in Eqs. (45)–(54) have only semiquantitative accuracy.

D. Limit of low frequencies ω0 � 1

Let us consider the case of constant electric and magnetic fields with a small frequency-dependent correction due to the laser
field. Then, the saddle-point equation (39) takes the form

(1 − x0 coth x0)2

{
(sin(ϕ) + gω0)2 +

(
2 + x2

0

3

)
sin2(ϕ) ω2

0

}
= −γ 2

H + x2
0

{
1 + ω2

0

3

[
x2

0 − 2 sin2(ϕ)(1 − x0 coth x0)
]}

, (57)

where x0 = ωH t0, ϕ = π/2 − θ and ω0 = 1/ω0 = ω/ωH � 1. In the static limit ω → 0 (ω0 → 0) Eq. (57) gives the saddle-point
equation (1.6) obtained in Ref. [39] for the case of constant electric and magnetic fields. The ionization probability in this limit
can be represented in the form

�s = Ps(x0,ϕ) exp [−2λH Fs(x0,ϕ)], (58)

where

Fs(x,ϕ) 	 F (0)
s (x,ϕ)+F (1)

s (x,ϕ) ω0+F (2)
s (x,ϕ)ω2

0 + O
(
ω3

0

)
(59)

and

F (0)
s (x,ϕ) =

[
1 + sin2(ϕ)

γ 2
H

]
x − x3

3γ 2
H

cos2(ϕ) − sin2(ϕ)
x2

γ 2
H

coth x, F (1)
s (x,ϕ) = 2g sin(ϕ)

x

γ 2
H

(
1 + x2

3
− x coth x

)
,

F (2)
s (x,ϕ) = x

γ 2
H

{
g2 + (2 + x2) sin2(ϕ) + x2

3

[
g2 − x2

5
cos2(ϕ)

]
−
[
g2 +

(
2 + x2

3

)
sin2(ϕ)

]
x coth x

}
. (60)

In the adiabatic limit, i.e., for small magnetic fields (γH � 1) for the ionization rate we obtain

�s 	 |E0| F

2F0
Ps(γH ,g,ϕ,γ ) exp

{
−2F0

3F
fs(γH ,g,ϕ,ω0)

}
, (61)
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where

fs(γH ,g,ϕ,ω0) 	 1 + γ 2
H

30
sin2(ϕ)

(
1 − 2

21

[
1 − 35

24
sin2(ϕ)

]
γ 2

H + 1

105

{
1 − 35

9
sin2(ϕ)

[
1 − 55

72
sin2(ϕ)

]}
γ 4

H

)
+ g

γ 2
H

15
sin(ϕ)

×
{

1 − 2

21

[
1 − 35

12
sin2(ϕ)

]
γ 2

H

}
ω0 − γ 2

H

30

(
3 − g2 + 29

42
γ 2

H

{
sin2(ϕ) + g2

29
[4 − 35 sin2(ϕ)]

})
ω2

0 (62)

and the preexponential factor is given by Eq. (17) in the Supplemental Material [63]. In particular, in the case of a circularly
polarized laser field propagating along (ϕ = π/2) the constant magnetic field (crossed constant electric and magnetic fields),
from Eq. (62) and Eq. (17) in the Supplemental Material [63], we obtain

fs(γH ,g = ±1,π/2,ω0) 	 1 + γ 2
H

30

(
1 + 11

252
γ 2

H + 53

68040
γ 4

H

)
+ g

γ 2
H

15

(
1 + 23

126
γ 2

H

)
ω0 − γ 2

H

15

[
1 − γ 2

H

42

]
ω2

0,

Ps(γH ,g = ±1,π/2,γ ) 	 1 − γ 2
H

6

[
1 + 1

540
γ 2

H + 13

14175
γ 4

H

]
− 11

405
gγ 3

H

(
1 + 1741

2310
γ 2

H

)
γ + 11

270
γ 2

H

(
1 − 1471

2310
γ 2

H

)
γ 2

− 11

405
gγH

(
1 − 2963

2310
γ 2

H

)
γ 3 + 11

810

(
1 − 1307

2310
γ 2

H

)
γ 4. (63)

In the static limit (γ → 0), the exponential and preexponential factors in Eq. (63) coincide with Eqs. (2.3) and (2.4) in Ref. [39].

E. Limit of large magnetic fields γH � 1

The limit γH � 1 is analogous to the antiadiabatic approximation in the theory of multiphoton ionization. At ϕ 
= π/2, the
saddle point can be represented in the form

x0 	 x+
0 + x1ω0 + x2ω

2
0 + O(ω3

0), (64)

where

x±
0 = − tan2(ϕ) ± sec(ϕ)

√
γ 2

H + tan2(ϕ), x1 = 2g tan(ϕ) sec(ϕ)
(1 − x+

0 )2

x+
0 − x−

0

,

x2 = sec2(ϕ)

x+
0 − x−

0

[
g2 + 2 sin2(ϕ) − x+

0

(
2g2 + 4 sin2(ϕ) − x+

0

{
g2 + 3 sin2(ϕ) − 1

3
x+

0 [4 sin2(ϕ) + x+
0 cos2(ϕ)]

})

+ x1[4g sin(ϕ)(x+
0 − 1) − x1 cos2(ϕ)]

]
. (65)

For large magnetic fields, i.e., for γH � 1 the saddle point reads as

x0 	 γH

cos(ϕ)
− tan2(ϕ)

[
1 − 1

2γH cos(ϕ)

]
+ g

tan(ϕ)

cos2(ϕ)

[
1 − 2

γH cos(ϕ)
+ 5 − cos(2ϕ)

4γ 2
H cos2(ϕ)

]
γ

− γH

4 cos3(ϕ)

(
2

3
− 1

γ 2
H cos2(ϕ)

{[4 + cos(2ϕ)] sin2(ϕ) + 2g2[2 − cos(2ϕ)]}
)

γ 2, (66)

which in the limit γ → 0 coincides with Eq. (B6) in Ref. [39]. Then, the ionization rate in this limit is given by

�s 	 |E0| F

2F0
Ps(γH ,g,ϕ,γ ) exp

{
−2F0

3F
fs(γH ,g,ϕ,γ )

}
(67)

and for γH � 1 the function

fs(γH ,g,ϕ,γ ) 	 x+
0

γH

{
1 + 1

γ 2
H

[
(1 − x+

0 ) sin2(ϕ) − x+2
0

3
cos2(ϕ)

]}
+ O(γ ) (68)

coincides with the function Fq(v,ϕ) in Eq. (21) (at εn = 0) and with the corresponding result obtained in Ref. [39] [see Eq. (3.3)].
In the limit γH � 1,

fs(γH ,g,ϕ,γ ) 	 1

cos(ϕ)
− 3 tan2(ϕ)

2γH

[
1 − 1

γH cos(ϕ)

]
+ g

γH

tan(ϕ)

cos2(ϕ)

[
1 − 3

γH cos(ϕ)

]
γ

− 1

10 cos3(ϕ)

(
1 − 5

2γ 2
H cos2(ϕ)

{[4 + cos(2ϕ)] sin2(ϕ) + 2g2[2 − cos(2ϕ)]}
)

γ 2, (69)
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which in the static limit (γ → 0) coincides with the function f (0)
s (γH ,ϕ) in Eq. (27) and with Eq. (B7) in Ref. [39]. In turn, the

preexponential factor is

Ps(γH ,g,ϕ,γ ) 	
(

2γH + tan(ϕ)

cos(ϕ)

{
1 − 2g

cos(ϕ)

[
γH − 7 + cos(2ϕ)

4 cos(ϕ)

]
γ

}
+ γH

cos3(ϕ)

[
3γH−1+3 cos(2ϕ)

12 cos(ϕ)
+g2 tan2(ϕ)

cos(ϕ)

]
γ 2

)
e−x+

0 ,

(70)

which in the static limit gives Eq. (B8) in Ref. [39]. In particular, in the case of crossed constant electric and magnetic fields
(ϕ = π/2), the saddle point in Eq. (57) reads as

x0 	 1 + γ 2
H

2
+ g

4
γ 3

H

[
1 − 1

γ 2
H

(
2 − 1

γ 2
H

)]
γ + γ 4

H

4

[
g2 − 1

3
+ 1

2γ 2
H

(
1 − 5g2 + 4

g2 − 1

γ 2
H

)]
γ 2. (71)

Then, the ionization rate for large magnetic fields (γH � 1) at ϕ = π/2 can be represented in the form

�s 	 |E0| F

2F0
Ps(γH ,g,π/2,γ ) exp

{
− F0

4F
fs(γH ,g,π/2,γ )

}
, (72)

where the exponential and preexponential factors are given by

fs(γH ,g,π/2,γ ) 	 γH + 1

γH

(
2 + 1

γ 2
H

)
+ gγ 2

H

[
1

3
− 1

γ 2
H

(
1 − 1

γ 2
H

)]
γ + γ 3

H

4

[
g2 − 1

3
+ 2

3γ 2
H

(1 − 5g2) + 4

γ 4
H

(g2 − 1)

]
γ 2,

Ps(γH ,g,π/2,γ ) 	
{

2γH − 1

γH

− γ 3
H

2
g

(
1 − 7

2γ 2
H

)
γ + γ 6

H

2

[
g2

8
+ 1

γ 2
H

(
1

3
− 29

16
g2

)]
γ 2

}
e−x0 . (73)

In the static limit, the exponential and preexponential factors in Eq. (73) coincide with Eqs. (2.5) and (2.6) obtained in Ref. [39]
within the framework of the “imaginary-time” method for the case of crossed constant electric and magnetic fields. Equations (61)
and (67) for ionization rates are valid for an s electron bound in a zero-range potential subjected to an influence of a strong
constant magnetic field and additionally they take into account the frequency-dependent corrections due to an elliptical laser
field.

IV. COULOMB CORRECTION AND METHOD
OF IMAGINARY TIME

A. Coulomb correction in the tunneling regime

The zero-range potential is an adequate model for negative
ions H−, Na−, etc. In this model, a deep potential well of a
small radius is replaced by a boundary condition at the point
of the center of the well. But, in the case of ionization of
neutral atoms and positive ions must be taken into account
the long-range Coulomb interaction of the ejected electron
with the parent ion. For this purpose, in Refs. [76,78–82] were
proposed the so-called eikonal-like approximation and the R-
matrix method. The influence of the Coulomb potential of the
atomic core on the ionized electron dynamics in the continuum
on the basis a fully quantum mechanical analysis also was
taken into account in Refs. [83–89].

To account for the effect of the Coulomb force on the
photoelectron we can employ the quasiclassical perturbation
theory and the method of imaginary time [90,91]. Being a
generalization of the well-known method of complex classical
trajectories considered by Landau [75,92], to the case of
time-dependent fields, the method of imaginary time describes
the tunneling transition of an electron from a bound state to
the continuum using the classical equations of motion but
with an imaginary “time.” In Ref. [93], within the framework
of the method of imaginary time, was calculated the Coulomb
correction to the atomic ionization rate in the tunneling limit
γ � 1 in the case of an elliptical wave. The imaginary part
of the abbreviated classical action S calculated along such
trajectories determines within the exponential accuracy the
transition probability of an electron from the bound state with

the energy E0 to the continuum:

� ∝ exp

{
−2

�
Im[S0(t0) + E0t0]

}
(74)

with the minimum value of ImS0. In Eq. (74), t0 is the initial
time in the complex half-plane for the subbarrier motion which
can be determined from the equation [35,69,77,91]

E(t0) = E0, (75)

where E(t) = −∂S0(t)/∂t . The quasiclassical approxima-
tion is applicable if both conditions λ � 1 and (2/�)Im
[S0(t0) + E0t0] � 1 are satisfied. The second inequality is
equivalent to the condition that the electric field of the
laser beam with the frequency ω is much smaller than the
inner-atomic field. The abbreviated classical action in Eq. (74)
for an electron moving under the influence of a laser field and
a constant magnetic field reads as

S0(t0) =
∫ ∞

t0

{
v2(t)

2m
− e

c
AHv(t) − eE(t)r(t)

}
dt

− [v(t)r(t)]|t→∞
t=t0

, (76)

where AH = (−Hy,0,0) is the vector potential of the constant
magnetic field H in the Landau gauge (the z axis being taken
in the direction of the magnetic field H), E(t) is the electric
field of an elliptically polarized monochromatic laser beam, of
frequency ω, with the laser field amplitude F and the ellipticity
g (−1 � g � +1) with the components

Ex(t) = F cos(θ ) cos ωt, Ey(t) = gF sin ωt,

Ez(t) = F sin(θ ) cos ωt, (77)
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propagating at an angle θ to the constant magnetic field
H . Here and above, we neglect by an electron spin. The
Coulomb interaction between an ejected electron and the
atomic core can be taken into account assuming the classical
action (76) calculated for a zero-range potential as the zeroth
approximation and calculating the corrections to this action.
We can consider the two types of such corrections. First of
all, in the region κr � 1 it is possible to take into account the
influence of the Coulomb interaction within the perturbation
theory which gives the first-order correction to the classical
action (76):

δSI = −
∫ 0

t0

δV [r0(t)]dt, (78)

where δV [r0(t)] = −Z/|r0(t)| and r0(t) is the electron tra-
jectory unperturbed by the Coulomb interaction. We note that
this formula can be used if the perturbation δV [r0(t)] is small
along the subbarrier trajectory r0(t). In our case, the atomic
potential δV has a singularity at r = 0 and hence the integral
in Eq. (78) diverges logarithmically as r → 0 (or t → t0)
and requires regularization. In addition, the quasiclassical
approach is still not valid in the region κr � 1. In order to
overcome this difficulty, the so-called matching procedure can
be used (see details in Refs. [57,90,91,93,94]). With this aim
one can introduce the matching point r0 such that

1 � κr0 � κb, (79)

where b is the “dynamic” width of the barrier [see Eqs. (45)–
(48) in the Supplemental Material [63]]. At distances r >

r0, the Coulomb interaction weakly distorts the subbarrier
trajectory of the photoelectron, so that Eq. (78) still works,
while for r < r0 the external fields can still be neglected and
therefore necessary to make the result continuous with the
wave function of the free atom:

ψ0(r) 	 Cκ√
π

κ3/2(κr)η−1e−κr ∼ r−1

× exp{−Im[S0(r) + δSI (r)]}, r � κ−1 (80)

where Cκ is the asymptotic coefficient in the atomic wave
function for the 1s state at large distances from a potential
well. In particular, Cκ = 1 for the ground state of the H
atom [35,77]. The arbitrary matching point r0 drops out of the
final answer and ultimately this approach gives the Coulomb
factor QI (z0,θ ):

QI (z0,θ ) = 2λz0 exp{J (z0,θ )},

J (z0,θ ) =
∫ 1

0

[
γ z0

|r0([1 − s]z0)| − 1

s

]
ds (81)

in the expression for the ionization probability �η for the 1s

state:

�η = 4|Cκ |2Q2η

I (z0,θ )�, (82)

where � is the ionization rate of a weakly bound level (B9),
the saddle point z0 is determined by Eq. (39), and η =
Z(|E0|/|EH |)−1/2 is the Sommerfeld parameter (Z = 1 for
neutral atoms and Z = 0 for negative ions, |EH | = 13.6 eV).
The parameter η is usually close to unity and, in particular,
for the H atom, η = 1. Besides, in Eq. (81), |r0(z)| =√
r2

0x(z) + r2
0y(z) + r2

0z(z), where r0 = (r0x,r0y,r0z) is the sub-
barrier zero-order (unperturbed by the Coulomb interaction)
trajectory (5) in the Supplemental Material [63] of the electron
in the atom. For small electric fields F � F0, the Coulomb
correction in Eq. (81) increases the tunneling ionization
probability by several orders of magnitude, which is an
experimentally determined effect [95]. In the general case,
the integral in Eq. (81) can be calculated only numerically.

The ionization rate (82) in the adiabatic limit can be
represented in the form

�η 	 4|Cκ |2|E0|
(

2F0

F

)2η−1

Pη(γH ,γ,g,θ )

× exp

{
−2F0

3F
fη(γ,g,ω0,θ )

}
, (83)

where

fη(γ,g,ω0,θ ) 	 1 − γ 2

10

(
1 − G2(g,ω0,θ )

3
+ 5η

F

F0

{
1 +

[G(g,ω0,θ )

3
− g

]
G(g,ω0,θ )

})

+
(

9

280

{
1 − 58

81

[
1 + 4

29
ω2

0 − 35

174
G2(g,ω0,θ )

]
G2(g,ω0,θ )

}
+ 11

60
η

F

F0

{
1 − 28

33
g

(
1 + 2

7
ω2

0

)
G(g,ω0,θ )

− 5

22

[
g2 + 1

15

(
16 − 9ω2

0

)]
G2(g,ω0,θ ) − 5

22

[
G(g,ω0,θ ) − 10

3
g

]
G3(g,ω0,θ )

})
γ 4 (84)

and the preexponential factor is

Pη(γH ,γ,g,θ ) 	 1 − γ 2
H

6

(
1 − 7

60
γ 2

H

)
− γ 2

3

([
1 − G2(g,ω0,θ )

3

]
η − γ 2

H

6

{
1 − 7

15
G2(g,ω0,θ ) +

[
1 − 3

5
G2(g,ω0,θ )

]
η

}

+ 7

180

{
1 − 563

735
G2(g,ω0,θ ) + η

2

[
1 − 5

7
G2(g,ω0,θ )

]}
γ 4

H + 7

8100
ηG2(g,ω0,θ )γ 6

H

)
+ O(γ 4). (85)

At η = 0, the ionization rate (83) coincides with the ionization probability (41) for the case of a weakly bound level. As follows,
from Eqs. (83) and (84) the ionization probability in the adiabatic limit with taking into account the Coulomb correction, as
in the case of a weakly bound level, may increase with the magnetic field if a neutral atom or a positive ion subjected to a
left-elliptically polarized laser field perturbation (g < 0) and the ionization rate decreases with the magnetic field in the case of a
right-elliptically polarized laser field (g > 0). Equations (83)–(85) generalize the corresponding expressions for ionization rates
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obtained in Ref. [39] within the framework of the imaginary-time method for the case of constant electric and magnetic fields.
Our result additionally takes into account the frequency-dependent corrections due to an elliptically polarized laser field and the
Coulomb interaction of the photoelectron with the atomic or ionic core. In the limit H → 0 (γH → 0) from Eqs. (83) and (84)
one can obtain the expression for the ionization rate obtained within the exponential accuracy in Ref. [96] [see Eq. (7.7)].

In the static limit (γ → 0) for small magnetic fields, i.e., for γH � 1 we obtain

�η 	 4|Cκ |2|E0|
(

2F0

F

)2η−1

Pη(0,γH ,ϕ) exp

{
−2F0

3F
fη(0,γH ,ϕ)

}
, (86)

where

fη(0,γH ,ϕ) 	 1 + γ 2
H

30
sin2(ϕ)

(
1 − 5η

F

F0
− 2

21

{
1 − 35

24
sin2(ϕ) − 21F

16F0
η[1 + 5 cos(2ϕ)]

}
γ 2

H

+
[

1

105

(
1 − 207F

20F0
η

)
− 1

27

(
1 − 119F

10F0
η

)
sin2(ϕ) + 55

1944

(
1 − 146F

11F0
η

)
sin4(ϕ)

]
γ 4

H

)
+ O

(
γ 8

H

)
(87)

and

Pη(0,γH ,ϕ) 	 1 − γ 2
H

6

[
1 − 2

3
η sin2(ϕ)

]
+ 7

360

[
1 − 4

3

(
1 + 9

7
η

)
sin2(ϕ) + 20

63
(1 + 3η + η2) sin4(ϕ)

]
γ 4

H

+ 563

56700
sin2(ϕ)

{
1 − 1715

1689
sin2(ϕ) + 525

1126
η

[
1 − 10

9
sin2(ϕ)

(
1 + 13

25
η

)]}
γ 6

H + O
(
γ 8

H

)
. (88)

The case of the H atom (η = 1) is of special interest. In view of Eqs. (86), (87), and (88), the ionization probability for the 1s

state of the H atom is

�H 	 8|EH |FH

F
P1(0,γH ,ϕ) exp

{
−2FH

3F
f1(0,γH ,ϕ)

}
, (89)

where

P1(0,γH ,ϕ) 	 1 − γ 2
H

18
[2 + cos(2ϕ)] + 7

360

{
1 − 64

21
sin2(ϕ)

[
1 − 25

48
sin2(ϕ)

]}
γ 4

H

+ 1

113 400
[1651 − 2030 sin2(ϕ)] sin2(ϕ)γ 6

H (90)

and f1(0,γH ,ϕ) = fη(0,γH ,ϕ) at η = 1, FH = 5.142×109 V/cm is the magnitude of the electric field at the first Bohr orbit. As
follows from Eqs. (87), (88), and (90) for parallel constant electric and magnetic fields, i.e., at ϕ = 0 the ionization rate weakly
depends on the magnetic field via the diamagnetic shift in the preexponential factor

P1(0,γH ,0) 	 1 − γ 2
H

6
+ 7

360
γ 4

H + O
(
γ 8

H

)
. (91)

For crossed constant electric and magnetic fields, i.e., at ϕ = π/2, the ionization rate for the 1s state of the H atom in the static
limit is given by

�H 	 8|EH |FH

F
P1(0,γH ,π/2) exp

{
−2FH

3F
f1(0,γH ,π/2)

}
, (92)

where

f1(0,γH ,π/2) 	 1 + γ 2
H

30

{
1 − 5

F

FH

+ γ 2
H

252

(
11 − 126

F

FH

)
+ γ 4

H

340 200

(
265 − 11 344

F

FH

)}
(93)

and the preexponential factor is

P1(0,γH ,π/2) 	 1 − γ 2
H

18
− 29

3240
γ 4

H − 379

113 400
γ 6

H . (94)

Neglecting in Eqs. (93) and (94) the terms ∼γ n>2
H we obtain that Eq. (92) coincides with the ionization rate (45) in Ref. [42]

[at δ(F,H ) = 0]. From Eqs. (92)–(94) follows that in contrast to the case of parallel constant electric and magnetic fields, the
ionization probability in the case of crossed fields strongly depends on the magnetic field. In the limit H → 0 from Eqs. (92)–(94)
we arrive at the well-known Landau-Lifshitz formula (see in Ref. [75]) for the ionization probability from the ground state of the
H atom due to a constant electric field,

�H = 8|EH |FH

F
exp

{
−2FH

3F

}
. (95)

053404-12



STRONG-FIELD ATOMIC IONIZATION IN AN . . . PHYSICAL REVIEW A 93, 053404 (2016)

In the case of constant electric and magnetic fields, the Coulomb factor in Eq. (81) can be represented in the form

QI (x0,ϕ) = 2λHx0 exp{J (x0,ϕ)}, J (x0,ϕ) =
∫ 1

0

[
γHx0

|r0([1 − s]x0)| − 1

s

]
ds. (96)

For large magnetic fields, i.e., for γH � 1 and at ϕ 
= π/2, the integral in Eq. (96) with taking into account Eq. (65) can be
calculated analytically: J (x0,ϕ) 	 ln(2) and the Coulomb factor QI (x0,ϕ) 	 2F0/F cos(ϕ). Then, the ionization rate in the static
limit with taking into account the Coulomb interaction, the photoelectron with the parent ion for large magnetic fields (γH � 1)
at ϕ 
= π/2, in view of Eqs. (69) and (70), is given by

�η 	 8|Cκ |2|E0|
(

2F0

F

)2η−1
γHe−γH / cos(ϕ)

[cos(ϕ)]2η
exp

{
− 2F0

3F cos(ϕ)

}
, (97)

or with taking into account the relation γH = (F0/F )(H/H0) it can be rewritten as

�η 	 8|Cκ |2|E0|
(

2F0

F

)2η−1
γH

[cos(ϕ)]2η
exp

{
− F0

F cos(ϕ)

(
2

3
+ H

H0

)}
. (98)

The expression for the ionization rate in Eq. (98) is consistent with the result obtained in Ref. [39] [see Eqs. (B7)–(B9)]. In the
case of crossed constant electric and magnetic fields, i.e., at ϕ = π/2 the ionization rate in the static limit with the Coulomb
correction for large magnetic fields, in view of Eq. (73), can be represented in the form

�η 	 4|Cκ |2|E0|(2λH )2η−1 exp{2ηJ (γH )}e−γ 2
H /2 exp

{
− F0

4F

(
γH + 2

γH

)}
, (99)

where J (γH ) 	 0.425 45 + γH arcsin (1 − 2/γ 2
H ) [see Eq. (28) in the Supplemental Material [63]].

Let us define the “stabilization factor” S(γH ,γ,g,θ ): S(γH ,γ,g,θ ) = �η/�η0, �η0 being here the ionization probability for an
elliptical laser field at H = 0. This factor determines the extent of the influence of a magnetic field on the ionization rate with
taking into account of the Coulomb correction. In some simple cases, the factor S(γH ,γ,g,θ ) can be found analytically. In the
adiabatic limit when the inequalities γ � 1, γH � 1 hold and at θ = π/2, it can be written as

S(γH ,γ,g,π/2) 	 1 − γ 2
H

6
+ 7

360
γ 4

H + γ 2
H

18

([
1 − 7

15
g2

(
1 + η

14
− 4F0

49F

)]
γ 2

− 8

15

{
1 + g2

12

[
η + g2

3

(
11 − η − F0

F

)
− 1

70

(
943 − 62F0

F

)]}
γ 4

)
(100)

and for crossed electric and magnetic fields (θ = 0) the factor S(γH ,γ,g,θ ) in this limit can be represented in the form

S(γH ,γ,g,0) 	 1 − γ 2
H

6

(
1 − 4

3
η + 2F0

15F

)
+ g

9

(
η − 2F0

5F

)
γHγ + 4

135
γ 2

H

×
(

1 − 2η + 29F0

56F
+ 3

8
g2

{
1 − 31F0

21F

(
1 − 28F0

465F

)
+ 7

3
η

[
1 + 1

21

(
5η − 4F0

F

)]})
γ 2. (101)

Note that in the static limit (γ → 0), the expression in Eq. (100) coincides with the “stabilization factor” for parallel electric and
magnetic fields obtained in Ref. [39] [see Eq. (1.19)].

B. Coulomb correction in the multiphoton regime

Another Coulomb correction appears due to distortion
of the electron trajectory by the Coulomb field [33–35].
The trajectory of the electron in the Coulomb field can be
represented in the form

r(t) 	 r0(t) + r1(t) + · · · , (102)

where r0(t) is the trajectory disregarding the Coulomb inter-
action, r1(t) ∼ √

μ, and μ = Zω/κ3 is the parameter deter-
mining the contribution of the Coulomb field to the distortion
of the electron trajectory. Here, we note that the parameter μ

is small since for example in the field of a titanium-sapphire
laser (�ω ≈ 1.55 eV) for the H atom μ = 0.057, for the He
atom μ = 0.023, and for the ion Xe+ μ = 0.059 [33]. Hence,
the effect of Coulomb interaction on the electron trajectory can
be taken into account within the framework of a perturbation

theory. If correction r1(t) to the electron trajectory has been
determined, then the corresponding correction to the classical
action (76) is

δSII =
∫ ∞

t0

[
v0v1+1

2
v2

1−E(t)r1+y0H exv1+y1H exv0

]
dt

− (v0r1 + v1r0 + v1r1)|t→∞
t=t0

, (103)

where ex is the unit vector along the x axis. The trajectory
of the electron in the field V = −Z/r of the atomic core, the
laser field (77), and the constant magnetic field H satisfy the
equation

r̈ = −Z
r

|r|3 − E(t) − [ṙ,H]. (104)

The solution of Eq. (104) can be found using Kapitza’s method
(see Appendix C) and, as a result, the imaginary part of the
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classical action (103) can be represented in the form

ImδSII = μ
κ2

ω
J (ξ ,g,ω0,θ )zM (γ,g,ω0,θ ). (105)

For small magnetic fields [ω0zM (γ,g,ω0,θ ) � 1] and for g2 
=
1 we can put in Eq. (105)

zM (γ,g,ω0,θ ) 	 ln

(
2γ√

1 − g2

)
. (106)

If for ω0 � 1 the inequality ω0zM (γ,g,ω0,θ ) � 1 holds, we
have [see Eq. (47)]

zM (γ,g,ω0,θ ) 	 ln

(
2γ√
A

)
, A = 1 − G2(g,ω0,θ )

(1 + ω0)2
. (107)

For the case of a circular laser field (g2 = 1) and for small mag-
netic fields [ω0zM (γ,g = ±1,ω0,θ ) � 1], the saddle point in
Eq. (105) is

zM (γ,g = ±1,ω0,θ ) 	 ln

[
γ

√
2 ln(γ )

(B±/2) ln(γ ) + 1 − B±

]
.

(108)

Then, the Coulomb correction due to distortion of the
electron trajectory by the Coulomb field, under the condition
ω0zM (γ,g,ω0,θ ) � 1 for g2 
= 1, in view of Eqs. (74), (105),
and (106), can be represented in the form

QII (z0,θ ) = exp{−2 Im(δSII )} 	 (2γ /
√

1−g2)−2ηJ (ξ ,g,ω0,θ),

(109)

where J (ξ ,g,ω0,θ ) is given by Eqs. (C3), (C4), and (C5).
If the opposite inequality ω0zM (γ,g,ω0,θ ) � 1 holds, the
multiphoton Coulomb correction for g2 
= 1, in view of
Eqs. (74), (105), and (107), reads as

QII (z0,θ ) 	 (2γ /
√
A)−2ηJ (ξ ,g,ω0,θ), (110)

whereJ (ξ ,g,ω0,θ ) is given by Eqs. (C3), (C4), and (C6). For a
circularly polarized laser field, the Coulomb correction in the
multiphoton regime for small magnetic fields [ω0zM (γ,g =
±1,ω0,θ ) � 1], in view of Eqs. (74), (105), and (108), is

QII (z0,θ ) 	
[
γ

√
2 ln(γ )

(B±/2) ln(γ ) + 1 − B±

]−2ηJ (ξ ,g=±1,ω0,θ)

,

(111)

where J (ξ ,g = ±1,ω0,θ ) is given by Eqs. (C3), (C4),
and (C7).

Thus, the ionization rate (82) now can be rewritten in the
form

�η = 4|Cκ |2Q2η

I (z0,θ )QII (z0,θ )�, (112)

which is valid both for the tunneling and for multiphoton
ionization, i.e., for an arbitrary values of the Keldysh parameter
γ . In Eq. (112), the Coulomb factor QI (z0,θ ) is given
by Eq. (81) and the Coulomb factor QII (z0,θ ) for γ � 1
is defined by Eqs. (109)–(111). For γ � 1, we put that
QII (z0,θ ) → 1. In other words, the Coulomb factor QII (z0,θ )
gives the contribution to the ionization probability only
in the multiphoton regime. On the other hand, as follows

from Eqs. (109)–(111), QII (z0,θ ) � 1 for γ � 1, i.e., this
Coulomb factor effectively decreases the ionization rate.
Nonetheless, the total Coulomb correction in Eq. (112) remains
numerically large. In the limit H → 0 for a linearly polarized
laser field (g = 0) in the multiphoton regime (γ � 1), from
Eq. (C8), we have J (ξ ,0,0,0) ≈ 1. Then, from Eq. (109), in
this limit, we obtain

QII (z0,θ ) 	 (2γ )−2η. (113)

In Refs. [34,35] was also proposed the interpolation formula
for the Coulomb factor QII (z0,θ ), for the case of a linearly
polarized laser field (g = 0) in the absence of a magnetic
field, which is valid in the intermediate region of the Keldysh
parameter γ ≈ 1:

QII (z0,θ ) 	 (1 + 2e−1γ )−2η. (114)

Note that similar interpolation for Eqs. (109)–(111) when g 
=
0 and ω0 
= 0 would be much less substantiated. The Coulomb
factor (113) consistent with the results obtained in Refs. [34]
[see Eq. (5)] and in [35] [see Eq. (23)].

The results of numerical calculations for the ionization
probability �η of the H atom (the binding energy
|E0| = 13.6 eV, μ = 0.057) in the field of the second
harmonic of a titanium-sapphire laser (�ω ≈ 2.94 eV,
λ0 ≈ 422 nm for intensity J = 1013 W/cm2), obtained
according to Eqs. (B9), (82), and (112), are shown in Figs. 3
and 4. Besides, in these figures also are shown the numerical
results which were obtained for the case of a linearly polarized
laser field (g = 0) by two different methods [34]: the complex
quasienergy (Floquet) method (dark circles) and the solution
of the time-dependent Schrödinger equation (triangles) in the
field of a short pulse with a duration of 10 field periods. As can
be seen from Figs. 3 and 4, accounting for the Coulomb cor-
rection (81) leads to an increase in ionization rates (solid lines,

FIG. 3. Ionization rate � when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid
line, AII, BII) are accounted for and when they are ignored [see
Eq. (B9)] (dashed line) vs γ for the 1s state of the H atom (η = 1)
in the field of titanium-sapphire laser at θ = 0 and ω0 = 0, λ ≈ 4.63;
gA = 0 and gB = ±1. Numerical results for the ionization rate for
the 1s state of the H atom in a linearly polarized laser field (g = 0),
obtained by the Floquet method (filled circle) and by the solution
of the time-dependent Schrödinger equation (filled triangle) [34].
Arbitrary units are used for �.
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FIG. 4. Ionization rate � when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid
line, AII, BII) are accounted for and when they are ignored [see
Eq. (B9)] (dashed line) vs γ for the 1s state of the H atom (η = 1)
in the field of titanium-sapphire laser at θ = 0 and g = 0, λ ≈ 4.63;
ω0A = 0 and ω0B = 2. Numerical results for the ionization rate for
the 1s state of the H atom in a linearly polarized laser field (g = 0),
obtained by the Floquet method (filled circle) and by the solution
of the time-dependent Schrödinger equation (filled triangle) [34].
Arbitrary units are used for �.

AI, BI) compared with the case of a weakly bound level (B9)
with the same binding energy. Both ionization rates (solid line,
AI and dashed line) significantly deviate from the numerical
results. On the other hand, as can be seen from Figs. 3 and 4, the
Coulomb factor QII (z0,θ ) in Eq. (112) effectively decreases
ionization rates (solid lines, AII, BII) but they are still
greater than ionization probabilities in the case of a zero-range
potential. Figures 3 and 4 show, in general, a good, quantitative
agreement of the analytical ionization rate (112) for ω0 = 0
and g = 0 (solid line, AII) with the numerical results. As can
be seen from Fig. 3, the ionization rate (112) for a circular laser
field (solid line, BII) less than the ionization rate for a linearly
polarized laser field, but still close to the numerical results.
On the the other hand, Fig. 4 shows that the magnetic field
significantly reduces the ionization probability (solid line,
BII) and as a result it significantly deviates from the numerical
results, which were obtained in the absence of a magnetic field.

In Ref. [23] was investigated the interaction of a high-
intensity x-ray laser radiation field with rare gas atoms. In
particular, in the multiphoton regime were observed charge
states of xenon up to Xe6+. Comparison of the results for the
ionization rate obtained according to Eq. (112) (for ω0 = 0
and g = 0) with the probabilities calculated from the results
of Ref. [97], under the conditions of experiment [23], for
ionization of xenon by the linearly polarized laser field (g = 0)
with a photon energy of �ω = 12.7 eV and an intensity
of 1013 W/cm2 demonstrate satisfactory agreement. So, for
Xe3+ (η = 2.15, γ 	 51.36, λ 	 3.7, ω0 = 0), Eq. (112) gives
�η(g = 0) 	 10−9 a.u. and for Xe4+ (η = 2.38, γ 	 58, λ 	
4.73, ω0 = 0), correspondingly, we obtain �η(g = 0) 	 10−12

a.u. At the same time, these quantities determined in Ref. [97]
are w(Xe3+) 	 2.7×10−9 a.u. and w(Xe4+) 	 8.3×10−12 a.u.
The probabilities calculated from Eq. (112) are lower than
the numerical results obtained in Ref. [97]. This discrepancy

FIG. 5. The factor R when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid line,
AII, BII) are accounted for and when they are ignored (dashed line)
vs ω0 for the 1s state of the H atom (η = 1) at θ = π/3 and |g| = 1,
λ ≈ 8.774; γA = 5 and γB = 10.

may be related with the method of determining cross sections
(see details in Ref. [35]). For comparison, we present here
the data for ionization rates for elliptical laser field. For
Xe3+, Eq. (112) gives �η(g = ±0.5) 	 1.55×10−9 a.u. and
�η(g = ±1) 	 7×10−10 a.u. For Xe4+, from Eq. (112) we
obtain �η(g = ±0.5) 	 1.67×10−12 a.u. and �η(g = ±1) 	
3.86×10−13 a.u. It must be emphasized that accounting
for the second Coulomb correction is very important for
the interpretation of experimental data for the multiphoton
ionization. Indeed, under the conditions of experiment [23], for
Xe3+ according to Eq. (113) we have QII (z0,θ ) 	 2.2×10−9

and for Xe4+ we obtain QII (z0,θ ) 	 1.5×10−10.
Some results of numerical calculations for the factor

R(γ,g,θ ) and for the “stabilization factor” S(γH ,γ,g,θ ) in
the case of the H atom and the positive ion Xe+ (the
binding energy |E0| = 20.98 eV, μ = 0.059) in the field
of titanium-sapphire laser (�ω ≈ 1.55 eV, λ0 ≈ 800 nm for
intensity J = 1013 W/cm2) and in the case of the positive
ion Xe5+ (the binding energy |E0| = 72 eV, μ = 0.23) in
the field of x-ray laser (�ω ≈ 12.7 eV, λ0 ≈ 98 nm for
intensity J = 1014 W/cm2) are shown in Figs. 5–13. Figures 5
and 6 show that for not very large magnitudes ω0 the factor
R(γ,g,θ ) � 1, i.e., in contrast to the tunneling case [see
Eq. (44)] the difference between multiphoton ionization rates
for the counter-rotating and corotating electrons is significant:
�−

η � �+
η . These figures also show that the maximum of the

factor R(γ,g,θ ) is strongly dependent on the angle θ and the
ellipticity g. It should be noted that the difference between
ionization rates for left- and right-elliptically polarized laser
fields decreases as the magnetic field increases, i.e., for
ω0 � 1. Besides, as can be seen from Figs. 5 and 6, the
Coulomb correction (81) overestimates the magnitude of
the factor R(γ,g,θ ). Accounting for the second Coulomb
correction QII (z0,θ ) in the ionization probability in Eq. (112)
reduces the difference between ionization rates for left- and
right-elliptically polarized laser fields. It is seen from Fig. 7
that in the case of a right-elliptically polarized laser field the
factor S(γH ,γ,g,θ ) decreases as the magnetic field increases,
i.e., the constant magnetic field stabilizes the bound level. This
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FIG. 6. The factor R when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid line,
AII, BII) are accounted for and when they are ignored (dashed line)
vs ω0 for the positive ion Xe+ (η = 1.61) at θ = π/4 and |g| = 0.5,
λ ≈ 13.536; γA = 5 and γB = 10.

stabilization effect is greater when the Coulomb corrections
are ignored. Figure 7 also shows that the accounting for the
second Coulomb correction in the ionization rate (112) tends to
increase the stabilization factor for ω0 < 1. On the other hand,
Figs. 8–13 show that in the case of a left-elliptically polarized
laser field the ionization rate with the Coulomb correction (81)
can grow with the magnetic field and has the maximum near
ω0 ∼ 1. For the H atom or the positive ion Xe+ in the field
of a titanium-sapphire laser with �ω ≈ 1.55 eV the position
of this maximum corresponds to the magnetic field H ∼ 100
MG. As mentioned above, this dynamic effect is due to the fact
that a constant magnetic field and a left-elliptically polarized
laser field rotate the electron into opposite directions and, thus,
in this case the laser field partially compensates the effect
of the magnetic field. At the same time, a right-elliptically
polarized laser field and a constant magnetic field rotate the
electron at the same direction and thereby the laser field

FIG. 7. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid
line, AII, BII) are accounted for and when they are ignored (dashed
line) vs ω0 for the 1s state of the H atom (η = 1) in the field of
titanium-sapphire laser at θ = π/3 and g = +0.3, λ ≈ 8.774; γA = 5
and γB = 10.

FIG. 8. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid line,
AII, BII) are accounted for and when they are ignored (dashed line)
vs ω0 for the the positive ion Xe+ (η = 1.61) in the field of titanium-
sapphire laser at θ = π/3 and g = −0.6, λ ≈ 13.536; γA = 2 and
γB = 5.

enhances the effect of the ionization suppression. Note that
this maximum is greater for the positive ions Xe+ and Xe5+

than for the H atom, i.e., for an atom or ion with the higher
binding energy. As follows from these figures, the ionization
probability grows at a greater rate for small angles θ and
large magnitudes ellipticity g. This growth is maximal when
a left circularly polarized laser beam (g = −1) propagates
along (θ = 0) the constant magnetic field (crossed electric
and magnetic fields). On the other hand, one sees from
Figs. 8–13 that accounting for the second Coulomb correction
QII (z0,θ ) in Eq. (112) leads to sharp stabilization of a bound
level.

Above were derived simple analytical expressions for the
ionization rate of a weakly bound level for large magnetic fields
in the multiphoton regime. With taking into account the lim-
iting expressions for the Coulomb factors [see Eqs. (30)–(35)

FIG. 9. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid
line, AII, BII) are accounted for and when they are ignored (dashed
line) vs ω0 for the 1s state of the H atom (η = 1) in the field of
titanium-sapphire laser at θ = π/3 and g = −1, λ ≈ 8.774; γA = 2
and γB = 5.
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FIG. 10. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid
line, AII, BII) are accounted for and when they are ignored (dashed
line) vs ω0 for the 1s state of the H atom (η = 1) in the field of
titanium-sapphire laser at θ = 0 and g = −0.5, λ ≈ 8.774; γA = 5
and γB = 10.

in the Supplemental Material [63]], these ionization rates can
be generalized for the case of atoms and ions. So, for large
magnetic fields (ω0 � 1) at θ 
= 0,π/2 and for g 
= +1, in
view of Eqs. (51), (52), (30), and (31) in the Supplemental
Material [63], the ionization rate (112) in the multiphoton
regime reads as

�η,M 	 4|Cκ |2|E0| F

F0

(
F0

F

√
1 − g

2ω0

)2η[ sin(θ )

2

]ω0+2(λ−η)

× γH

γ ω0+2(λ+η)
√

ln[2γ csc(θ )]

× exp

{
− λ cot2(θ )

[
ω0 + 4

g − cos(θ )

sin(θ ) sin(2θ )

]
ω3

0

}
.

(115)

FIG. 11. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid line,
AII, BII) are accounted for and when they are ignored (dashed line) vs
ω0 for the positive ion Xe+ (η = 1.61) in the field of titanium-sapphire
laser at θ = 0 and g = −0.5, λ ≈ 13.536; γA = 5 and γB = 10.

FIG. 12. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid line,
AII, BII) are accounted for and when they are ignored (dashed line)
vs ω0 for the positive ion Xe5+ (η = 2.61) in the field of x-ray laser
at θ = π/3 and g = −0.8, λ ≈ 5.67; γA = 5 and γB = 10.

In particular, the ionization probability for large magnetic
fields at θ = π/2 in the multiphoton regime is

�η,M 	 4|Cκ |2|E0| F

F0

[
2F0

F

√
2(1 − g)

ω0

]2η

× γH

(2γ )ω0+2(λ+η)
√

ln(2γ )

× exp
{−λ

(
g2ω2

0 − 1
)}

. (116)

The ionization probability (112) for large magnetic fields
(ω0 � 1) for g 
= +1 at θ = 0 (crossed electric and magnetic
fields), in view of Eqs. (54) and (55), and Eqs. (33) and (35)
in the Supplemental Material [63], in the multiphoton regime

FIG. 13. The function S when the Coulomb correction (81) (solid
line, AI, BI) and the Coulomb correction QII in Eq. (112) (solid line,
AII, BII) are accounted for and when they are ignored (dashed line)
vs ω0 for the positive ion Xe5+ (η = 2.61) in the field of x-ray laser
at θ = π/4 and g = −0.3, λ ≈ 5.67; γA = 5 and γB = 10.
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reads as

�η,M 	 4|Cκ |2|E0|
[
F0 ln(a)

γF

]2η−1( 1 − g

2γ γH

)λ+ω0/2

×
(√

2ω0

1 − g
γ

)−2η

√
2ω0
1−g

ω0

√
ln(a)

× exp

{
2ηJ (z0,0) − λ

2(1 − g)

(
ω0 + 3g − 1

2

)
ω4

0

}
,

(117)

where a = γ
√

2ω0/(1 − g) and J (z0,0) = 0.254 33.

V. CONCLUSIONS

We have considered the tunneling and multiphoton ion-
ization of atoms and ions subjected to a perturbation by an
elliptically polarized monochromatic laser field and a constant
uniform magnetic field, with taking into account the Coulomb
interaction of the photoelectron with the parent ion. With this
aim we found the exact wave function and Green’s function
for an electron in these fields. On this basis and using the
quasistationary quasienergy state formalism, we obtained a
transcendental equation for the complex quasienergy of a
weakly bound level and the photoelectron energy spectrum.
Besides, within the framework of the imaginary-time method,
the extremal subbarrier trajectory of the electron ejected from
under the barrier under the influence of a constant magnetic
field and nonstationary laser field was derived. The general so-
lution was analyzed in the case when the elliptically polarized
monochromatic laser beam propagates at an arbitrary angle to
the constant magnetic field. Simple analytical expressions for
the ionization rate of a weakly bound level in the tunneling
and multiphoton regimes were obtained and compared with
the results known in the literature. The limits of small and
large magnetic fields and low and high frequency of a laser
field were considered in details. It was shown that in contrast
to the case of constant electric and magnetic fields, in the
presence of an electromagnetic wave the magnetic field may
either decrease or increase the ionization rate. If the electron
is subjected to a nonstationary laser field perturbation, the
constant magnetic field slows down the ionization rate in the
case of a right-polarized laser field (the laser field and the
magnetic field rotate the electron in the same direction) and
speeds it up for a left-polarized laser field (the laser field and
the magnetic field rotate the electron into opposite directions).
This dynamic effect is due to the distortion of the electron
subbarrier trajectory in the magnetic field and it is greater
in the multiphoton regime at small angles between the laser
beam and the constant magnetic field and for large magnitudes
of ellipticity of the laser field. This effect is maximal for the
case of a circularly polarized laser beam propagating along the
constant magnetic field (crossed electric and magnetic fields).

In the framework of the QQES formalism completed by the
method of imaginary time we have derived the ionization rate
with the Coulomb correction in the cases of the tunneling and
the multiphoton regimes. We have considered the Coulomb
correction of the two types. In order to find the Coulomb
factor in the tunneling regime, we employed the quasiclassical

perturbation theory and the method of subbarrier trajectories.
In order to describe the Coulomb correction in the multiphoton
regime, we have taken into account the distortion of the
subbarrier electron trajectory by the Coulomb field. We have
analyzed in details analytical expressions for the exponential
and preexponential factors in the ionization rate with the
Coulomb correction in the tunneling and the multiphoton limits
for small and large magnetic fields. In particular, within this
approach, we have calculated the ionization rate for the ground
state of the H atom in an elliptically polarized laser beam
propagating at an arbitrary angle to a constant magnetic field.
Passing to the static limit, we obtained the formulas for the
ionization probability of the H atom in crossed constant electric
and magnetic fields. It was shown that accounting for the first
Coulomb correction (tunneling regime) leads to an increase of
the ionization rates of neutral atoms and positive ions in com-
parison with those for negative ions. At the same time, as it was
clarified, the second Coulomb correction effectively decreases
the ionization rate in the multiphoton regime. Nonetheless, the
total Coulomb correction remains numerically large. Using the
imaginary-time method, we also calculated the barrier width
and the emission angle of the ejected electron for small and
large magnetic fields (see Supplemental Material [63], Sec. D).
It was shown that for small magnetic fields the ejected electron
moves along the electric field, and for large magnetic fields it
moves along the magnetic field during the subbarrier motion.

To support the above statements, we performed numerical
calculations of the factor R (ratio of the ionization rates for
left- and right-polarized laser fields), ionization rates, and the
stabilization factor S in the cases of the H atom and positive
ions Xe+ and Xe5+ in the fields of titanium-sapphire and x-ray
lasers. These calculations showed that the difference between
ionization rates for the cases of a left- and right-elliptically
polarized laser field, for s electrons in the constant magnetic
field, sharply increases at the transition from the adiabatic
regime to the multiphoton regime. However, accounting for
the second Coulomb correction reduces this difference. This
difference also decreases as the magnetic field increases
and becomes vanishingly small for rather large magnetic
fields. The numerical calculations also showed that in the
case of a right-elliptically polarized laser field, a constant
magnetic field suppresses the ionization probability, i.e., it
stabilizes a bound electron level. In contrast, a left-elliptically
polarized laser field counteracts the constant magnetic field
and increases the ionization rate of a bound level. As a
result, the ionization rate in the tunneling regime (γ � 1) can
grow. But, accounting for the second Coulomb correction in
the multiphoton regime (γ � 1) leads to a decrease in the
ionization rate and as a consequence to sharp stabilization of a
bound level. Besides, the high accuracy of the expressions for
ionization rates in the wide range of the Keldysh parameter,
obtained in this paper, is confirmed by comparison with the
numerical results obtained by the Floquet method and the
solution of the time-dependent Schrödinger equation and with
the experiment where was investigated the interaction of a
high-intensity x-ray laser radiation field with rare gas atoms.

The formulas obtained in this paper allow one to obtain
simple estimates for the ionization rate for not only negative
ions, but also for neutral atoms and positive ions in an
elliptically polarized laser beam propagating at an arbitrary
angle to the constant magnetic field.
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APPENDIX A: EXACT SOLUTION OF THE SCHRÖDINGER EQUATION AND THE GREEN’S FUNCTION FOR AN
ELECTRON IN AN ELECTROMAGNETIC WAVE AND CROSSED CONSTANT ELECTRIC AND MAGNETIC FIELDS

Let us choose the direction of the constant magnetic field H as the z axis and the direction of the constant electric field Fd as
the y axis. The vector potential of the constant magnetic field H is conveniently taken here as (Landau gauge)

AH,x = −Hy, AH,y = 0, AH,z = 0

and the Schrödinger equation for an electron in these fields and the electromagnetic wave with the vector potential A(t),
propagating in an arbitrary direction, reads as

i�
∂�(r,t)

∂t
= 1

2m

[
−i�∇ − ex

e

c
Hy + e

c
A(t)

]2

�(r,t) + eFdy�(r,t), (A1)

where ex is the unit vector along the x axis. To separate the variables in Eq. (A1), we seek the wave function �(r,t) in the form

�(r,t) = exp

[
i

�

(
pxx + pzz − 1

2m

∫ t

0

{[
pz + e

c
Az(τ )

]2

+ 2e

c
pxAx(τ ) + e2

c2

[
A2

x(τ ) + A2
y(τ )

]}
dτ

)]
�̃(r,t). (A2)

Substituting (A2) into (A1) gives the equation for the new wave function �̃(r,t):

i�
∂�̃(r,t)

∂t
= Ĥ �̃(r,t), (A3)

where the Hamiltonian

Ĥ = 1

2m

{
p̂2

y + p2
x − 2e

c
Hpxy + e2H 2

c2
y2 + 2e

c

[
p̂yAy(t) − e

c
HyAx(t)

]}
+ eFdy (A4)

and p̂y = −i� ∂
∂y

is the y component of the momentum operator. Let us represent �̃(r,t) in the form (see also Ref. [98])

�̃(r,t) = exp

{
− i

�
φ(t)

}
D̂(p(t),q(t)) χ (r,t), (A5)

where D̂(p(t),q(t)) is the unitary operator

D̂(p(t),q(t)) = exp

{
i

�
[p(t)y − q(t)p̂y]

}
, (A6)

p(t) = ωHf2(t), q(t) = f1(t)/m, and f2(t) and f1(t) are new unknown functions. The major property of D̂(p(t),q(t)) is

D̂+(p(t),q(t))(αp̂y + βy)D̂(p(t),q(t)) = α[p̂y + p(t)] + β[y + q(t)], (A7)

where α and β are the arbitrary constants and D̂+ is the conjugate operator. The operator D̂(p(t),q(t)) is often met in theoretical
problems. In particular, exp(iτ )D̂ (τ is the arbitrary constant) gives the representation of the Heisenberg-Weil group. Substituting
the function (A5) into (A3), we get the equation for the unknown function χ (r,t):

i�
∂χ (r,t)

∂t
= {D̂+(p(t),q(t))Ĥ D̂(p(t),q(t)) + i�D̂+(p(t),q(t))ĈD̂(p(t),q(t)) − φ̇(t)}χ (r,t). (A8)

Here and above, φ̇(t) = ∂φ(t)
∂t

and

Ĉ = i(f1ḟ2 − f2ḟ1) + i
√

2

(
aH

�
ḟ1 p̂y − 1

aH

ḟ2 y

)
.

When deriving D̂(p(t),q(t)) in Eq. (A8), we made use of the relation

∂

∂t
eÂ = eÂ

{
∂Â

∂t
− 1

2

[
Â,

∂Â

∂t

]}
,

correct for any operator Â provided Â and ∂Â
∂t

commute with [Â, ∂Â
∂t

]; here, [X̂,Ŷ ] = X̂Ŷ − Ŷ X̂.
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The relation (A7) makes it possible to disjoint the terms in the curly brackets in Eq. (A8) into several parts. To separate the
variables, we require that the time-dependent parts, which are proportional to p̂y and y, be equal to zero. This gives two equations
for f1(t) and f2(t):

ḟ1(t) = ωHf2(t) + e

c
Ay(t), ḟ2(t) = −ωH f1(t) + e

c
Ax(t), (A9)

which can be united into a single equation for the complex function f (t) = f1(t) + if2(t):

ḟ (t) + iωH f (t) = e

c
[Ay(t) + iAx(t)]. (A10)

We need only a partial solution of Eq. (A10), which reads as

f (t) = e

c

∫ t

−∞
[Ay(τ ) + iAx(τ )]eiωH (τ−t)dτ. (A11)

Separating the real and imaginary parts in Eq. (A11), we obtain f1(t) = Px(t)/ωH and f2(t) = Py(t)/ωH , where

Px(t) = e

c
ωH

∫ t

−∞
{Ay(τ ) cos ωH (t − τ ) + Ax(τ ) sin ωH (t − τ )}dτ,

Py(t) = e

c
ωH

∫ t

−∞
{Ax(τ ) cos ωH (t − τ ) − Ay(τ ) sin ωH (t − τ )}dτ. (A12)

The time-independent terms in the curly brackets in Eq. (A8) give the stationary equation for the harmonic oscillator displaced
by the electric field Fd :

i�
∂χ (y,t)

∂t
= 1

2m

{
p̂2

y + p2
x + m2ω2

Hy2 + 2my(eFd − pxωH )
}
χ (y,t). (A13)

The normalized solutions of Eq. (A13) are expressed in terms of the Hermite polynomials Hn by

χn(y,t) = An exp

{
i

�
(px + pz − Ent)

}
exp

{
− (y − y0)2

2a2
H

}
Hn

(
y − y0

aH

)
, (A14)

where En = p2
z/2m + �ωH (n + 1

2 ) + pxvd − mv2
d/2 are the Landau energy levels in the constant electric field, vd = cFd/H is

the drift velocity, y0 = (a2
H/�)(px − mvd ), and aH = (�c/eH )1/2 is the magnetic length. The time-dependent terms in the curly

brackets in Eq. (A8) determine the function φ(t) in the exponent in Eq. (A5) in the following form:

φ(t) = Px(t) Py(t)

2mωH

− vd

ωH

[
Py(t) − e

c
ωH

∫ t

−∞
Ax(τ )dτ

]

+ e

mc

∫ t

−∞

{
pzAz(τ ) + e

2c
A2(τ ) + 1

2
[Py(τ )Ay(τ ) − Px(τ )Ax(τ )]

}
dτ. (A15)

Substituting the solution (A14) into (A5) and using for the operator (A6), the Beiker-Hausdorf identity

exp{X̂ + Ŷ } = exp

{
−1

2
[X̂,Ŷ ]

}
exp{X̂} exp{Ŷ },

we get the solution of Eq. (A1) in the form

�n(r,t) = An exp

{
i

�

[
pxx + pzz + Py(t)y + px

mωH

Py(t) − Ent − φ(t)

]}
exp

{
− [y − y0(t)]2

2a2
H

}
Hn

[
y − y0(t)

aH

]
, (A16)

where An = 1/(
√

LxLzaH

√
2nn!

√
π ) and y0(t) = y0 + Px(t)/(mωH ) is the coordinate of the center of classical circular motion

of the electron, depending on time via the function Px(t). The latter result is obtained from the identity (see in Ref. [75])

exp

{
− i

�

Px(t)

mωH

p̂y

}
F (y) = F

[
y − Px(t)

mωH

]

by applying the operator (A6). The wave function (A16) describes the states of an electron in laser and constant magnetic
fields, which act simultaneously. The exponent in it differs from that in the well-known Volkov wave function by the additional
contributions related to the functions Px(t) and Py(t). It is also seen that the wave function (A16) has the preexponential factor
similar to that in the standard Landau wave function for an electron in a constant magnetic field [75], but with the argument of the
Hermite polynomial being dependent on time via the function Px(t). Thus, the functions Px(t) and Py(t), which are dependent
of both the laser and constant magnetic fields, describe the combined effect of the two fields on the electron.
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Based on the exact solution (A16), the retarded Green’s function from Eq. (4) with using of the spectral expansion

G(r,t ; r ′,t ′) = − i

�
θ (t − t ′)G(r,t ; r ′,t ′), (A17)

where

G(r,t ; r ′,t ′) =
∫ ∞

−∞

Lx

2π�
dpx

∫ ∞

−∞

Lz

2π�
dpz

∞∑
n=0

�∗
n (r ′,t ′) �n(r,t) (A18)

after some algebra, can be represented in the form (5), where

S(r,t ; r ′,t ′) = m

2

Z2(t,t ′)
t − t ′

+ mωH

2

{
1

2
cot

ωH

2
(t − t ′)[X 2(t,t ′) + Y2

−(t,t ′)] + X (t,t ′) Y+(t,t ′)
}

+ mv2
d

2
(t − t ′) + �(t,t ′) + Py(t)y − Py(t ′)y ′ (A19)

is the corresponding classical action. Here,

Z(t,t ′) = z − z′ + e

mc

∫ t ′

t

Az(τ )dτ, X (t,t ′) = x − x ′ − vd (t − t ′) + 1

mωH

[Py(t ′) − Py(t)],

Y−(t,t ′) = y − y ′ + 1

mωH

[Px(t ′) − Px(t)], Y+(t,t ′) = y + y ′ + 2
vd

ωH

− 1

mωH

[Px(t ′) + Px(t)],

�(t,t ′) = 1

2mωH

[Px(t ′)Py(t ′) − Px(t)Py(t)] + vd

ωH

[
Py(t) − Py(t ′) + e

c
ωH

∫ t ′

t

Ax(τ )dτ

]

+ e2

2mc2

∫ t ′

t

A2(τ )dτ + e

2mc

∫ t ′

t

[Py(τ )Ay(τ ) − Px(τ )Ax(τ )]dτ. (A20)

It is easy to show that in the limit H → 0, the Green’s function (5) coincides with the corresponding Volkov Green’s function
obtained in Ref. [32]. On the other hand, at Fd = 0 and in the static limit ω → 0, we arrive at the expression for the Green’s
function obtained in Ref. [19] for the case of crossed constant electric and magnetic fields. All expressions in this paper can be
obtained by setting Fd = 0 (vd = 0) in Eq. (A20).

APPENDIX B: TWO APPROACHES TO THE DETERMINATION OF IONIZATION RATE

The first approach to the determination of ionization rates relates to the possibility of the expansion of the wave functions (A16),
included in the function G(0,t ; 0′,t − t ′), in Fourier series

�n(0,t) = 1

2π
exp

{
− i

�

[
En + κ2

4γ 2
(1 + g2)

]
t

} ∞∑
m=−∞

F (n)
m (px,pz) e−imωt , (B1)

where En = p2
z/2m + �ωH (n + 1

2 ) are the Landau energy levels, κ = √
2m|E0| is the inner-atomic momentum. Then, Eq. (8)

for the complex quasienergy can be written as

(
√−ε −

√
|E0|)fε(t) = 1

2

√
�

πi

∫ ∞

0
dt ′ exp

(
i

�
εt ′
){ ∞∑

m,m′=−∞
�m′,m(t ′) ei(m′−m)ωtfε(t − t ′) − fε(t)

t
′3/2

}
, (B2)

where the functions �m′,m(t ′) are

�m′,m(t ′) = 1

(2π )2

∫ ∞

−∞

Lx

2π�
dpx

∫ ∞

−∞

Lz

2π�
dpz

∞∑
n=0

F
(n)∗
m′ (px,pz)F

(n)
m (px,pz)

× exp

{
− i

�

[
En + κ2

4γ 2
(1 + g2) + m′

�ω

]
t ′
}

(B3)

and the superscript ∗ denotes the complex conjugate. Following Ref. [32] we also expand the function fε(t) into Fourier series

fε(t) = 1

2π

∞∑
l=−∞

fle
−ilωt (B4)
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and represent Eq. (B2) in the form

(
√−ε −

√
|E0|)fl = 1

2

√
�

πi

∫ ∞

0
dt ′ exp

(
i

�
εt ′
)⎧⎨
⎩

∞∑
m,m

′ =−∞
fm′−m+l�m′,m(t ′) ei(m′−m+l)ωt ′ − fl

t ′3/2

⎫⎬
⎭. (B5)

Let us restrict ourselves to the case l = 0 and consider only the diagonal terms m = m′ in the sum under the integral in Eq. (B5).
Then, neglecting the Stark shift (E 	 E0) for small laser field-induced width �� � E of the bound level, with taking into
account the relation ∫ ∞

0
eixτ dτ = i

P

x
+ πδ(x), (B6)

we find the ionization rate (11) as a sum of probabilities of many-photon processes.
The second approach uses a direct calculation of the function G(0,t ; 0′,t − t ′), i.e., the retarded Green’s function (5). In this

case, Eq. (8) can be represented in the form

(
√−ε −

√
|E0|)fε(t) = 1

2

√
�

πi

∫ ∞

0

dt ′

t ′3/2
exp

(
i

�
εt ′
){

ωH t ′

2 sin(ωH t ′/2)
fε(t − t ′) exp

[
i

�
S(t,t ′)

]
− fε(t)

}
, (B7)

where S(t,t ′) = limr,r ′→0 S(r,t ; r ′,t − t ′) and the classical action S(r,t ; r ′,t ′) is defined by Eqs. (A19) and (A20). The real and
imaginary parts of the complex quasienergy ε determine the Stark shift �ε = E − E0 and the laser field-induced width �� of the
bound level. Equation (B7) is valid for a laser beam with an arbitrary strength and direction of propagation and a magnetic field
of arbitrary strength. It opens up the possibility for the calculation of ionization rates in the area of strong electric and magnetic
fields in the wide range values of the Keldysh parameter γ . For large multiquantum parameter λ � 1, in order to derive basic
analytical results, we set fε(t) ≈ const and average the right-hand side of Eq. (B7) with respect to t over the period π/ω. This
approximation corresponds to Eqs. (16a) and (16b) in Ref. [32]. Then, Eq. (B7) transforms to the closed equation for the complex
quasienergy

β 	 1 + 1

2
√

πiλ

1

π

∫ π

0
dτ

∫ ∞

0

dt

t3/2
exp(−iλβ2t)

{
ω0t

2 sin(ω0t/2)
exp[iλS(τ,t)] − 1

}
, (B8)

where β = √−ε/|E0| describes the alteration of the electron energy by the laser and magnetic fields. The relative accuracy
of Eq. (B8) can be estimated as 1/(16λ) [32]. For example, according to this criterion, the relative accuracy of calculation of
ionization rates on Figs. 3 and 4 (λ = 4.63) reaches ∼1.5%. For λ � 1 and for small electric fields F � F0 from Eq. (B8) one
can obtain the quasiclassical ionization rate

� = ωH

2
√

2z0 sinh(ω0z0)

1√|F ′′(z0)| exp[−2λF (z0)] (B9)

for an electron in a zero-range potential under the influence of an elliptically polarized laser beam, propagating at an angle θ to
a constant magnetic field.

APPENDIX C: KAPITZA’S METHOD AND CALCULATION OF IMAGINARY PART OF THE CLASSICAL ACTION

In a rapidly oscillating field, in accordance with Kapitza’s method [99,100], the trajectory of the electron can be represented
in the form

r(t) = R(t) + r0(t), (C1)

where R(t) is the trajectory describing the “smooth” motion of the electron averaged over the small rapid oscillations at frequency
ω and the zero-order trajectory r0(t) corresponds to these small oscillations. Passing in Eq. (104) to the dimensionless variables
ξ = r/b (b = κ/ω) and φ = ωt and averaging over the period 2π/ω, we obtain

d2ξ

dφ2
= −∇ξU(ξ ,g,ω0,θ ), U(ξ ,g,ω0,θ ) = −μJ (ξ ,g,ω0,θ ), (C2)

where

J (ξ ,g,ω0,θ ) = 1

2π

∫ 2π

0

dϕ√
[ξx + ζx,0(ϕ)]2 + [ξy + ζy,0(ϕ)]2 + [ξz + ζz,0(ϕ)]2

(C3)

and

ζx,0(ϕ) = − 1

γ

1

1 − ω2
0

{
[gω0 + cos(θ )][1 − cos(ϕ)] + G(g,ω0,θ )

sinh(z0)

sinh(ω0z0)
[cos(ω0ϕ) − 1]

}
,

ζy,0(ϕ) = 1

γ

G(g,ω0,θ )

1 − ω2
0

[
sin(ϕ) − sin(ω0ϕ)

sinh(z0)

sinh(ω0z0)

]
, ζz,0(ϕ) = − 1

γ
sin(θ )[1 − cos(ϕ)]. (C4)
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In Eq. (C3), ξx,ξy,ξz can be estimated as the dimensionless initial points ξx,0,ξy,0,ξz,0 in the initial instant t = 0 of the electron
motion in real time without taking into account the Coulomb interaction (μ = 0). From Eq. (5) in the Supplemental Material [63]
at z = 0 in the multiphoton regime (γ � 1) at g2 
= 1 for small magnetic fields (ω0z0 � 1) we have

ξx ∼ ξx,0 	 cos(θ )√
(1 − g2

, ξy ∼ ξy,0 = 0, ξz ∼ ξz,0 	 sin(θ )√
1 − g2

. (C5)

If the opposite inequality ω0z0 � 1 holds,

ξx 	 g − cos(θ )√
(1 + ω0)2 − G2(g,ω0,θ )

, ξy = 0, ξz 	 sin(θ )√
1 − G2(g,ω0,θ )/(1 + ω0)2

. (C6)

In the case of a circular laser beam propagating at an angle θ to the constant magnetic field H for ω0z0 � 1, we have

ξx 	 1√
2

ω0 + cos(θ )

1 − ω2
0

√
ln(γ )

(B±/2) ln(γ ) + 1 − B±
, ξz 	 sin(θ )√

2

√
ln(γ )

(B±/2) ln(γ ) + 1 − B±
, (C7)

ξy = 0 and B± = 1 − G2(g = ±1,ω0,θ )/(1 − ω2
0)2. If in the case of a circular laser field the opposite inequality ω0z0 � 1 holds,

then the expressions for ξx , ξy , and ξz in Eq. (C6) are valid. It should be noted that ξx and ξz in Eq. (C6) in the case of a
right-circularly polarized laser beam (g = +1), propagating along the constant magnetic field H (θ = 0) have a singularity. In
this case, as was mentioned above, the saddle-point equation (39) has no roots. In the absence of the constant magnetic field
(ω0 → 0) in the case of an elliptically polarized laser field, with taking into account Eq. (C5), the integral in Eq. (C3) is simplified
as follows:

J (ξ ,g,0,0) 	 1

2π

∫ 2π

0

dϕ√
{1/
√

1 − g2 − γ −1[1 − cos(ϕ)]}2 + g2γ −2[sin(ϕ) − ϕ sinh(z0)/z0]2
(C8)

and for a circularly polarized laser field this integral reads as

J (ξ ,g = ±1,0,0) 	 1

2π

∫ 2π

0

dϕ√
{√ln(γ )/2 − γ −1[1 − cos(ϕ)]}2 + γ −2[sin(ϕ) − ϕ sinh(z0)/z0]2

, (C9)

where the saddle point z0 here is determined by Eq. (39) for ω0 = 0.
The motion corresponding to smooth trajectory ξ (t) is conservative with an energy integral

1

2

(
dξ

dφ

)2

+ U(ξ ,g,ω0,θ ) = E = const, (C10)

where the constant energy E corresponding the ionization threshold defines the extremal trajectory along which the ionization
probability attains its maximal value, i.e., zero electron velocity at infinity (E = 0). Kapitza’s method is applicable under the
multiphoton ionization condition since

ωT = 2πωb3/2Z−1/2 = 2π

√
2λ

η
	 μ−1/2 � 1, (C11)

where T is the characteristic time of classical motion of the photoelectron in the Coulomb field [100], b = κ/ω is the “dynamic”
width of the barrier (width of the barrier in the multiphoton regime), and η = Z/κ is the Sommerfeld parameter.

In the absence of the constant magnetic field and for a linearly polarized laser field (g = 0), the integral in Eq. (C3) can be
calculated analytically and for the potential U(ξ ,g,ω0,θ ) in Eq. (C2) we have [35]

U(ξ,g = 0,0,0) = − μ√
ξ 2 − 2ξ/γ

. (C12)

In the multiphoton regime, i.e., for γ � 1, the potential U(ξ,g = 0,0,0) can be reduced to the Coulomb potential and the
relation (C10) gives the drift momentum for the electron at the moment t = 0 when it overcomes the barrier [see Eq. (A10) in
Ref. [35]]

pz 	 κ
√

2μ. (C13)

Thus, accounting for the Coulomb interaction leads to the point of emergence from under the barrier is not the point at which
the electron comes to a halt even in the one-dimensional case. In the general case (g 
= 0, H 
= 0), passing in Eq. (C10) to the
imaginary time φ → iτ we obtain the boundary condition for the subbarrier energy (for the subbarrier trajectory ξ ):

1

2

(
dξ

dτ

)2

= −μJ (ξ ,g,ω0,θ ), τ = 0. (C14)
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The Coulomb correction to the subbarrier trajectory has to be determined from the following equation:

d2ξ

dτ 2
= iω0

[
ez,

dξ

dτ

]
+ μ

ξ 0

|ξ 0|3 (C15)

with the initial condition (C14) and for ξ (τ = 0) = 0. In Eq. (C15), ez is the unit vector along the z axis and ξ 0 = r0/b, where
r0 is the trajectory (5) in the Supplemental Material [63]. The solution of Eq. (C15) corresponding to these initial conditions is

ξ (τ ) = inτ
√

2μJ (ξ ,g,ω0,θ ) +
∫ τ

0
�(τ ′)dτ ′, (C16)

where n is the unit vector (n2 = 1) and � = (�x,�y,�z):

�x,y(τ ′) = μ

∫ τ ′

0
exp{ω0(τ̃ − τ ′)}ξ0,x,y(τ̃ )

|ξ 0(τ̃ )|3 dτ̃ , �z(τ
′) = μ

∫ τ ′

0

ξ0,z(τ̃ )

|ξ 0(τ̃ )|3 dτ̃ . (C17)

In the general case, the integral in Eq. (103) can be evaluated by parts with using the equation of motion v̇0 = −E(t) − [v0,H].
Let us consider the magnetic part of the classical action

δSII,H =
∫ ∞

t0

[y0H exv1 + y1H exv0]dt +
∫ ∞

t0

[v0,H]r1dt = Hy0x1|t→∞
t=t0

. (C18)

Since the ionization probability depends only on the imaginary part of the action, the contribution of the upper limit in Eq. (C18)
is insignificant. In turn, taking into account Eq. (5) [y0 ∼ r0y(z0) = 0], we obtain that δSII,H = 0. Further, retaining contributions
on an order no higher than the first in parameter μ, in view of Eqs. (C16) and (C17), one can obtain Eq. (105).
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