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Relativistic theory for the elementary process of bremsstrahlung induced by heavy spin-zero nuclei
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Doubly and triply differential cross sections for the bremsstrahlung emission by high-energy spin-polarized
electrons in the field of heavy bare nuclei are calculated within a fully relativistic partial-wave approach at
collision energies between 1 and 30 MeV. Investigating 208Pb as a test case, it is shown that if the photons are
emitted at backward angles, nuclear size effects may play an important role even below 10 MeV. Comparison
is made with experimental data on the circular polarization correlations between incoming electron and emitted
photon at a collision energy of 3.5 MeV. It is demonstrated that, independent of energy, the plane-wave Born
approximation severely underestimates the cross section for heavy targets. Moreover, it gives at most a qualitative
prescription of the polarization correlations, except possibly in the forward hemisphere.
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I. INTRODUCTION

The elementary (e,e′γ ) process of bremsstrahlung is one
of the fundamental electromagnetic processes in electron-
atom and electron-nucleus collisions and has been stud-
ied for decades, both experimentally and theoretically [1].
As concerns the experiments, the polarization correlations
between the incoming electron and the emitted photon
were usually measured at collision energies well below
1 MeV. For the (e,e′γ ) process only the perpendicular spin
asymmetry was obtained [1,2], while the other polarization
correlations pertaining to linearly polarized photons were
basically measured in single (e,γ ) experiments [3–5]. Current
investigations concern the measurement of the polarization
correlations for linearly polarized photons at 2.1 MeV [6]
and for circularly polarized photons at 3.5 MeV [7,8]. Due
to the recent advances of polarimetry [5,7,9] bremsstrahlung
measurements up to several tens of MeV should be
feasible.

There is a significant interest in high-energy bremsstrahlung
and its electron-photon polarization correlations. From a
theoretical point of view, the polarization of the photon emitted
in high-energy collisions serves as a sensitive probe of the
relativistic dynamics of a spinning charged particle in strong
nuclear fields. The consideration of triply differential cross
sections provides a much greater wealth of information than
spin aymmetries in the doubly differential cross sections where
recent experiments [6] have nicely verified the theoretical
predictions. Of experimental interest, on the other hand, is
the control of the beam polarization during a measurement.
This is not possible by conventional Mott or Møller scattering,
but can be done by analyzing the circular polarization of
bremsstrahlung produced by the polarized beam [7]. The
measurement of this circular polarization can be achieved by
means of the polarization correlations [9].

Bremsstrahlung can also be investigated in inverse kine-
matics. In such experiments bare nuclei or highly stripped
heavy atoms are collided with light neutral targets, thereby
observing the photons from radiative ionization [10]. There
is an accelerator upgrading planned to cover beam energies
up to 3 GeV and beyond, using the facility to measure
triply differential bremsstrahlung cross sections near the short-
wavelength limit [11].

A further interest in high-energy bremsstrahlung is a quan-
tification of its role as background effect in nuclear excitation
by electron impact [12,13], where the excitation probabilities
are usually obtained from the measured spectra by subtracting
a smooth background (see, e.g. [14]). In order to elucidate
the influence of bremsstrahlung, coincidence experiments are
planned in the near future with a high resolution [15]. In such
experiments the photon from the decay of the excited nuclear
state is detected simultaneously with the energy-analyzed
scattered electron. Up to now, there exists a pilot measurement
on the 12C nucleus [16] which is theoretically interpreted
in [17]. However, the detected photon may also originate
from the elementary process of bremsstrahlung, provided
the nuclear decay is into the ground state of an unpolarized
nucleus. Therefore, in a theoretical model, the amplitude for
the bremsstrahlung process has to be added coherently to the
one for the inelastic nuclear process [18].

For light and medium target nuclei high-energy
bremsstrahlung is conventionally described in terms of the
plane-wave Born approximation (PWBA). In this theory the
nuclear effects such as finite nuclear size or magnetic moment
distribution are incorporated into the Bethe-Heitler model [19]
by means of form factors [20]. However, as known from
investigations on heavy nuclei at energies below 1 MeV, there
are considerable discrepancies in the triply differential cross
section between the PWBA and the relativistic partial-wave
analysis [21]. In fact, there may even be some discrepancies
for medium nuclei like Ag [22]. Another theory which
can easily be evaluated in the high-energy regime is the
Sommerfeld-Maue (SM) model (also known as Elwert-Haug
theory [23,24]), where semirelativistic point-nucleus wave
functions are used for the electronic scattering states. Although
performing better than the PWBA near the short-wavelength
limit (SWL), it is inferior to the relativistic partial-wave
prescription for the heavier nuclei (see the comparison of
triply differential cross sections and polarization correlations
in [22,25]). There exists also a hybrid theory for high-energy
bremsstrahlung at the SWL, the Dirac-SM (DSM) model [26]
where it is used that the Sommerfeld-Maue functions become
exact at very high energies. In the DSM model the initial-state
electron is described by such a function while the final
electron is a Dirac state of zero kinetic energy. This model
works reasonably well near and above 10 MeV [27], but
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poor convergence of the two-dimensional radiation integrals
prohibits its application beyond 20 MeV.

The most elaborate model existing so far, which is exact
for bare nuclei within the one-photon approximation, uses
Dirac partial waves for both the electronic scattering states.
Such a fully relativistic prescription, including polarization
effects, was pioneered by Brysk et al. [28], advanced by Tseng
and Pratt [22,29], and recently taken up by Yerokhin and
co-workers [30,31]. However, because of severe convergence
problems of the partial-wave series at the higher energies,
this theory has mostly been evaluated at collision energies
not exceeding 5 MeV (see also [27,32]). Beyond that there
exists a partial-wave interpolation method for the cross section
evaluated at 2–10 MeV [33], and a singular partial-wave result
at 10 MeV at the SWL [34].

In the present work we set a benchmark by using the
standard relativistic partial-wave theory for bremsstrahlung
from heavy nuclei, while refining the previously developed
procedures in order to cover much higher collision energies.
Both doubly and triply differential cross sections as well
as the respective polarization correlations are considered.
An optimized code for this theory is set up in order to
allow predictions for collision energies up to 30 MeV. This
covers the region where measurements of the polarization
correlations are feasible. We restrict ourselves to the emission
of hard circularly polarized photons which are investigated
in the ongoing experiments [8]. As concerns the elementary
process of bremsstrahlung, our results provide a supplement
to the theoretical study of linear polarization correlations
in [31]. From experimental and theoretical investigations of the
polarization correlations for elastic electron scattering from
heavy nuclei [35], as well as from a comparison between
the PWBA and the Bethe-Heitler theory for medium-nuclei
bremsstrahlung [36], it is evident that at high collision energies
there will be appreciable nuclear size effects for nuclei such
as 208Pb. Up to now the role of these effects in the triply
differential bremsstrahlung cross section for heavy targets was
only investigated (within the Dirac theory) for an energy of 0.3
MeV, where they were found to be well below one percent [37].

It is the aim of our investigations to quantify the influence
of nuclear size effects and to clarify the validity of the PWBA
where it has not been tested before. Also the correspondence
in the circular polarization correlations between a hard photon
and an elastically scattered electron [38] is extended into
the high-energy regime. Moreover, it will be shown how
the relativistic focusing changes the angular distribution of
both cross sections and spin asymmetries as compared to the
low-energy results.

The paper is organized as follows. In Sec. II an outline
of the relativistic bremsstrahlung theory is given, adapting
the formulation in order to account for spin polarization in
a straightforward way. This is followed by the numerical
details (Sec. III). Section IV provides results for the circular
polarization correlations in a collision geometry where the
scattered electron is not observed. Comparison is made with
preliminary experimental data at 3.5 MeV. Section V gives
predictions for the elementary process of bremsstrahlung. The
conclusion is drawn in Sec. VI. Atomic units (� = m = e = 1)
are used unless indicated otherwise. In particular, the electron
mass is retained in all calculations.

II. RELATIVISTIC BREMSSTRAHLUNG THEORY

We restrict ourselves to electron scattering from (bare) spin-
zero nuclei which are supposed to remain in their ground state,
such that magnetic scattering as well as the dynamical recoil
(nuclear bremsstrahlung) is not present. We also assume that
the spin polarization of the scattered electron is not observed.

Due to the finite mass MT of the nucleus kinematical recoil
effects are present [39]. Following the emission of a photon
with momentum k and frequency ω = kc the nucleus recoils
with momentum q = ki − kf − k where ki and kf are the
electron momenta in the initial, respectively final, state. As
shown in [36] from the conservation of the four-momentum,

the energy Ef =
√

k2
f c2 + c4 of the scattered electron is

slightly smaller than the value Ei − ω resulting from the limit
MT → ∞. Of course the relations for the four-momentum can
also be used to calculate ω for a given Ef .

The triply differential cross section for the emission of
bremsstrahlung with polarization eλ into the solid angle d�k

by an electron with initial spin vector ζ i (and spin projection
σi), which is scattered into the solid angle d�f , is given by [22]

d3σ

dω d�kd�f

(ζ i ,eλ) = 4π2ωkf Ef

c3v fre

∑
σf

|e∗
λ W rad(σf ,σi)|2,

(2.1)
where v = kic

2/Ei is the collision velocity, and it is summed
over the two spin states σf of the scattered electron. fre is a
recoil factor [36,39],

fre = 1 − kf qEf

k2
f Enuc,f

, (2.2)

where Enuc,f =
√

q2c2 + M2
T c4 is the final energy of the

nucleus.
The radiation matrix element is given by

W rad(σf ,σi) =
∫

d r ψ
(σf )+
f (r) α e−ikr ψ

(σi )
i (r), (2.3)

where α is a vector of Dirac matrices, and the electronic
scattering states are solutions to the Dirac equation for an
arbitrary nuclear potential V (r) [40,41]. For nuclei such as
208Pb, V (r) can be obtained from a Fourier-Bessel expansion
of the nuclear ground-state charge density [42].

The wave function of the scattered electron is partial-
wave expanded [22,43], taking explicitly account of the spin
polarization vector ζ f ,

ψ
(σf )+
f (r) =

∑
ms=± 1

2

b(f )∗
ms

∑
κf mf

(
lf mf − ms

1

2
ms |jf mf

)

× (−i)lf e
iδκf Ylf ,mf −ms

(k̂f ) ψ+
κf mf

(r), (2.4)

ψκf mf
(r) = ( gκf

(r) Yjf lf mf
(r̂ )

i fκf
(r) Yjf l′

f
mf

(r̂ )

)
. The coefficients bms

are deter-

mined by the spherical coordinates of ζ = (1,αs,ϕs) according
to [43]

b1/2 = cos
αs

2
e−iϕs/2, b−1/2 = sin

αs

2
eiϕs/2. (2.5)

With the choice of the final polarization along the quantization
(z) axis, i.e., ϕs = 0 and αs ∈ {0,π}, one has b

(f )
ms

∈ {0,1}.
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Below (2.4) gκf
and fκf

are, respectively, the large and small
components of the radial Dirac functions and Yjlm is a spherical
harmonic spinor. Furthermore, δκf

is the (Coulomb plus short-
range) phase shift, (· · |·) is a Clebsch-Gordan coefficient, and
Ylm a spherical harmonic function as defined in [44].

If one introduces transition amplitudes Ff i by means of

W rad(σf ,σi) =
∑

ms=± 1
2

b(f )∗
ms

Ff i(ms,σi), (2.6)

the summation over the final spin states is easily carried out,
∑
σf

|e∗
λ W rad(σf ,σi)|2 =

∣∣∣∣e∗
λ Ff i

(
1

2
,σi

)∣∣∣∣
2

+
∣∣∣∣e∗

λ Ff i

(
−1

2
,σi

)∣∣∣∣
2

. (2.7)

In order to allow for a convergence acceleration it is of
advantage to sum over the angular quantum numbers lf ,jf and
ml = mf − ms in the calculation of Ff i , instead of summing
over κf and mf . Then

Ff i(ms,σi) =
∑
lf ml

Ylf ml
(k̂f ) d lf ,ml

, (2.8)

with

d lf ,ml
= (−i)lf

∑
jf

(
lf ml

1

2
ms |jf mf

)
e
iδκf

×
∫

d r ψ+
κf mf

(r) α e−ikr ψ
(σi )
i (r), (2.9)

where κf = lf (for jf = lf − 1
2 ), respectively, κf = −lf −

1 (for jf = lf + 1
2 ).

For the initial-state wave function ψ
(σi )
i an expansion similar

to (2.4) holds which simplifies considerably when the z axis
is taken along ki (in contrast to taking it along k as done
in [22]). Upon expanding e−ikr in (2.9) in terms of spherical
harmonic functions [44], all angular integrals can be performed
analytically (see, e.g. [30,40]).

If the scattered electron is not observed, the triply differ-
ential cross section (2.1) has to be integrated over the solid
angle d�f of the scattered electron. This is a formidable
task because, for a given photon frequency, recoil effects lead
to a dependence of the electron energy on the direction k̂f

of electron emission [45]. However, as discussed below, the
omission of recoil is well justified for the heavier spin-zero
nuclei, provided the collision energy is not too high and the
photons hard (which is the present case of interest). Therefore,
recoil is neglected in the doubly differential cross section,
upon which the angular integral becomes trivial within the
partial-wave representation (2.4),

d2σ

dωd�k

(ζ i ,eλ)

=
∫

d�f

d3σ

dω d�kd�f

(ζ i ,eλ)

= 4π2ωkf Ef

c3 v

∑
κf mf

∣∣∣∣
∫

d r ψ+
κf mf

(r)(e∗
λα)e−ikrψ

(σi )
i (r)

∣∣∣∣
2

.

(2.10)

This involves the same integral as occurs in (2.9). However,
in (2.10) the final partial waves enter incoherently.

For circularly polarized photons the triply differential
cross section (2.1) can be parametrized in terms of the
electron-photon polarization correlations Cμν0 in the following
way [22],

d3σ

dωd�kd�f

(ζ i ,e±)

= 1

2

(
d3σ

dωd�kd�f

)
0

[1 + ξ2 C020

− (ζ i · ex)(C100 + ξ2 C120) − (ζ i · ey)(C200 + ξ2 C220)

+ (ζ i · ez) (C300 + ξ2 C320)], (2.11)

where ξ2 = +1 for a right-handed photon (e(+)) and ξ2 =
−1 for e(−). The first two terms refer to initially unpolar-
ized electrons while the remaining terms correspond to the
three Cartesian components of the polarization vector ζ i

[where ez = k̂i , ey = k̂i × k̂ with k̂ = (sin θk,0, cos θk) and
ex = ey × k̂i]. The prefactor denotes the cross section for
unpolarized particles. In coplanar geometry (where kf lies in
the reaction plane which is spanned by ki and k) it was shown
that the parameters C020, C100, C220, and C300 vanish [22].
We have verified that these circular polarization correlations
also vanish in the general case. If, in addition, ζ i is chosen
in the reaction plane (ϕs = 0) as done in the experiments
on circularly polarized photons [7,8], only C120 and C320 are
accessible. They are obtained by means of the relative cross
section differences,

P3(αs) ≡ d3σ (ζ i ,e+) − d3σ (ζ i ,e−)

d3σ (ζ i ,e+) + d3σ (ζ i ,e−)

= C320 cos αs − C120 sin αs, (2.12)

with αs the polar angle of ζ i . If, on the other hand, ζ i is
perpendicular to the reaction plane (αs = π/2, ϕs = −π/2),
C200 is singled out, which is independent of the photon
polarization and mirrors the cross-section asymmetry upon
spin flip,

C200 =
∑

λ d3σ (ζ i ,eλ) − ∑
λ d3σ (−ζ i ,eλ)∑

λ d3σ (ζ i ,eλ) + ∑
λ d3σ (−ζ i ,eλ)

. (2.13)

For unobserved electrons the corresponding parametriza-
tion reads [29,38]

d2σ

dω d�k

(ζ i ,e±) = 1

2

(
d2σ

dω d�k

)
0

[1 − ξ2 C12 (ζ i · ex)

−C20 (ζ i · ey) + ξ2 C32 (ζ i · ez)],

(2.14)

such that (2.12) and (2.13) hold also for the doubly differential
cross section (upon replacing Cμν0 by Cμν).

III. NUMERICAL DETAILS

The main task is the evaluation of the radial integrals R(l)
which are strongly oscillating at large r . In order to cope
with this difficulty the complex-plane rotation method (CRM)
was introduced in [46] and applied to bremsstrahlung in [30].
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The CRM consists in integrating up to a finite distance Rm,
well outside the nuclear charge distribution, and deforming the
remaining integration path into the complex plane. The CRM
was recently adapted to account for a finite nuclear charge
distribution in the electronic functions [45], which is used
here for the lower partial waves (|κ| � 100). Noting that the
spherical Bessel functions jl are real for real arguments, the
CRM representation given in [45] simplifies to

Rgf (l) =
∫ Rm

0
r2dr jl(kr)gκf

(r)fκi
(r)

+ 2 Re

{
i

∫ ∞

0
dy r2 jl(kr)gκf

(r)f (+)
κi

(r)

}∣∣∣∣
r=Rm+iy

,

(3.1)

where f (+)
κi

is that part of fκi
which at asymptotically large

distances behaves like f (+)
κi

(r) ∼ eiki r . Exponential overflow
for high Ei is handled by splitting the second integral at some
distance ym while keeping in the integrand of the remainder
only the contribution ∼e−�ky (with �k = ki − kf − k > 0)
with the slowest decrease in y.

For the higher partial waves the application of an asymptotic
expansion of the radial Dirac functions is no longer possible.
Instead, use can be made of the fact that for large angular
momenta (corresponding to large |κ|) the electron does not
penetrate into the nucleus and hence experiences a pure
Coulomb field, V (r) = −ZT /r with ZT the nuclear charge
number. Then the Dirac functions can be replaced by the
regular pointlike Dirac Coulomb waves [47]. These functions
are expressed [30] in terms of Whittaker functions Wα,γ of
the second kind where α is a complex number of order unity.
For sufficiently large r > Rm and large γ =

√
κ2 − (ZT /c)2

they can be calculated from their integral representation [[48],
Eq. (13.2.5)]. Asymptotically, they behave like Wα,γ (z) ∼
e−z/2. The deformation of the integration path of the radial
integrals into the complex plane can therefore be done as
before.

The complex integral in (3.1) converges nicely, with ym ∼
0.02 a.u. and an upper cutoff ymax ∼ 8/�k ∼ 1 a.u. It should
be noted that �k, being a small difference of large momenta,
is strongly affected by the kinematical recoil. In turn, this
influences basically the long-range dipole transitions. Since
bremsstrahlung involves, however, the superposition of many
multipoles, recoil effects can safely be neglected according to
our numerical results for 208Pb.

For the representation of the Bessel functions jl(z) with
z ∈ C, a highly refined library package [49] is mandatory for
l > 100, since the upward recursion relations are only valid for
large arguments (|z| > l). For calculating the radial functions
gκ and fκ , as well as the Dirac Coulomb waves (along the
real axis), the Salvat et al. Fortran code RADIAL [41] is used.
However, for the higher partial waves, the spacing of grid
points used in that code should be reduced to �r ∼ 10−2 ×
2π/k̃, where k̃ denotes the initial or final electron momentum.
About 500 grid points are sufficient, provided the integral is
not started at r = 0, but at a small value well inside the nucleus.

The choice of the upper limit Rm is taken differently for
|κi | � 100 (large enough such that the asymptotic series for
the Dirac waves converge) and for |κi | > 100 (such that the

Whittaker integral representation converges). Typically, Rm ∼
4000–15000 a.u. for the electron energies considered. Un-
fortunately, for |κi | � 600 (corresponding to Ei � 40 MeV),
an appropriate choice of Rm is no longer possible. This
defect might be remedied by a highly refined representation
of the Dirac Coulomb waves (in a similar way as is done
for the complex Bessel functions), which bridges the gap at
intermediate distances r .

For collision energies Ei � 30 MeV the remaining problem
is the slow convergence of the partial-wave series in κi and κf .
For the evaluation of the sum (2.8) over the final-state quantum
numbers, a convergence acceleration, introduced by Yennie
et al. [50] and extended in [51], is used for the triply differential
cross section. However, while such a multiple convergence
acceleration is very efficient for nuclear excitation, there is
only a slight improvement on the bremsstrahlung polarization
correlations if a onefold acceleration is applied. As a rough
estimate, Ei = 5 MeV requires |κi | � 120, Ei = 10 MeV re-
quires about 200 partial waves, Ei = 20 MeV about 350–400,
and Ei = 30 MeV about 450–500 partial waves. For the final
energies under consideration we have used cutoffs extending
at most to 50 partial waves. At the larger photon angles
(particularly beyond 160◦), there may appear oscillations with
the cutoff of κf or κi even at moderate collision energies [see
Figs. 4(b) or 6(b) where such oscillations manifest themselves
as wiggles in the angular distribution for a fixed cutoff]. For
the smallest collision energies, Ei � 1.5 MeV, the analytic
functions for pointlike nuclei can be used throughout.

IV. RESULTS FOR THE DOUBLY DIFFERENTIAL
CROSS SECTION

We have performed calculations for electrons scattering
from an inert 208Pb nucleus (ZT = 82). In general three models
are compared: the plane-wave Born approximation (PWBA)
for spin-zero nuclei (including nuclear size effects through a
multiplicative charge form factor), the relativistic partial-wave
theory for pointlike nuclei (DW-point, where the analytic Dirac
Coulomb functions are used throughout), and the relativistic
partial-wave theory (DW) pertaining to the finite nuclear
charge distribution. Our numerical code was tested against
the Sommerfeld-Maue (SM) results for ZT = 10 at forward
angles and arbitrary collision energies, both for the doubly
and triply differential cross sections and for the respective
circular polarization correlations. Moreover, it was tested
against the partial-wave results from Yerokhin [49] for the
208Pb point-nucleus doubly differential cross section as well
as for C32 and C12 at a collisions energy Ei,kin = Ei − c2 of
3.5 MeV and various photon frequencies. Very good agreement
was found except at the backmost and some near-zero photon
angles where the cross section (and hence the polarization
correlations) starts to oscillate with the number of partial waves
included in the sum.

Figure 1 shows the doubly differential bremsstrahlung cross
section as a function of collision energy when the ratio ω/Ei,kin

is kept fixed at 0.75, respectively, 0.95. At a forward photon
angle (θk = 21◦) the PWBA is close to the partial-wave theory
except at the lowest energies, and nuclear size effects are
negligibly small throughout. At the backward angle (θk = 140◦
where the electrons come closer to the nucleus) the nuclear size
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FIG. 1. Doubly differential cross section d2σ/dω d�k for the
emission of a photon in the collision with 208Pb as a function of
collision energy at an angle θk = 21◦ (upper curves) and θk = 140◦

(bottom curves). The photon frequency is 0.75 Ei,kin (top and bottom
curves) and 0.95 Ei,kin (middle curves). Results are shown for the DW
theory (——–) and for the PWBA [36] (− − − for ω/Ei,kin = 0.75;
− · − · − for 0.95). Included are results for pointlike nuclei (DW
point, · · · · · · ). For 21◦ they are indistinguishable from DW.

effects weaken the Coulomb field and hence lower the cross
section considerably, the more so, the higher the energy. The
PWBA underestimates the cross section by a factor of 4–5.

In Fig. 2 the corresponding polarization correlations C32

and C12 are displayed at the forward angle θk = 21◦. The
longitudinal spin asymmetry tends monotonously to zero when
Ei,kin → 0, while C12 has a minimum near 2 MeV before
increasing to zero. The vanishing of both spin asymmetries in
the nonrelativistic limit is a clear signature that polarization
transfer is a relativistic effect. At large Ei, C32 tends to unity
which means that the polarization transfer from a heliciy
(+) electron to the helicity (+) photon is complete. Since
elastically scattered electrons have the same property (i.e.,
the longitudinal polarization L → 1 is conserved during the
scattering process), a hard photon (near the SWL) may be con-
sidered as being equivalent to an electron scattered elastically
into the same direction (for sufficiently high collision energies
where the electron mass is of minor importance [38]). On the
other hand, C12 tends to zero with Ei . This behavior is related to
a sum rule for elastic scattering [52], which involves the three
polarization correlations L,R,S [corresponding to the initial
electron spin orientation along one of the coordinate axes in
analogy to (2.14)], that is strictly valid for potential scattering
(L2 + R2 + S2 = 1). In fact, this sum rule is approximately
valid for the three circular polarization correlations, i.e.,
C2

32 + C2
12 + C2

20 ≈ 1 [38], such that C32 ≈ 1 implies C12 ≈ 0.
The negative values of C12 can be explained by the fact that
for this polarization correlation the initial electron spin ζ i lies
in the opposite half plane (with respect to the beam axis) as
the emitted photon, thus preferring polarization transfer to
a left-handed photon. The PWBA reproduces the global Ei

dependence, but with large deviations at lower energy while
gradually coming closer to the partial-wave result at the highest
Ei .

Also shown in this figure are preliminary experimental data
at 3.5 MeV for a 197Au target (ZT = 79). Magnetic scattering
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FIG. 2. Spin asymmetries (a) C32 and (b) C12 for photons emitted
at θk = 21◦ as a function of collision energy. The photon frequency
is 0.75 Ei,kin [lower curves in (a); upper curves in (b)] and 0.95 Ei,kin

[top curve in (a); bottom curve in (b)]. Theory for 208Pb: DW (——-),
PWBA for ω = 0.75 Ei,kin (− − −). DW point is indistinguishable
from DW. Included are experimental results for 3.5 MeV electrons
scattering from an 197Au target: θk = 21◦, ω/Ei,kin = 0.75 ( ) and
0.95 ( ) as described in [8].

and dynamical recoil effects are present for this spin 3
2 target,

but are still negligible at 21◦ for this low energy. In turn, the
energy is high enough such that the screening of the gold
atom by the atomic electrons plays no role anymore [30]. For
comparison we have evaluated the DW theory for gold by
using a two-parameter Fermi nuclear charge distribution [42],
but neglecting the spin of the nucleus and screening effects.
For Ei = 3.5 MeV and θk = 21◦ we have obtained C32 =
0.715 (versus C32 = 0.712 for 208Pb) and C12 = −0.105
(versus −0.101) if ω/Ei,kin = 0.75, while C32 = 0.856 (versus
C32 = 0.848 for 208Pb) and C12 = −0.308 (versus −0.307) if
ω/Ei,kin = 0.95. This is a deviation of 3.5% or less between
the two targets which cannot be distinguished within the
experimental accuracy.

Figure 3 provides the spin asymmetry for 140◦. The global
energy dependence is basically similar to that for forward
angles. However, C32 now also exhibits a negative minimum
at the smallest energies before tending to zero. The transition
from a monotonous decrease of C32 to zero to an oscillatory
behavior occurs around an angle of 80◦. The negativity of C32

at small energy but large angles again correlates to the behavior
of the spin transfer during elastic electron scattering: the drop
with angle from L = 1 to L = −1 occurs the earlier, the
smaller Ei [38,52], such that at large enough angles, the spin
asymmetry is negative for small collision energies and positive
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FIG. 3. Spin asymmetries (a) C32 and (b) C12 for photons emitted
in the collision with 208Pb at θk = 140◦ with frequency 0.75 Ei,kin as
a function of collision energy. Results are shown for DW (——-), for
PWBA (− − −), and DW point (· · · · · · ).

for large Ei . Moreover, nuclear size effects are present already
well below 10 MeV, particularly for the small polarization
correlation C12. It should be noted that the PWBA does not
account for nuclear size effects in the spin asymmetries since,
according to (2.12), they are obtained from the relative cross
section differences where the nuclear form factor drops out.

For the sake of completeness we have included a result for
the perpendicular spin asymmetry A = C20 which vanishes
in PWBA [1,29]. In order to compare with other higher-
order theories such as the DSM we consider in Fig. 4 the
short-wavelength limit, ω ≈ Ei − c2 = 10 MeV. It is seen
that the DSM provides a qualitative description of the angular
distribution, being much closer to the DW theory than to the
DW point (even more so when Ei,kin is increased to 15 MeV).
This result may be explained by a comparable reduction of
the influence of the Coulomb field in the finite-nuclear-size
functions as well as in the semirelativistic SM functions at
small r . Moreover, the DSM cross section is at large θk even
below the SM result. This reduction may be caused by a
mismatch (at small r) of the two different electronic functions
used in the DSM theory. The spin asymmetry A, shown in
Fig. 4(b), exhibits a large peak at the backmost angles which
is strongly enhanced if nuclear size effects are taken into
account. This enhancement by screening effects, which is also
known from low-energy investigations [29], may tentatively be
explained by the polarizability response of a charged sphere
that is correlated with the direction of ζ i and hence causes
a strong cross-section asymmetry. The SM theory does not
predict the narrow peak of A which, due to the high momentum
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FIG. 4. (a) Doubly differential cross section d2σ/dω d�k and
(b) spin asymmetry A from 10 MeV electrons colliding with 208Pb as
a function of photon emission angle θk . Results for ω = 9.9 MeV are
shown using DW(——-), DW point (· · · · · · ), and SM (− − −). The
DSM results (− · − · −) are for ω = 10 MeV.

transfer, mirrors the relativistic contraction of the electronic
wave function that is absent in SM. In fact, the failure of the
SM model for the polarization correlations of heavy atoms is
a general feature.

V. RESULTS FOR THE ELEMENTARY PROCESS OF
BREMSSTRAHLUNG

A more detailed access to the scattering process is attained
by observing the bremsstrahlung photons in coincidence
with the inelastically scattered electrons. The information
is provided by the triply differential cross section and the
corresponding electron-photon polarization correlations. One
might go into further detail by investigating in addition
the polarization correlations between ingoing and scattered
electron or between the photon and the scattered electron
as indicated in [1]. This is not done here, but can easily be
achieved within the formalism of Sec. II by omitting the sum
over σf in (2.1).

We start by giving an overview over the photon angular
dependence of the triply differential cross section in coplanar
geometry (where the azimuthal angle ϕ of the electron with
respect to the photon is either set to zero or to 180◦). Since the
variation with collision energy is moderate in this high-energy
region, both for the cross section and for the polarization
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FIG. 5. Triply differential cross section d3σ/dω d�kd�f for the
emission of a 6 MeV photon from 8 MeV electrons colliding with
208Pb as a function of photon angle θk at a scattering angle ϑf = 150◦

(with ϕ = 0). Results are shown for DW (——-), PWBA (− − −),
and DW point (· · · · · · ). Included are DW results at 5 MeV, ω/Ei,kin =
0.75, and ϑf = 150◦ (− · − · −).

correlations, we have in Fig. 5 chosen an energy of 8 MeV and a
photon frequency of 6 MeV. At such energies the cross section
peaks near θk = 0 and has a minimum near 180◦. However,
for nonzero (and not too small) electron angles there is, in
contrast to the doubly differential cross section [Fig. 4(a)], no
longer a monotonous decrease with θk . Instead, for a backward
scattered electron with ϑf = 150◦ as selected in the figure, the
cross section has a local maximum near 150◦ (θk = ϑf ). Also
the symmetry with respect to θk = 180◦ is broken when ϑf

is moved away from 0 or π . The fact that the photon and
electron are preferrably emitted into the same direction (and
not, symmetrical to the beam axis, into different half-planes
which would correspond to θk = 2π − ϑf ) is well known
from observations below 1 MeV [1,25]. The PWBA provides
only a minor fraction of the cross section, irrespective of the
photon angle. The reason lies in the fact that the plane waves
do not account for rescattering from the nuclear potential in
contrast to the Dirac waves. Therefore, the intensity of the
backscattered electrons is severely underestimated. Nuclear
size effects are moderate at this energy, being strongest at the
backward photon angles. Included in the figure is the result for
5 MeV electrons and 3.75 MeV photons. The photon intensity
is higher, but the angular distribution is basically the same as
for 8 MeV. Only the peak at θk = ϑf is less prominent than
for the higher collision energy.

Figure 6 displays the angular dependence of the correspond-
ing polarization correlations. The longitudinal spin asymmetry
C320, shown in Fig. 6(a), drops irrespective of ϑf from near
unity to −1 at angles up to 180◦, and the falloff is shifted
to larger θk for higher Ei . This behavior corresponds to the
one known from C32 where the electron remains unobserved.
There is, however, an additional small hump near θk = ϑf in
this angular dependence, and this hump becomes more visible
when the collision energy increases.

A striking feature is the resonantlike structure of C120

[Fig. 6(b)] near the local maximum of the cross section (with
values close to zero at θk = 150◦). If ϑf is lowered, the
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FIG. 6. Spin asymmetries (a) C320 and (b) C120 from the emission
of a 6 MeV photon by 8 MeV electrons colliding with 208Pb as a
function of photon angle θk at a scattering angle ϑf = 150◦ (and
ϕ = 0). Results are shown for DW (——-), PWBA (− − −), and
DW point [· · · · · · , only shown in (a)]. Included are DW results for
C120 at 5 MeV (ω = 3.75 MeV, − · − · −) and for C320 at 8 MeV but
ω = 5.2 MeV (− · − · −), all for ϑf = 150◦.

structure moves accordingly to smaller photon angles, while
the shape of C120 beyond 180◦ is not much affected. In the case
where the electron is not detected, the angular distribution
of the respective spin asymmetry C12 resembles the one of
C120 for large ϑf , but with a simple rise to zero beyond the
minimum [38] in the region 160◦–180◦.

When the photon frequency is decreased [see, e.g.,
Fig. 6(a)] the structures become narrower and more enhanced,
but the angular distribution remains similar. In the PWBA
the spin asymmetries are reasonably well described up to
θk ∼ 180◦, but this theory strongly overestimates the second
structure near 350◦–360◦, which corresponds to the main
maximum of the cross section.

For investigating the collision energy dependence of the
triply differential cross section and the corresponding polariza-
tion correlations we consider in the following three particular
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FIG. 7. Dependence (a) of the triply differential cross section and
(b) of the spin asymmetry on the ratio ω/Ei,kin for 20 MeV electrons
colliding with 208Pb. The angles are θk = 20◦ and ϑf = 25◦ (ϕ = 0).
Results are shown for DW (——-) and PWBA (− − −). DW point is
indistinguishable from DW.

cases: (a) where both electron and photon are emitted close
to each other in the forward direction, (b) when they are
emitted back-to-back close to the beam axis, and (c) when
both particles are emitted into the backward direction. Such
geometries are chosen because there the corresponding spin
asymmetries have local extrema.

In these investigations the ratio ω/Ei,kin between the photon
frequency and the electron impact energy is again kept fixed.
Actually the variation of the cross section and the spin
asymmetries with ω is smooth as shown in Fig. 7 for 20 MeV
electrons and geometry (a). It is found that the cross section
decreases monotonously with frequency, which also holds
true when the electron solid angle is integrated over. This
feature is reproduced by the PWBA. However, the PWBA
fails near the SWL where it predicts cross sections which
tend to zero in contrast to the results from a higher-order
theory [23,26,30]. Nuclear size effects increase with ω (since
harder photons require larger momentum transfers, respec-
tively closer electron-nucleus encounters), but, as before, they
are negligible at forward angles.

Figure 7(b) depicts the corresponding spin asymmetries.
The longitudinal spin transfer increases with ω and approaches
unity at the SWL. This behavior holds also true in the doubly
differential case (see, e.g., [7] for 3.5 MeV). On the other
hand, the transverse polarization correlation C120 has a weak
extremum near ω = 0.7Ei,kin for forward scattering, while an
integration over the electron angles leads to a monotonous
decrease of C12 with ω. The moduli of C120 are also much larger
than those of C12. For example, for 20 MeV and θk = 20◦, C12
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FIG. 8. Triply differential cross section for the emission of a
photon with frequency ω = 0.75Ei,kin in the collision with 208Pb
as a function of Ei,kin. The angles are θk = 20◦, ϑf = 25◦, ϕ = 0
(upper curves), θk = 20◦, ϑf = 160◦, ϕ = 180◦ (middle curves), and
θk = 140◦, ϑf = 150◦, ϕ = 0 (bottom curves). Results are shown for
DW (——-), PWBA (− − − for ϑf = 25◦ and 150◦, − · − · − for
ϑf = 160◦), and DW point (· · · · · · ).

decreases to −0.053 at ω = 0.95Ei,kin, while C120 reaches
values down to −0.26 for ϑf = 25◦.

In Figs. 8–10 representatives for the energy dependence
in the three collision geometries introduced above are shown.
From Fig. 8 it follows that not only the doubly, but also the
triply differential cross sections decrease with energy in the
energy region considered. This decrease gets steeper when the
electron is scattered into backward directions.

Figure 9 shows the corresponding longitudinal polarization
correlation C320. While for forward emission C320 tends
monotonously to zero when Ei,kin → 0, the backward emis-
sion of the two particles leads to a minimum which survives
when the electron angle is integrated over (Fig. 3). When the
particles are emitted back-to-back (θk = 20◦, ϑf = 160◦, ϕ =
180◦), C320 remains positive while oscillating weakly near
3 MeV before tending to zero. Also, in this geometry, C320

does not approach unity at large Ei but instead remains
approximately constant at a low value [see Fig. 6(a) near 340◦].

The energy dependence of the transverse polarization
correlation C120 is displayed in Fig. 10. Clearly, C120 tends
to zero for large Ei in a similar way at all angles. However,
while the minimum at Ei,kin < 5 MeV is quite deep at forward
photon angles, both for forward and backward scattering, it
is shallower when the two particles are emitted in backward
directions. In the latter case there is also a weak second
minimum near 0.5 MeV. In that region the PWBA seriously
overestimates the magnitude of this spin asymmetry.

VI. CONCLUSION

We have given predictions for the doubly and triply differen-
tial bremsstrahlung cross sections and for the respective spin
asymmetries within the fully relativistic partial-wave theory
for a large variety of collision energies, photon frequencies,
and emission angles. At a collision energy of 3.5 MeV and
a photon angle of 21◦ good agreement with preliminary ex-
perimental (e,γ ) data on the circular polarization correlations
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FIG. 9. Spin asymmetry C320 for the emission of photons with
frequency ω = 0.75Ei,kin in the collision with 208Pb as a function
of Ei,kin. The angles are (a) θk = 20◦, ϑf = 25◦, ϕ = 0, (b) θk =
20◦, ϑf = 160◦, ϕ = 180◦, and (c) θk = 140◦, ϑf = 150◦, ϕ = 0.
Results are shown for DW (——-), PWBA (− − −), and DW point
(· · · · · · ). In (a) and (c), DW point is indistinguishable from DW.

C32 and C12 for a gold target was obtained. A systematic
study of the energy dependence of the polarization correlations
pertaining to the doubly differential cross section reveals
maximum moduli of C12 and A in the region 3–10 MeV.
Beyond, there is a weak variation with Ei until energies where
the electron will penetrate the nucleus. Nuclear size effects lead
to a considerable reduction of the cross section for wide-angle
bremsstrahlung, the more so, the higher Ei , and they also
modify A and C12. These two transverse spin asymmetries
are thus promising candidates for investigating details of the
nuclear structure at the higher energies.

The coincident detection of photon and scattered electron
leads to an enhanced occurrence of structures both in the

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  5  10  15  20  25  30

(a)

20o / 25o

S
pi

n 
as

ym
m

et
ry

  C
12

0

Ei,kin  (MeV)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  5  10  15  20  25  30

(b)

20o / 160o

S
pi

n 
as

ym
m

et
ry

  C
12

0

Ei,kin  (MeV)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  5  10  15  20  25  30

(c)

140o / 150o

S
pi

n 
as

ym
m

et
ry

  C
12

0

Ei,kin  (MeV)

FIG. 10. Spin asymmetry C120 for the emission of photons with
frequency ω = 0.75Ei,kin in the collision with 208Pb as a function
of Ei,kin. The angles are (a) θk = 20◦, ϑf = 25◦, ϕ = 0, (b) θk =
20◦, ϑf = 160◦, ϕ = 180◦, and (c) θk = 140◦, ϑf = 150◦, ϕ = 0.
Results are shown for DW (——-), PWBA (− − −), and DW point
[· · · · · · , only marginally visible in (c)].

cross section and in the spin asymmetries. At the highly
relativistic energies considered, the maximum in the cross
section occurring when electron and photon are emitted into
the same hemisphere [1] dissolves into two peaks. The main
peak is near θk = 0 (in the beam direction), the other one close
to the direction of the scattered electron (θk = ϑf ), confirming
earlier PWBA results [39]. Both peaks are increasingly narrow
and prominent when either the initial or the final energy of
the electron gets higher. In turn, the polarization correlations
show resonance structures in these two angular regimes. These
structures are hardly affected by the collision energy, but they
are strongly enhanced when the energy of the scattered electron
is increased. The longitudinal spin transfer to the photon is
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nearly complete at angles below 180◦, irrespective of the
collision energy or of the detection of the scattered electron.
However, C12 can attain much larger values if the electron is
recorded in coincidence, but it decreases with collision energy.

Again there are considerable nuclear size effects which
predominantly affect the cross section. At 10 MeV, they may
lead to a reduction by 60% if both particles are emitted into
the backward direction, increasing to a factor of 3 at 20 MeV.
By comparing with our partial-wave results we have confirmed
that the DSM model for the SWL provides a qualitative picture
at an energy as low as 10 MeV. However, the PWBA fails for
a heavy target, even at high energies, since it does not permit
efficient backscattering of the electron. Hence, except at the
foremost angles, it cannot be used to make reliable predictions
at energies beyond 30 MeV where a partial-wave analysis is
no longer possible.

Since restriction was made to the emission of hard photons,
requiring large momentum transfers and hence close electron-
nucleus encounters, the present high-energy results are also
valid if the target carries electrons instead of being a bare
nucleus. Atomic screening will modify the displayed results
only below, say, 2 MeV, but rather in a quantitative, not in a
qualitative way.
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