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Charge-state-dependent energy loss of slow ions. II. Statistical atom model
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A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical
model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and
electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance
of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a
Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte
Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al.,
Phys. Rev. A 93, 052708 (2016)], even though the experimentally observed charge exchange dependence is not
included in the model.
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I. INTRODUCTION

As the second part in a series of two papers we discuss here
a model for charge-dependent energy loss calculation in the
case of slow ions. We focus here on the dependence of energy
loss on the incident ion charge state and do not take charge
exchange dependence into account. Commonly energy loss
is regarded as being solely dependent on the ion’s effective
charge alone, which results from its equilibrium charge in
a solid [1]. The effective charge is only determined by the
ion velocity and approaches 0 for low velocities v � v0 (v0

denotes the velocity of the first Bohr orbital); i.e., slow ions
are regarded as neutral particles. This assumption is justified
if the slow ion is initially only singly charged or transverses a
long distance in a solid and thus is in charge equilibrium for
a large fraction of its trajectory. However, at the surface of a
solid the ion may be far from charge equilibrium, in particular,
when it is initially highly charged. Experimental results on the
transmission of highly charged ions through carbon foils [2–4]
showed that the energy loss is strongly enhanced compared to
standard SRIM values [5]. For higher ion velocities (typically
MeV/amu specific kinetic energies) charge-state-dependent
energy loss calculations were performed by Sigmund, Schiwi-
etz, and others [6–10]. However, their results cannot easily be
extrapolated to low velocities, which shows the need for a new
approach. At low velocities only the energy loss of medium
charged ions was calculated in dependence on the number of
inner shell holes [11] and no universal scaling was deduced
from this. Thus, we have developed a model which relies on
the statistical description of atoms and ions introduced by
Thomas and Fermi [12,13], which is kept rather simple and
easy to handle, in contrast to expensive density functional
theory calculations, which up to now cannot be used for highly
charged ions [14,15].

II. CHARGE-STATE-DEPENDENT POTENTIAL

In the binary-collision picture of the transport of charged
particles through matter, kinetic energy loss is determined
by the interaction potential of the moving particle with its
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collision partners. For nonrelativistic heavy ions the problem
can be described in a simple classical manner. In their
statistical description of an atom with a positive nucleus and a
surrounding electron cloud, Thomas and Fermi [12,13] found,
for the electrostatic potential ϕat of a single neutral atom,

ϕat(�r) = ϕat(r) = k
Ze

r
φ

(
r

as(Z)

)
, (1)

where Ze is the nuclear charge and r = |�r| is the distance
from the nucleus at �r = 0. The factor k refers to the Coulomb
constant, which is, in SI units, k = 1

4πε0
. The screening

function φ(x) depends on a reduced radius defined by the
screening distance as(Z), which is given by

as(Z) = 32/3h2

213/3π4/3mee2Z1/3
= 0.8853

a0

Z1/3
, (2)

with Planck’s constant h, the electron mass me, the elementary
charge e, and Bohr’s atomic radius a0. φ(x) solves the Thomas-
Fermi-equation and has to fulfill two boundary conditions,
which ensure that no screening is present at r = 0 and
the atom is neutral at r → ∞, i.e., is sufficiently screened.
The latter boundary is of particular importance in Sec. IV.
Several analytical approximations and numerical evaluations
are available in the literature [12,13,16–19]. In their so-called
similarity approach, Lindhard, Nielsen, and Scharff [20]
extrapolated the Thomas-Fermi potential of a single atom
[Eq. (1)] to the universal interaction potential of two atoms
with the internuclear distance

�R = �Rp − �Rt, (3)

where �Rp and �Rt denote the position of the projectile and
the target atom, respectively, and nuclear charges Z1 and Z2

according to

Vat( �R) = Vat(R) = k
Z1Z2e

2

R
φu

(
R

aL(Z1,Z2)

)
, (4)

where the screening distance now depends on both atomic
numbers according to

aL(Z1,Z2) = 0.8853
a0√

Z
2/3
1 + Z

2/3
2

. (5)
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FIG. 1. Classical scattering of a charged ion with a neutral target
atom. The ion, which is only partially screened, is split into a neutral
atom with nuclear charge Z1 − Q and point charge Q.

From an alternative treatment of the diatomic interaction,
Firsov [21] also identified Eq. (4) as a good universal
approximation to the interatomic potential, with a screening
length of

aF (Z1,Z2) = 0.8853
a0(

Z
3/2
1 + Z

3/2
2

)1/3 . (6)

In the following we use the so-called “universal” analytical
approximation of the screening function φu by a series of ex-
ponentials according to Ziegler, Biersack, and Littmark [5,22]
with the screening distance

au(Z1,Z2) = 0.8853
a0

Z0.23
1 + Z0.23

2

. (7)

The concrete choice of the screening function (universal,
Moliere [23], Kr-C [24], and others) is not important, as
the long-range Coulomb interaction of the ion’s charge Q

dominates the scattering independently of the local character
of the ion’s electron cloud. So far the potentials in Eqs. (1)
and (4) are only valid for scattering of neutral atoms. In the
case of slow ions with velocities v well below the target’s Fermi
velocity vF , an ion neutralizes along its trajectory through a
solid; i.e., equilibrium is reached. Thus, the potentials derived
here are well applicable. However, in the case of very thin
target materials, neutralization may not be completed during
transmission even for singly charged ions. Especially for slow,
highly charged ions, charge states far from equilibrium are
present at the surface of a solid [25] or during transmission of
thin targets [2–4,26,27], which suggests a modification of the
interatomic potential taking into account the charge state of
the moving ion.

The basic idea to introduce the ion charge state into Eqs. (1)
and (4) dates back to Brandt and Kitagawa [28] and was
used in studies by Grande and Schiwietz [29] as well as
Sigmund [6] and others [30,31]. The partially dressed ion in
charge state Q is split virtually into a point charge Q without
screening and a “virtual atom” with nuclear charge Z − Q

and, correspondingly, N = Z − Q screening electrons. The
scattering process is schematically depicted in Fig. 1. The
electrostatic potential for the ion now reads

ϕion(r) = k
(Z − Q)e

r
φ

(
r

as(Z − Q)

)
+ k

Qe

r
. (8)

Since the (universal) interaction potential V (R) can be written
as a superposition of two different interaction potentials, V1(R)

and V2(R), it changes now according to

Vion(R) = V1(R) + V2(R),

V1(R) = k
(Z1 − Q)Z2e

2

R
φu

(
R

a1(Z1 − Q,Z2)

)
, (9)

V2(R) = k
QZ2e

2

R
φu

(
R

a2(Z2)

)
,

with

a1(Z1 − Q,Z2) = 0.8853a0

(Z1 − Q)0.23 + Z0.23
2

,

a2(Z2) = 0.8853a0

Z
1/3
2

.

Equations (9) describe the superposition of two scattering pro-
cesses, i.e., the scattering of a “virtual atom” with the screened
nuclear charge (Z − Q) on a neutral target with nuclear charge
Z2 [V1(R)] and the scattering of an (unscreened) point charge
Q on the same target [V2(R)].

A major difference from the study by Biersack [32] is that
the interaction potential Vion(R) is screened, as long as the
target atom remains neutral and, therefore, vanishes rapidly
enough for large values of R. As shown below this is a
prerequisite in order to limit calculated energy transfers from
elastic scattering to reasonable values.

Equations (8) and (9) now allow straightforward charge-
state-dependent energy loss calculations according to standard
definitions of the stopping force. This is discussed in the next
two sections.

III. NUCLEAR ENERGY TRANSFER

The nuclear energy transfer is determined by two-body
kinematics. From classical mechanics, the scattering angle

θcms(p,Ecms) = π − 2
∫ ∞

Rmin

dR
p

R2
√

1 − V (R)
Ecms

− p2

R2

(10)

in the center-of-mass system (CMS) is given by the interaction
potential V (R), the impact parameter p, and the CMS kinetic
energy Ecms = m2

m1+m2
Els . The particle masses are m1 and m2,

respectively. Els is the kinetic energy in the laboratory system.
The distance of closest approach Rmin results from solving the
equation

0 =
√

1 − V (Rmin)

Ecms
− p2

R2
min

. (11)

The energy transferred by a single elastic (nuclear) scattering
event is given by

Tnucl,ls(p,Ecms) = 4m1

(m1 + m2)
Ecms sin2 θcms(p,Ecms)

2
(12)

and the nuclear stopping cross section results:

Sn(Ecms) = 2π

∫ ∞

0
pTnucl,ls(p,Ecms)dp. (13)

Using the modified charge-dependent interaction potential
from Eqs. (9) in Eq. (10) allows us to obtain a charge-
state-dependent nuclear stopping cross section. The nuclear
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FIG. 2. Deflection angle and nuclear energy transfer as a function
of the impact parameter for Xe ions scattered by carbon atoms
in different charge states and an initial kinetic energy of εkin =
310 eV/amu as calculated from Eqs. (10) and (12), respectively.

transferred energies Tnucl,ls and the scattering angle θls are
shown in Fig. 2 in the laboratory system as a function of the
impact parameter p for different ion charge states Q of xenon
scattering on carbon. The corresponding nuclear stopping
cross section is shown in Fig. 3 as a function of the ion kinetic
energy. The calculated values for Q = 0 are almost identical
to the values taken from SRIM2013 [5]. Note that SRIM does
not take ion charge states for elastic scattering into account.
The stopping cross section increases for the highest charge
state by a factor of 2 to 3, and the position of the maximum
of the stopping cross section changes from around 200 keV
for neutral xenon to about 70 keV for fully ionized xenon.
The nuclear stopping force is shown in Fig. 4 as a function of
the ion charge state at a fixed kinetic energy of 40 keV = 310
eV/amu (see vertical line in Fig. 3), for a carbon density
of 5.54 × 1022 at/cm3 [33]. The stopping force scales nearly
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FIG. 3. Nuclear stopping cross section for xenon on carbon and
different xenon charge states from Eq. (13). For comparison the
nuclear stopping cross section from SRIM2013 is plotted as the black
line and coincides perfectly with the calculation for Q = 0.
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FIG. 4. Nuclear stopping force as a function of the ion charge
for 310 eV/amu xenon on a carbon membrane with a density of � =
5.54 × 1022 at/cm3. Data points are extracted from the calculations
shown in Fig. 3 (vertical line) and fitted linearly.

linearly with the charge state and increases roughly by a factor
of 2.5 from Q = 0 to Q = 54 at velocities v � v0Z

2/3
1 .

IV. ELECTRONIC ENERGY TRANSFER

Two approaches are available for a simplified treatment
of the electronic or inelastic energy loss in the case of slow
ions. Lindhard, Scharff and Schiøtt [34,35] described inelastic
losses nonlocally, i.e., independently of the impact parameter.
We decided to follow the model of Firsov [36]. Energy is
transferred between ion and target due to electron momentum
transfer across a planar surface S dividing the space into two
regions, in which the electron distributions belong to either
the target atom or the projectile. An electron current density
between projectile and target atoms �j (�r) can be defined as

�j (�r) = n(�r)�ve(�r)

4
, (14)

with the electron density n(�r) and the electron velocity �ve(�r).
Note that �j is only defined if �r is a point on the surface S.
The average momentum of N exchanged electrons is given
by N �pe = N × me�vrel, where �vrel is the relative velocity of
the projectile and target. In the case of a target atom at rest,
�vrel = �vion. Thus, the retarding force acting on the ion and
leading to its energy loss is given by

�F = d �pion

dt
= −me�vrel

dN

dt
= −me�vrel

∫
S

�j (�r)d �S, (15)

with d �pion = −dN × �pe. In order to evaluate Eq. (15), the
electron density n(�r), the electron velocity �ve(�r), and the
surface S have to be known. The electron density and
velocity could be calculated from the time-dependent density
functional theory [15,37–39], but this is computationally very
expensive in the case of highly charged ions. We want to focus
on a simpler approach and recall again the model by Thomas
and Fermi [12,13], which not only describes the Coulomb
screening of atoms, but also gives a simple expression for the
electron density and velocity distribution as a function of the
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FIG. 5. Electrostatic potential ϕtotal(�r) (blue tone) with con-
tour lines. Scattering partners are at locations (rx,ry) = (0,0) and
(10 nm,0). (a) Two equal mass particles produce a planar surface S

(orange line). (b) A heavy neutral and light neutral particle produce
a spherical surface S. (c) For a charged particle the potential ϕion(�r)
is dominated by the unscreened point charge. (d) A zoom-in around
the neutral carbon atom in (c) is shown, with a spherical surface S.

atom’s electrostatic potential ϕat(�r) [see Eq. (1)] as

n(r) = 23/2[meeϕat(r)]3/2

3π2�3
, (16)

|�ve(r)| = 33/2π�n(r)1/3

4me

. (17)

Assuming a linear superposition of both electron clouds to a
total electron density [40–44]

ntotal(r) = np(|�r − �Rp|) + nt (|�r − �Rt |), (18)

where np and nt denote the electron densities of the projectile
and the target atom, respectively, we can find the total
electron density by using the potential for a charged ion
ϕion(|�r − �Rp|) according to Eq. (8) and for a neutral atom
ϕat(|�r − �Rt |) according to Eq. (1) in Eq. (18) in combination
with Eq. (16). Alternatively, the total potential ϕtotal(�r) can be
derived by a linear superposition of ϕion and ϕat instead of
the corresponding electron densities. In this way correlations
between the electron densities may be taken into account. Both
ways reproduce the observed Q dependence reasonably well,
so we decided to use the simpler approach.

Using ntotal again in Eq. (16), we find the electrostatic poten-
tial ϕtotal(�r), which is plotted in Fig. 5 for three projectile-target
combinations. In Fig. 5(a) two equal mass and neutral particles
are located 10 nm apart from each other. (The dimensions
are chosen for good representation, but the discussion is also
valid for much smaller distances.) Contour lines of constant
electrostatic potential are shown, which all have a kink at
rx = 5 nm. In Fig. 5(a), these kinks define the surface S as a

planar surface in the middle between the scattering partners.
Firsov already mentioned that his solution for the energy loss
is only strictly valid for the case of equal mass and neutral
scattering partners. Now, to extend Firsov’s model, Fig. 5(b)
shows a heavy neutral xenon atom and a light neutral carbon
atom in the same geometry as in Fig. 5(a). The kinks of the
contour lines now define a closed, spherical surface S. The
surface is closed around the xenon atom, because its screening
distance is much smaller (∝ 1/Z1/3) compared to that of
carbon. In the case of a charged xenon ion [Fig. 5(c)] the
electrostatic potential is almost entirely dominated by the last
term in Eq. (8), which is unscreened and vanishes only slowly
as 1/r . However, Fig. 5(d) shows the potential around the
neutral carbon atom in more detail. Here again kinks in the
contour lines are visible and define a closed spherical surface
S around the carbon atom. With this way of determining the
surface S and thus finding volumes in space where electrons
belong to the target atom and the ion, respectively, we now
can calculate the retarding force acting on the ion for every
mass and charge state of the scattering partners according to
Eq. (15). Note that, for simplicity, the scalar product �jd �S
is replaced by the product jdS assuming that the current
density always points in the direction of the surface normal.
This may not be true for the rear side of the surface, which
may lead to an overestimation of the absolute value of the
force �F . The electronically transferred energy in the laboratory
system Telec,ls is given by integrating the force �F along the ion
trajectory �R(t) = �Rp(t) − �Rt . For simplicity, the trajectory is
assumed to be a straight line, which is not a good assumption
for very low energies. The energy transfer is then

Telec,ls(p) = 2
∫ ∞

p

| �F |dR

= 2
31/6m2

ee
2

4π5/3�3
|�vrel|

∫ ∞

p

∫
S

ϕ2
total(�r)dSdR. (19)

In the case of a straight trajectory, p approximates the distance
of closest approach Rmin. The factor 2 results from the fact that
stopping occurs upon approach (way in) and retreat (way out)
of the ion. This energy transfer depends linearly on the ion
velocity, which is consistent with the literature [34,36,45],
and the leading term is also proportional to Q2. Other terms
proportional to Qm with m < 2 also exist, because the potential
enters as ϕ2

total. In fact, the commonly assumed quadratic
dependency of the stopping on the ion charge is preserved,
which is not directly obvious from Eqs. (16) and (18).

The electrostatic potential of the ion in Eq. (8) decreases
slowly as 1/R and hence the transferred energy decreases
slowly with increasing impact parameter p. This leads to
very large values of Telec,ls even for impact parameters larger
than 10 lattice constants (3 nm) and, correspondingly, to
large values of the stopping force according to Eq. (13). To
circumvent this problem the term k Qe

r
in Eq. (8) will be

replaced by the expansion for large distances R � r (dipole
approximation [29,46]) according to

k
Qe

|�r − �R| = k
Qe

R
+ k�r Qe �R

R3
+ o

(
1

R3

)
. (20)
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Now the integrals in Eq. (19) can be written as∫ ∞

p

∫
S

ϕ2
total(�r)dSdR

=
∫ �−1/3

p

dR

∫
S

dSϕ2
total(�r) +

∫ ∞

�−1/3
dR

∫
S

dSϕ∗2

total(�r),

(21)

with

ϕ∗
total(�r) = (3π2

�
3n∗

total(r))2/3

2mee
, (22)

n∗
total(r) = n∗

p(|�r − �Rp|) + nt (|�r − �Rt |), (23)

and

ϕ∗
ion(|�r − �Rp|) = −k

(Z1 − Q)e

|�r − �Rp| φu

( |�r − �Rp|
au(Z1 − Q)

)
−k�r Qe �R

R3

(24)
as the ion’s electrostatic potential at larger distances within
n∗

p(|�r − �Rp|) according to Eq. (16). The integral
∫

dR is
now split into two parts where the integrand is changed for
R > �−1/3. The potential ϕ∗

total(�r) is the electrostatic potential
in the dipole approximation, where the monopole term Qe

|�r− �R| is

replaced by the dipole term �r Qe �R
R3 , which now decreases with

1/R2. The distance for which this approximation is justified
is here identified with the mean interatomic distance in the
material, which is calculated from the material atomic density
� as �−1/3. In the physical picture for target-projectile distances
R > �−1/3 at least one additional target atom will be located
between the scattering partners and thus its electrons will
screen the monopole term [47]. Only higher order terms from
the expansion in Eq. (20) will then contribute, and here only the
dipole term is considered. Similar approximations were done
for faster ions by Grande and Schiwietz [29] and Reinhold
and Burgdörfer [46]. The electronically transferred energy as
a function of the impact parameter Telec,ls(p) in the dipole
approximation is shown in Fig. 6 for different xenon charge
states Q on carbon (εkin = 310 eV/amu). As a comparison,
T (p) from Firsov’s equation is also shown, but as mentioned
earlier for this system of unequal masses Firsov’s equation may
not be applicable. The values for Telec,ls(p) were calculated for
a discrete number of impact parameters (as shown exemplarily
for Q = 30) and then fitted by a function a(1 + bp)−5 similar
to the expression of Firsov. The fit parameters a and b have
to be calculated for every charge state, projectile mass, and
target mass. At around the cutoff parameter for the dipole
approximation, pc = �−1/3, the fit overestimates values for
p slightly smaller, and underestimates values for p slightly
larger, than pc. However, for low charge states the transferred
energies are already low (<100 eV) and thus the deviation can
be neglected.

V. THE ROLE OF MULTIPLE COLLISIONS

In very thin target materials and correspondingly at very
low areal densities (in the range of 1015 at/cm2) one could
assume that only single scattering events of an ion in the target
material determine the energy loss and angular distribution. To

FIG. 6. Electronically transferred energy as a function of the
impact parameter p for different xenon charge states on carbon.
Energies are calculated for discrete impact parameters (as an example
circles are shown for Q = 30) in the dipole approximation, Eq. (20),
and fitted according to Telec,ls(p) = a(1 + bp)−5. As a comparison the
result of Firsov is shown as the dashed line (Q = 0) [36].

evaluate the importance of multiple collisions in a thin target
material together with our charge-state-dependent model we
implemented the above modified screened interaction potential
[Eq. (9)] and the local electronic energy transfer [Eq. (19)],
in a binary collision approximation (BCA) simulation code.
According to the TRIM [22] model for an amorphous target
substrate, a constant mean free path length of λc = �−1/3

between subsequent collisions is assumed. To compare the
results with typical measurement conditions (see the next
section), the trajectories of 105 xenon ions on a carbon thin
film were simulated at incident kinetic energies of 40 keV
(310 eV/amu), and 47 keV (364 eV/amu) and different
(frozen) charge states, Q = 10, 20, 25, 30, and 40. Figure 7
shows the resulting energy distributions after transmission.
Since the start position of each ion above the surface is chosen

FIG. 7. Simulated energy distributions after transmission of
40-keV Xe ions at different charge states through a 1-nm-thick
carbon membrane with a density of � = 5.54 × 1022 at/cm3 in the
BCA under straightforward direction. The double-peak structure for
each distribution results from three or four scattering events in the
simulation. Dotted lines are Moyal fits to each peak. Dashed vertical
lines are the means of each Moyal distribution.
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FIG. 8. Simulated energy distributions for 47-keV Xe25+ ions
transmitted through a 1-nm-thick carbon membrane with a density
of � = 5.54 × 1022 at/cm3 in the BCA under mean detection angles
of 0◦ (black), 2◦ (blue), and 4◦ (red). Results are fitted with a Moyal
distribution (dotted lines) and the mean value of each distribution is
shown as a vertical dashed line.

randomly, three or four scattering events are obtained, resulting
in the double-peak structure shown in Fig. 7. Each peak is
independently fitted by a Moyal distribution and the mean
value is shown by a vertical dashed line. One clearly sees
the increase in energy loss with charge state, whereas the
separation by the number of scattering events becomes larger
for higher Q. The BCA results here select only ions which
exit the membrane within a cone of < 1.6◦ opening angle in
order to compare to measurement conditions in transmission
experiments [4].

In order to make comparisons with angle-resolved measure-
ments the resulting energy distributions were also evaluated for
mean angles after transmission of 2◦ ± 0.8◦ and 4◦ ± 0.8◦. The
respective exit energy distributions are shown in Fig. 8 for an
incident kinetic energy of 47 keV (364 eV/amu) and a frozen
charge state of Q = 25. For larger exit angles the probability
of measuring ions decreases, but the energy loss significantly
increases (for a fixed frozen charge state).

From the BCA results we see that the role of multiple
collisions is significant already at such small target thicknesses.
Under straightforward direction, for example, a single scat-
tering approximation would result in the selection of impact
parameters according to Fig. 2 (pmin to ∞) for nuclear and elec-
tronic losses. However, in the BCA larger impact parameters
(p̂ > pmin) are realized on average, because they have a higher
probability, and a combination of a few large impact parameter
(small-angle) scatterings would still lead to detection in certain
angular acceptance regions. Thus, the convolution of only three
or four scattering events during transmission can change the
outcome of calculated energy losses significantly compared to
the single scattering approximation.

VI. COMPARISON TO MEASURED DATA

The results obtained above are finally put into the context of
a typical measurement [48] for transmission of highly charged
ions through thin films. Calculated values from the statistical
atom model are shown in Fig. 9. Nuclear losses according to

BCA
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FIG. 9. Calculated energy loss values as a function of the xenon
charge state, at a fixed kinetic energy of 310 eV/amu. Nuclear losses
are given according to Eq. (8) (dotted line) and with selected impact
parameters (dashed-dotted line) (see text). Electronic losses are given
with (dashed–multidotted line) and without (dashed line) impact
parameter selection. Results of our BCA simulation are shown as
blue circles and are fitted with the function αQ2 + βQ1.5 + γ .

Eq. (13) are plotted as the dotted curve. However, the integral
in Eq. (13) extends over all impact parameters. In a typical
measurement a detector has only a limited acceptance angle.
To account for this we consider here an angular acceptance
range of < 1.6◦. Thus, in order to compare calculated losses
in a single scattering approximation with measured data the
integral in Eq. (13) is limited to values of p larger than pmin

according to Fig. 2. Calculated nuclear losses accompanied by
a deflection into the acceptance range of a detector are plotted
in Fig. 9 as the dashed–dotted line. These losses are much
smaller than the ones averaged over all impact parameters
p = 0 to ∞, and thus we conclude that nuclear losses are
enhanced by the charge state of the ion, but for transmission
under a 0◦ exit angle only ions with small nuclear energy
transfer can be measured. Calculated electronic losses are also
shown, together with values taking the same impact parameter
selection into account. Here differences related to an impact
parameter selectivity in a measurement are small.

By selecting the impact parameters for scattering in the
acceptance angle of the detector we assume a single scattering
to take place. As discussed above multiple collisions can
also be present here and a few small-angle scattering events
are more probable than one large(r)-angle scattering. Hence,
results from a BCA calculation are also shown in Fig. 9. The
simulations can be fitted well with a quadratic dependence on
the incident charge state and thus reproduce the dependence
of data presented in part I [48].

Figure 10 shows simulated energy losses (BCA) for an
incident charge state of Qin = 25 and a kinetic energy of
364 eV/amu for xenon on carbon. The energy loss increases
from 0◦ to 4◦. Again, the overall trend of the BCA simulation
using the presented model for charge-state-dependent energy
loss is in agreement with measured data [4]. By assuming a
single scattering event and selecting impact parameters for
the angular range according to Fig. 2 the trend cannot be
reproduced.
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FIG. 10. Calculated energy loss as a function of the mean exit
angle of Xe25+ ions at 364 eV/amu specific kinetic energy in the
BCA (see Fig. 8). Calculated data are fitted with a quadratic function.

Note that the model above and simulations assume a
frozen charge state of the incident ion and thus neglect any
charge exchange processes. Consequently, they are unable to
reproduce the experimentally observed strong dependence of
the energy loss on the exit charge after transmission through an
ultrathin carbon film as presented in part I [48]. Quantitatively,
the simulation results in Fig. 9 overestimate the experimentally
observed mean energy losses by a factor of about 2.5. A
possible correction for charge exchange in the model is
discussed in the next section, which would lead to a reduction
in the predicted amount of stopping. At this point we cannot
unambiguously say whether the reduction in the average
charge due to charge exchange or multiple collisions (larger
average impact parameters) plays the major role in experiment.
One should also note that the ion will be in a highly excited
electronic state during transmission, which affects the form of
the electrostatic potential and thus the energy loss as well.

The main conclusion from this section is that measured
energy losses for slow, highly charged ions under 0◦ obser-
vation will mainly result from electronic losses. The picture
changes for larger angles, where nuclear losses may dominate.
For applications such as ion implantation and nanostructure
formation, only the total amount of deposited energy in a
certain depth is important. In this case, i.e., when the angular
distribution of ions does not matter, nuclear losses contribute
significantly for heavy xenon on carbon at energies below
100 keV up to Q ≈ 10 (see Fig. 9). For even higher charge
states electronic losses dominate the kinetic energy transfer.

VII. POSSIBLE COUPLING TO CHARGE EXCHANGE

As discussed above, the large values of the calculated
electronic energy transfer from the presented statistical atom

model may be due to the neglect of charge exchange. Treating
the ion in a frozen charge state does not take observed
charge exchange into consideration. A very simple approach
to determining charge exchange cross sections in the case of
close collisions is the method of molecular orbital diagrams,
originally introduced by Fano and Lichten [49] and adapted
for highly charged ions by Stolterfoht and Arnau [30,50–52].
In this so-called screened hydrogen model, shifts of the ion and
target orbitals can be determined. At very close interparticle
distances the orbitals may diverge and the ion states are shifted
up into the valence band of the target material. Under these
conditions multiple charge transfer could occur, as suggested
by Arnau et al. [30]. No hollow atom will be formed due
to this charge exchange process, because inner shell levels
will directly be populated. This will also limit processes by
which the highly charged ion will emit secondary electrons.
Now, energy loss calculations can be redone using the critical
distance for a large level shift into the valence band Rc

from molecular orbital diagrams to set the ion charge to 0
if R < Rc. In this case the ion charge is on average lower
than the incident charge along the trajectory, which reduces
the calculated electronic losses.

VIII. SUMMARY AND CONCLUSION

By introducing the simple approximation of an ion in a
charge state Q being replaced by a neutral atom of atomic
charge (Z − Q) and point charge Q as written in Eqs. (8)
and (9), we can show that nuclear as well as electronic energy
transfer is strongly enhanced for slow, highly charged ions. We
conclude that electronic energy loss is the dominant dissipation
channel for highly charged ions (Q > 20). Employing a
simulation in the BCA allows us to estimate the importance
of multiple scattering and the simulation reproduces trends
in measured data reasonably well. Charge exchange is so
far not included in the model, whereas it heavily affects
measurements.

Further improvement of the model may involve a better
choice of the screening function φu(x) for the case of heavy
projectiles on light targets, the consideration of the electron
current flow direction �j/j in Eq. (15), and the use of detailed
molecular orbital diagrams directly from Hartree-Fock calcu-
lations.
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