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Resonances in a positron-lithium (e*-Li) system
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The method of complex scaling is used to calculate S- and P-wave resonance energies and widths below the
Li(3s,3p,4s,4p) excitation thresholds and positronium # = 2 formation threshold in the positron-lithium system.
We use two different types of model potentials to determine the interaction between the core and the valence
electron. Explicitly correlated Gaussian basis functions are used to represent the correlation effects between the
valence electron, the positron, and the Li* core. A dipole series of resonances are found under the positronium
n = 2 threshold. Furthermore, these resonances are found to agree well with an analytically derived scaling law.
The present results are compared with those in the literature.
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I. INTRODUCTION

Theoretical investigation of atomic resonances relating to
positrons and positronium (Ps) atoms has gained significant
interest over the past several years. Calculations of the e*-H
system have predicted that a number of resonances exist
under various excited Ps thresholds [1-6]. An interesting
aspect of positron—alkali-metal systems lies in the possibility
of Ps formation even at zero incident energy. In recent
works [7,8] we reported benchmark calculations for dipole
series of resonances associated with the Ps(n = 2) threshold
ine*-Naand e*-K systems. The sequence of these resonances
below the Ps(n = 2) threshold appears from an attractive
long-range potential proportional to 2, which in turn arises
from the degeneracy of the 2s and 2p Ps states. Importantly,
the resonances associated with the Ps(n = 2) threshold in the
e'-Li system have not been explored.

There are a few calculations reported with regard to
resonances in the positron-lithium system [9—14]. Ward [9]
conducted a study considering the close-coupling method,
using only atomic states, with either Hartree-Fock wave
functions or a model potential to describe the interaction
between the active valence electron and the inert core. The two
representations of the Li atom were found to agree well for the
cross section. However, no Ps formation channel was included
in that calculation. Later, McAlinden et al. [10] performed
coupled-state calculations with and without the addition of the
Ps formation channel. Roy and Ho [11] investigated S-wave
resonances in positron-lithium scattering using a stabilization
method with Hylleraas-type wave functions, a work that was
later extended to P-wave resonances [12]. Moreover, Han
et al. [13] used the stabilization method to find the resonances
by using hyperspherical coordinates. Liu et al. [14] have
carried out the momentum-space coupled-channels optical
method approach to evaluate resonances in the e™-Li system.
These studies were found to be in reasonable agreement
with each other in terms of resonance energies, whereas
the resonance widths determined by these groups show less
agreement.
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In the present work we calculate the S- and P-wave
resonances in the positron-lithium system. We apply the
complex scaling method, which proves to be a very simple
and powerful tool in analyzing the position and width of a
resonance. We find that there is reasonable agreement with
other theoretical calculations where applicable.

For Ps formation in positron-Li scattering, the loosely
bound valence electron is involved in the transitions. The e-Li
system can be modeled as a three-body system: a frozen core,
a positron, and an electron. The interaction between the Li*
core and the active electron is Coulombic only at very long
range. At shorter distances the nuclear charge is only partially
screened, which makes it necessary to employ some sort of
model potential for the e~-Li™ interaction. More generally, this
interaction should also include electron exchange, but this is
not explicitly included in our study. Prior calculations [15,16]
suggest that the exclusion of the exchangelike potential would
not effect the final results much. We apply two different types
of analytical model potentials in our analysis to determine the
interaction between the core and the valence active electron
or positron. Explicitly correlated Gaussian wave functions
are employed to include the correlation effects between the
valence electron, the positron, and the core.

Atomic units are used throughout the work.

II. METHOD

The Hamiltonian H of the e*-Li system is given by

1 1 )
H=—-——V— V24 vy«
20 1 2% 5+ (r1)
+VE ) 4+ VE (12, p), (1)

where w is the reduced mass, the subscripts 1 and 2 indicate
the coordinates of the outer electron and positron, respectively,
ri = |rp — 1y is the relative distance between them, V()
and V©" are the interaction potentials between the core
and the valence electron or the positron, respectively, and
V(“+f)(r12,p) is the electron-positron interaction. Here p is the
distance between the core and the center of mass of the electron
and positron (the reason for including such a dependence will
be explained below). The potentials between the core and the
particles have the form of screened Coulomb interactions. The
Coulomb part £1/r of this interaction is treated analytically,
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while the remaining screening terms are fitted to a number of
Gaussian functions in order to represent the potential using a
functional form that allows the Hamiltonian matrix elements
to be calculated analytically, also when complex scaling is
used.

A. Model potentials

The first model potential (MP1) used by us is the same as
the one used by Roy and Ho [11],

Ve () = _%[1 +2(1+ pryexp(=2p1)1. ()

This simple model potential for a nuclear charge screened by
two ls electrons has been discussed by Bachau et al. [17].
It captures the correct behavior in the limits r — 0 (V «
—3r~Y and r — oo (V o« —r~!). The model contains only
a single adjustable parameter B, which can be interpreted as
the effective charge experienced by the electrons. We used
the value B = 1.6559 as was arrived at by Roy and Ho
in [11] by fitting the calculated energy levels to experimental
values [18]. For V") we use the same potential in Eq. (2)
but with the opposite sign. In doing this we neglect the
effect of exchange, which should be present in the case of
the core-electron interaction, but not for the core-positron
interaction. To accommodate this effect Roy and Ho used a
slightly different value 8’ = 1.7212 when the interaction with
the positron was considered. We note that this modification
only has a marginal effect on atomic energies (see Table I
in [11]), an effect that would be even smaller for the positron
since the repulsive positron-core interaction ensures that the
separation stays large. Studies on other alkali-metal systems
have also confirmed that this effect is small [15,16]. For
simplicity we have therefore used the same value of B for
both electron and positron interactions.

Our second model potential (MP2) is the same as used by
Han et al. [13] and was first introduced by Peach et al. [19]. It
has the form

. 1 , .
V() = ——[1 4 2e77" (1 4+ 55 +812)] — =< Wy(nr),
r 2r4
3)
where
Wa(x) =[1 — e (1 + x + 0.5x2))? 4)

is a cutoff function, ensuring that the second term in the poten-
tial remains finite as r — 0. This potential also has the correct
asymptotic forms, but contains four free parameters. These
were empirically determined to be y = 4.049689462, § =
2447656964, 8 =0.245046253, and n = 3.910776273
in [16,19]. The second term in Eq. (3) is the leading long-range
correction to the purely static approximation and arises from
the polarization of the core by the charge particles, where o, =
0.192456 is the Li* polarizability [20]. For the positron-core
interaction, the sign of the static potential in Eq. (3) is changed,
while the polarization term remains the same (attractive for
both the electron and positron).

The calculated ground- and excited-state energies of Li
using both model potentials are displayed in Table I. We find
that both models are in good agreement with the experimental
energies [18]. For most states MP2 agrees slightly better,
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TABLEI Comparison of the calculated bound-state energy levels
of Li(nl). Energies are shown with respect to the Li* threshold in a.u.
The experimental energies are weighted averages of all fine-structure
levels [18].

Present results Experiment [18]

State MP1 MP2

2s —0.19814 —0.19795 —0.19814
3s —0.07431 —0.07422 —0.07418
4s —0.03868 —0.03864 —0.03862
5s —0.02367 —0.02365 —0.02364
6s —0.01596 —0.01595 —0.01594
2p —0.12993 —0.13022 —0.13023
3p —0.05720 —0.05724 —0.05724
4p —0.03197 —0.03197 —0.03197
S5p —0.02037 —0.02037 —0.02037
6p —0.01411 —0.01411 —0.01411
3d —0.05557 —0.05561 —0.05561
4d —0.03126 —0.03127 —0.03127
5d —0.02001 —0.02001 —0.02001
6d —0.01389 —0.01390 —0.01390

which could be expected since it includes the effect from
polarizability and has more free parameters.

The physical electron-positron interaction is of course the
Coulomb attraction, however we also add an additional term
Veorr SO that

V(e+67)(r12sp) = _i + Vcorr(rIZap)- (5)
The motivation for this extra term is as follows. As mentioned
above, the polarization correction in Eq. (3) arises from the
response of the core to the interaction with a charged particle
at distance r. This works well as long as there is only one
additional charged particle in the vicinity of the core. However,
when both the positron and electron interact with the core the
polarization effect from the two oppositely charged particles
should partly cancel. In the limit where the electron and
the positron coalesce the core experiences no net charge
and the polarization effect will completely vanish. When
the interaction between the ionic core and Ps is considered
there is therefore a risk of overestimating the effects of the
polarizability, i.e., doubling it rather than canceling. In [16]
this problem was dealt with by introducing a term in the
electron-positron interaction that is analogous to a dielectronic
correction, introduced for the sole purpose of correcting the
polarizability potential in this situation.

In our calculation we used a correction with a different func-
tional form, which can easily be calculated in the coordinate
system used here,

(67 _2 0
Veorr(r12.0) = p—jU(me riafre, (6)

Here U(x) =(1 — e”‘z)2 is another cutoff function, which
prevents this correction from diverging at the origin [for
practical reasons we did not use the same form as W, in
Eq. (4)]. We find that this correction has the desired properties,
since if the polarizability potential is defined as (r| > being the
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TABLE II. Ground-state energy of the e*-Li system calculated
using different models. The results are compared to the result of
Han et al. [13] using the same model potential as our MP2, but with
an additional term analogous to a dielectronic correction added to
the et-e™ interaction to cancel the core polarization when the two
particles coalesce. We have also included other results using different
forms of the model potential.

Model Energy
MP1 —0.252386
MP2 —0.252446
Han et al. [13] —0.252455
Shertzer and Ward [16] —0.25237
Mitroy et al. [21,22] —0.252482
coordinate of either the electron or the positron)
A
Voal(r12) = === U(r1,2), @)
2r, 1

then when the electron and positron coalesce rj, = 0 and r; =
ry = p, giving

Vpol(rl) + Vpol(’?) + Veor(0,0) =0, 3

i.e., no net polarization effect.

We have performed calculations with and without the
correction V., and for the resonances we found very marginal
differences. It should be emphasized that this correction
of course does not represent any physical electron-positron
interaction, but is a term of rather arbitrary form purely tailored
to satisfy Eq. (8), as well as vanishing in the limits r;, — oo.
There is therefore no a priori correct value of r. and indeed
calculations of the ground state of the e™-Li system showed a
slight dependence on this parameter. For the resonances, on the
other hand, this dependence was on the level of the numerical
uncertainty in our calculation (which can be understood from
the larger interparticle separations). In Table II we compare
our result for the e™-Li ground state using different methods
to other results in the literature. [Here we tuned r. in Eq. (6)
to 6 to get the best agreement with Han et al. [13]].

B. Numerical method

To solve the three-body problem we use the coupled
rearrangement channels method developed by Kamimura and
co-workers [23,24]. Here the three-body wave function Wy,
of total orbital angular momentum {J, M} is represented using
the form

3 qmec pme jme e
Wi =Y > Y 3 Catr,it®ai,r,i- €))
a=11,=0 L,=0 i=1 I=1
¢ozlo,L0,il — NalaLa”réuRé«xe*(fa/"alai)ze*(Ra/RaLal)z
X[, (Fa) ® Y, Ry (10)

Here o denotes the three rearrangement channels, /, and Ly
are the angular momenta along r,, and R,, respectively, and i
and I are numbers of Gaussian functions along the two radial
coordinates. The widths of the Gaussian functions r,;,; and
Ryr,1 are chosen as geometric progressions to describe the
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short-range correlation effects and long-range tail behavior.
The angular momenta [, and L, are taken to be consistent
with the total J (i.e., |l — Ly| < J < Iy + Ly, up to some
maximum values [ and L}, which may be different for
different rearrangement channels).

Since the wave functions are represented by Gaussian
functions all matrix elements of the Hamiltonian can be
calculated analytically if the potentials are expressed as sums
of products of polynomials and Gaussian functions. We have
therefore represented both model potentials above by fits
to a number of Gaussian functions. Since Vj, cannot be
represented by Gaussian functions, this term was broken out
of the fit and its matrix element calculated analytically.

In the present work the complex scaling method [25-28] is
employed to determine the energies and widths. The theoretical
aspects of this method have been discussed in our previous
publications and will not be repeated [6—8,29].

III. RESULTS AND DISCUSSION

A. e*-Li resonances

The resonance parameters determined in the present work
are listed in Table III. We find only marginal differences
between the results calculated using the two different models.
We therefore conclude that as long as the atomic energies
are reproduced correctly, the details of the model potential
have minor importance. This is confirmed by the relatively
good agreement between Roy and Ho [11,12], who use MP1,
and Han et al. [13], who use the same potential as our
MP2. Both these works, however, use very different numerical
techniques to solve the three-body problem and neither uses
the complex scaling method. Additionally, there are small
differences in how the positron interaction is handled, though
this should not have a significant impact on the results.
In Table IV we compare our results with other available
results [9—14]. The tabulated threshold energies E; included
are extracted from MP2 (see Table I). The convergence of our
calculations has been examined by progressively increasing
the number of Gaussian basis functions. The results were
obtained using more than 7500 Gaussian basis functions with
different possible combinations for angular momentum, with
maximum values (I,,Ly) = (4,4) used for S and P waves.

S-wave resonances in positron-lithium scattering below
the Li(3s,3p,4s,4p) excitation thresholds and Ps(n = 2)
formation threshold are calculated. The resonance obtained
by Ward [9] and Liu et al. [14] at —0.129 786 is not found in
the present calculations or in the studies by Roy and Ho [11]
and Han et al. [13]. In addition, McAlinden et al. [10] have
reported coupled-state calculations of positron scattering by
lithium and found a structure that could be interpreted as a
resonance in the elastic cross section near —0.130264 using
only lithium eigenstates. This feature is not visible when Ps
eigenstates are inserted. Therefore, as remarked by Han ef al.
and confirmed by our calculation, one could speculate that
the resonance determined by Ward [9] may occur because
of the omission of the Ps channel in those calculations and
possibly does not exist in more realistic calculations including
Ps channels. This is however contradicted in Ref. [14], where
this resonance was observed even when Ps channels were
included via an optical potential.
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TABLE III. Comparison of our results for S- and P-wave resonance energies Er and widths I in the e*-Li system. The threshold energies
shown here are calculated using the respective model potential (see Table I) and are close to the experimental values. The notation x[y] means
x x 1077,

MP1 MP2

Resonance Er I Er r

S —0.08062273 2.34[4] —0.08062182 2.18[4]

P —0.07894845 1.11[4] —0.07894557 1.07[4]

Li(3s) E, = —0.07431 E, = —0.07422

S —0.06756303 3.50[4] —0.06755521 3.58[4]
—0.06389787 6.12[5] —0.06389506 6.08[5]
—0.06287662 1.43[5] —0.06287586 1.41[5]
—0.06260091 3.68[6] —0.06260071 3.62[6]
—0.06252702 9.74[7] —0.06252697 9.60[7]
—0.06250724 2.62[7] —0.06250722 2.56[7]

P —0.06676975 1.20[4] —0.06676122 1.26[4]
—0.06426986 1.61[4] —0.06428345 1.59[4]
—0.06349082 7.36[5] —0.06349093 7.46[5]
—0.06275830 1.15[5] —0.06275801 1.14[5]
—0.06256553 2.56[6] —0.06256544 2.54[6]
—0.06251654 6.40[7] —0.06251651 6.42[7]
—0.06250417 1.62[7] —0.06250417 1.62[7]

Ps(n =2) E, = —0.062500

S —0.05740669 4.68[5] —0.05744307 4.76[5]

P —0.05749186 4.44[4] —0.05752947 4.52[4]

Li(3p) E, = —0.05720 E, = —0.05724

S —0.04068196 1.31[4] —0.04067531 1.30[4]

P —0.04033773 1.43[4] —0.04033170 1.42[2]

Li(4s) E, = —0.03868 E, = —0.03864

S —0.03519315 1.75[4] —0.03518081 1.72[4]
—0.03267219 5.82[5] —0.03267388 5.82[5]
—0.03211193 2.78[5] —0.03212689 2.98[5]

P —0.03591115 5.26[5] —0.03591636 5.90([5]
—0.03464239 1.36[4] —0.03463509 1.39[4]
—0.03266855 5.66[5] —0.03267719 5.50[5]
—0.03218063 3.62[5] —0.03219104 3.64(5]

Li(4p) E, = —0.03197 E, = —0.03197

TABLE IV. Comparison of the S- and P-wave resonance energy Ey and width T for the e*-Li system with other calculations. The notation
x[y] means x x 107Y.

Present results (MP2) Ward [9] Roy and Ho [11,12] Han et al. [13] Liu et al. [14]
Resonance Er r Er r Er r Er r Er r
S —0.129786  1.29(3] —0.129262  2.35[3]
Li(2p) threshold (E;, = —0.13022)

S —0.080622  2.18[4] —0.087525 1.47[3] —0.080685 2.15[4] —0.080658 2.02[4] —0.089436 4.85[3]
P —0.078946  1.07[4] —0.083850  4.78[3] —0.07882 5.5[5] —0.085320 1.13[2]
Li(3s) threshold (E, = —0.07422)

S —0.074478 3.7[5] —0.072545 8.0[5] —0.073743 4.4[5] —0.070914  7.31[3]

—0.067555  3.58[4]
—0.063895  6.08[5] —0.063831 6.9[5] —0.064740  4.85[3]
P —0.07165 7.5[5]
—0.066761  1.26[5] —0.06884 5.5[5] —0.068562  1.62[3]
Ps(n = 2) threshold (E, = —0.06250)
S —0.049086  1.80[3]
—0.040675  1.30[4] —0.040295 3.5[5] —0.040636 4.1[5] —0.040155  1.80[3]

Li(4s) threshold (E, = —0.03868)
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We can see that the lowest-lying S-wave resonance we
obtained for Li(3s) is at energy position —0.080622 and
width 2.18 x 107*, which agrees well with Roy and Ho [11]
and Han et al. [13]. Ward [9] and Liu et al. [14] found this
resonance as well, but with rather different values of the
resonance parameters.

Earlier works have reported the next S-wave resonance
lying just above the Li(3s) threshold and therefore interpreted
as a shape resonance in [13]. We have not found this type
of resonance in our calculations. A similar shape resonance
reported in the e™-Na system also could not be found by
us [7]. We speculated that this may be due to a very-low-energy
continuum state being misidentified as a resonance. We do
however find a resonance at —0.067 555, but this is not a
shape resonance; instead it is the first member of the dipole
series described below. Similarly, a resonance identified by
Liu et al. [14] at —0.049 086 could not be confirmed by us and
has not been found in other calculations.

The resonances located below the Ps(n = 2) threshold
belong to the dipole series, discussed below in Sec. III B.
In previous studies Roy and Ho [11] and Han ez al. [13]
found only one resonance under the Ps(n = 2) threshold, while
Liu et al. [14] reported two resonances. We predict a newly
identified resonance located below the Li(3p) threshold at
energy —0.057 443 and with the width 4.76 x 10~>. For the
Li(4s) threshold we found one resonance located below the
energy —0.040 675, which agrees well with [11,13,14], and a
width 1.30 x 10~*, which is somewhat larger than the values
obtained in [11,13]. We found three other resonances below
the Li(4 p) threshold, shown in Table III.

Our first P-state resonance at energy —0.078946 is in
reasonable agreement with the result of Roy and Ho [12], but
the width 1.07 x 10~ is larger. Resonance parameters below
Li(3s) again differ from the reported results of Ward [9] and
Liu et al. [14]. Similarly, we found a dipole series under the
Ps(n = 2) threshold, which will be discussed in Sec. III B. Roy
and Ho found two resonances below the Ps(n = 2) threshold,
whereas Liu et al. [14] reported only one resonance. We
have found the next resonance below the Li(3p) threshold
at energy —0.057592 with width 4.52 x 107. We could
find no other results in the literature for higher-n states in
P-wave calculations. For higher-n states between the Li(4s)
and Li(3p,4p) thresholds we found five resonances.

B. Dipole series

In recent studies [7,8] we found a dipole series of res-
onances associated with Ps(n = 2)-Nat and Ps(n = 2)-K*
channels in positron-sodium and positron-potassium systems,
respectively. Similarly, in the case of positron-lithium scatter-
ing, we found the existence of dipole series. Han et al. [13]
concluded that the Ps(n = 2) threshold has an attractive dipole
potential due to the degeneracy between the Ps(n = 2) states.
This long-range dipole potential is responsible for, in principle,
an infinite series of resonances lying under the Ps(n = 2)
threshold, but they were only able to find one resonance in
this series (at —0.063 831). These resonances are very narrow
and close to the threshold and thus require extremely high
accuracy for the calculation. The energy and width ratios
of the successive resonances are given approximately by the
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TABLE V. Energy and width ratios of successive resonances
located by the present calculation for Ps(n = 2).

Ratio Numerical result Analytical value
E.f/gj+|
S wave
172 3.62 3.73
2/3 3.69
3/4 3.76
4/5 3.73
5/6 3.73
P wave
12 4.30 3.95
2/3 3.84
3/4 3.94
4/5 3.96
5/6 3.96
Fj/rj+l
S wave
172 5.89 3.73
2/3 4.31
3/4 3.90
4/5 3.77
5/6 3.75
P wave
12 1.69 3.95
2/3 6.56
3/4 4.48
4/5 3.96
5/6 3.97

formula [5]

5]' <27T) FJ (27’[) (11)
= €X — 1, = €X — ]
5j+1 P (04 F_j+] P o

where o takes different values for different thresholds. Below
the Ps(n = 2) threshold we investigate the energy and the
width ratios, which are in line with the expected scaling.
Our numerical results for the scaling of the dipole series are
displayed in Table V. We notice that the widths ratios are
slightly less accurate but still agree reasonably well with the
analytical values, except for the first few resonances. This
deviation is however expected because the scaling law should
be more accurate for the pairs of higher-lying resonances. One
of the P-wave resonance located at position —0.064 283 a.u.
does not seem to fit into the dipole sequence in Table V. In our
calculations for the et-Na system [7] we observed a similar
resonance. It is difficult to obtain an extremely high numerical
accuracy for the imaginary part of the energy for states adjacent
to the threshold.

IV. CONCLUSION

We have reported a theoretical calculation for total orbital
angular momentum J = 0-1 resonances in the e™-Li system.
Resonance positions and widths have been compared with
other available theoretical results. Reasonable agreement
has been found with available results. Different possible
resonances are reported. Furthermore, the energy and width
ratios of the successive resonances of these sequences were
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found to agree well with analytical results. Further theoretical
studies are suggested to confirm these possible resonances.
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