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I revisit the problem of the interaction between two dissimilar atoms with one atom in an excited state, recently
addressed by Berman [Phys. Rev. A 91, 042127 (2015)], Donaire et al. [Phys. Rev. Lett. 115, 033201 (2015)], and
Milonni and Rafsanjani [Phys. Rev. A 92, 062711 (2015)], for which precedent approaches have given conflicting
results. In the first place, I discuss to what extent these works provide equivalent results. I show that the phase-shift
rate of the two-atom wave function computed by Berman, the van der Waals potential of the excited atom by
Donaire et al., and the level shift of the excited atom by Milonni and Rafsanjani possess equivalent expressions
in the quasistationary approximation. In addition, I show that the level shift of the ground-state atom computed
by Milonni and Rafsanjani is equivalent to its van der Waals potential. A diagrammatic representation of all those
quantities is provided. The equivalences among them are, however, not generic. In particular, it is found that
for the case of the interaction between two identical atoms excited, the phase-shift rate and the van der Waals
potentials differ. Concerning the conflicting results of previous approaches in regards to the spatial oscillation
of the interactions, I conclude, in agreement with Berman and with Milonni and Rafsanjani, that they refer to
different physical quantities. The impacts of free-space dissipation and finite excitation rates on the dynamics
of the potentials are analyzed. In contrast with Milonni and Rafsanjani, the oscillatory versus monotonic spatial
forms of the potentials of each atom are found not to be related to the reversible versus irreversible nature of the
excitation transfer involved.
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I. INTRODUCTION

Recently, several articles have addressed the problem of
the van der Waals interaction between two dissimilar atoms,
one of which is prepared in an excited state [1–5]. They all
aim at explaining the spatial variation of the interaction at
long interatomic separations, where previous approaches have
given conflicting results [6–11]. Some of those articles put
emphasis on the effect of dissipation [4,5] and causality [2],
while others put emphasis on the physical meaning of the
energies computed [1,3]. It has been found in Refs. [1–3], using
time-dependent approaches, that free-space dissipation does
not play an essential role in the computation. The calculation
in Sec. V of the present paper so confirms. Moreover, as
first pointed out by Berman [1] and then explicitly shown by
Milonni and Rafsanjani [3], both the oscillatory and monotonic
forms of the energy are possible as they refer to different
physical quantities. It is on this aspect that I concentrate here.
The purpose of this paper is twofold. In the first place I discuss
to what extent the quantities computed in Refs. [1,2], and [3]
are equivalent. Second, I analyze the effect of dissipation and
finite excitation rates on the dynamics of the interaction.

The paper is organized as follows. After describing the
fundamentals of the calculation and the nomenclature in
Sec. II, I explore in Sec. III the physical meaning of the
energies computed in Refs. [1–3] and discuss to what extent
they are equivalent. In Sec. IV I present a case of interest
where those quantities are manifestly different. In Sec. V I
analyze the impact of dissipation and finite excitation rates
on the two-atom interaction potentials. I conclude with the
Discussion in Sec. VI.

*donaire@lkb.upmc.fr, mad37ster@gmail.com

II. SETUP OF THE PROBLEM AND FUNDAMENTALS
OF THE CALCULATION

Let us consider two atoms, one of which is excited, located
a distance R apart. The excited atom is taken of type A

while the atom in its ground state is considered of a different
type B. Both atoms are modeled by two-level systems of
resonant frequencies ωA and ωB , respectively, with respective
linewidths �A and �B in free space. Further, in order to
preserve the perturbative nature of the calculation and to ensure
the difference between the atomic species, the detuning �AB ≡
ωA − ωB is such that |�AB | � (�A + �B)/2 and |�AB | �
〈W (T )〉/�, with W (T ) being the interaction Hamiltonian at
the time of observation, T . For the sake of simplicity, I
will consider the quasiresonant approximation in most of
the paper, setting |�AB | � ωA,B . This is the approximation
considered throughout Refs. [1] and [2], and in most of
Ref. [3]. Eventually, I will consider also the quasistationary
approximation in order to get rid of rapidly oscillating terms.
This approximation has been applied throughout Ref. [3] by
averaging over times T � 2π/|�AB |, throughout Ref. [1]
by considering the adiabatic excitation of atom A, and
partially applied in Ref. [2] when considering the adiabatic
switching of the interaction W . Further, radiative emission has
been included in Refs. [1] and [3] in the Weisskopf-Wigner
approximation. As shown in Ref. [2], this inclusion is a
higher order effect negligible for observation times T such
that �A,BT � 1. Without much loss of generality, I will
stick to the latter inequality throughout most of the paper
until Sec. V. Finally, the state of the system at time 0 is
|�(0)〉 = |A+〉 ⊗ |B−〉 ⊗ |0γ 〉, where (A,B)± label the upper
and lower internal states of the atoms A and B, respectively,
and |0γ 〉 is the electromagnetic (EM) vacuum state. Implicitly,
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this implies a sudden excitation of atom A. Again, without
much loss of generality, I will consider a sudden excitation
until Sec. V.

At any given time T > 0 the state of the two-atom EM field
system can be written as |�(T )〉 = U(T )|�(0)〉, where U(T )
denotes the time propagator in the Schrödinger representation,

U(T ) = T exp

{
− i�−1

∫ T

0
dt[HA + HB + HEM + W ]

}
.

In this equation HA + HB is the free Hamiltonian of
the internal atomic states, �ωA|A+〉〈A+| + �ωB |B+〉〈B+|,
while the Hamiltonian of the free EM field is HEM =∑

k,ε �ω(a†
k,εak,ε + 1/2), where ω = ck is the photon fre-

quency, and the operators a
†
k,ε and ak,ε are the creation and

annihilation operators of photons with momentum �k and po-
larization ε, respectively. Finally, the interaction Hamiltonian
in the electric dipole approximation reads W = WA + WB ,
with WA,B = −dA,B · E(RA,B). In this expression dA,B are the
electric dipole operators of each atom and E(RA,B) is the elec-
tric field operator evaluated at the position of each atom, which
can be written in the usual manner as a sum over normal modes,

E(RA,B) =
∑

k

E(−)
k (RA,B) + E(+)

k (RA,B)

= i
∑
k,ε

√
�ck

2Vε0
[εak,εe

ik·RA,B − ε∗a†
k,εe

−ik·RA,B ],

where V is a generic volume and E(∓)
k denotes the annihilation

or creation electric field operators of photons of momentum
�k, respectively.

Next, considering W as a perturbation to the free Hamil-
tonians, the unperturbed time propagator for atom and free
photon states is U0(t) = exp [−i�−1(HA + HB + HEM )t]. In
terms of W and U0, U(T ) admits an expansion in powers of W

which can be developed out of the time-ordered exponential
equation,

U(T ) = U0(T ) T exp
∫ T

0
(−i/�)U†

0(t) W U0(t)dt. (1)

Finally, and for further purposes, I denote the term of order
Wn in the corresponding series by δU(n) and write U(T ) =
U0(T ) + ∑∞

n=1 δU(n)(T ). As an example, δU(2) reads

δU(2)(T ) = −�
2
∫ T

0
dt

∫ t

0
dt ′U0(T − t)

×WU0(t − t ′)WU0(t ′). (2)

III. COMPARISON BETWEEN THE ENERGIES
COMPUTED IN REFS. [1,2], AND [3]

The time-dependent approaches of Refs. [1,2], and [3]
are equivalent as they all compute interaction energies up to
fourth order in W , make use of equivalent approximations, and
consider the same initial state |�(0)〉. Therefore, the quantities
there computed can be compared to each other when expressed
in the same representation. To this end, I first express the
quantities of Refs. [1–3] in Schrödinger’s representation, using
the nomenclature of Sec. II. Next, I investigate their physical
meanings and discuss the relationship between them.

A. The van der Waals potentials in Ref. [2]

Let us start by defining the time-dependent quadratic van
der Waals potential (vdW potential, in brief) as the effective
potential energy from which the vdW force on each atom is
derived upon application of the classical operators −∇RA

and
−∇RB

, respectively, with RA,B = 〈RA,B〉. That is, considering
both atoms at rest, the vdW force on each atom at order W 2

AW 2
B

is

〈FA,B(T )〉 = ∂T 〈QA,B(T )〉
= −i�∂T 〈�(0)|U†(T )∇RA,B

U(T )|�(0)〉
= −〈∇RA,B

WA,B(T ,RA,B)〉

= −1

2
∇RA,B

〈WA,B(T ,RA,B)〉, (3)

where QA,B are the kinetic momenta of the centers of mass
of each atom. In the last line, by replacing the gradients with
respect to the quantum variables RA,B with the gradients with
respect to the classical variables RA,B , I am assuming that
quantum fluctuations are negligible over RA,B . The factor 1/2
in front of ∇RA,B

comes from the fact that |�(T )〉〈�(T )| is
already of orders WAW 2

B and WBW 2
A in the calculations of

〈FA(T )〉 and 〈FB(T )〉, respectively. Physically, the factor 1/2
is a consequence of the fact that, for an induced atomic dipole,
half of 〈WA,B(T )〉 contributes to the polarization of the atomic
states of A,B respectively. Therefore, the vdW potentials are
〈WA,B(T )〉/2. 〈WA(T )〉/2 is indeed the quantity computed in
Ref. [2] in the quasiresonant approximation, where a factor
1/2 was missing on the left-hand side of Eq. (2) and thereafter.

Up to order W 2
AW 2

B , twelve are the diagrams which
contribute to 〈WA(T )〉 and depend on RA, and are hence ob-
servable through the measurement of the vdW force 〈FA(T )〉.
They are depicted in Figs. 1(a)–1(l). Analogous diagrams
hold for 〈WB(T )〉, three of which have been represented in
Figs. 1(m)–1(o). In the quasiresonant approximation (qr),
|�AB |/ωA,B � 1, the dominant contributions to each potential
come from diagrams (a) and (m) of Fig. 1, respectively. The
calculation of 〈WA(T )〉/2 was already explained in Ref. [2]. As
for 〈WB(T )〉/2, its integral equation is given in Eq. (A1) of the
Appendix for a sudden excitation. In the far field, kA,BR � 1,
their expressions are, respectively,

〈WA(T )〉qr/2  �(T − 2R/c)
Uijpq

R2
αijαpq

[
k4
A cos (2kAR)

− k4
B cos (2kBR + �ABT )

]
, (4)

〈WB(T )〉qr/2  �(T − R/c)
Uijpq

R2
αijαpq

× {
k4
A − k2

Bk2
A cos [�AB(T − R/c)]

}
, (5)

where Uijpq = μA
i μA

q μB
j μB

p /[(4πε0)2
��AB], μA

i =
〈A−|dA,i |A+〉, μB

j = 〈B−|dB,j |B+〉, and αij = δij −
RiRj/R2, with R = RA − RB . We observe that the
time-dependent terms of both potentials oscillate with
frequency �AB . However, while the time-independent term
of 〈WA(T )〉qr/2 oscillates in space with frequency 2kA, that
of 〈WB(T )〉qr/2 has a monotonic form.
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(a)

(d) (e) (f) (g)

(i)

(m) (n) (o)

(j) (k) (l)

(h)

(b) (c)

FIG. 1. Diagrammatic representation of (twice) the vdW poten-
tials, 〈WA(T )〉 and 〈WB (T )〉. Twelve diagrams contribute to each
one, but only three of them are depicted for 〈WB (T )〉 for brevity.
Thick straight lines stand for propagators of atomic states, while
wavy lines stand for photon propagators. The atoms are separated
by a distance R along the horizontal direction, whereas time runs
along the vertical. The gray circles on the left of each diagram stand
for the insertion of a Schrödinger operator WA, while white circles
on the right denote the application of an operator WB . Each diagram
contributes with two terms to each potential, as explicitly written in
diagrams (a)–(c) and (m)–(o). In those diagrams, either an operator
WA or WB is sandwiched between two time propagators (depicted by
arrows) which evolve the initial states |ψ(0)〉 and 〈ψ(0)| towards the
observation time T , at which either WA or WB applies.

Lastly, the dynamical vdW potentials can be averaged in
time for T � |�−1

AB | in order to obtain quasistationary values.
By doing so, beyond the far-field limit, one obtains

〈WA/2〉qr

T = (
4πk2

A

)2U ijpq

× {
Re

[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωA)
]

− Im
[
G

(0)
ij (R,ωA)

]
Im

[
G(0)

pq(R,ωA)
]}

= Uijpq

R6

[
βijβpq − k2

AR2(βijβpq + 2αijβpq )

+ k4
AR4αijαpq

]
cos (2kAR) + 2Uijpq

R5
kA

[
βijβpq

− k2
AR2αijβpq

]
sin (2kAR), (6)

〈WB/2〉qr

T = (4πk2
A)2U ijpq

{
Re

[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωA)
]

+ Im
[
G

(0)
ij (R,ωA)

]
Im

[
G(0)

pq(R,ωA)
]}

=Uijpq

[
βijβpq/R6 + (βijβpq − 2αijβpq )k2

A/R4

+ αijαpqk4/R2
]
, (7)

where 〈O〉T denotes the quasistationary expectation value of
a quantum operator O, and G(0)(R,ω) is the dyadic Green’s
function of the electric field induced at R by an electric dipole
of frequency ω = ck in free space. It reads [12]

G(0)(R,ω) = k eikR

−4π
[α/kR + iβ/(kR)2 − β/(kR)3], (8)

where the tensors α and β read α = I − RR/R2, β = I −
3RR/R2.

In Eqs. (6) and (7) I have first expressed the vdW
potentials in terms of G(0) in order to show that the difference
between them finds in the opposite contribution of Im2G(0).
As a result, 〈WA/2〉qr

T presents spatial oscillations while
〈WB/2〉qr

T is monotonic. These are the results obtained by
Milonni and Rafsanjani [3] for analogous quantities (see
below).

Berman [1] and Milonni and Rafsanjani [3] have identified
energy-level shifts from the expressions of the expectation
values of certain atomic operators. In particular, Berman has
computed, in the interaction representation, the time derivative
of the probability amplitude of finding atom A in the state A+
at time T , ḃA(T ). On the other hand, Milonni and Rafsanjani
[3] have computed, in Heisenberg’s representation, the time
derivative of the expectation value of the two-state lowering
operators, 〈σ̇A,B(T )〉, with σA = |A−〉〈A+|, σB = |B−〉〈B+|.
In both cases, in order to identify the corresponding level
shifts, the authors have taken a quasistationary approximation
averaging in time their equations for T � |�−1

AB | (or, equiva-
lently, by assuming the adiabatic excitation of atom A [1]). I
study these quantities in the following.

B. The phase-shift rate of the two-atom wave function
in Ref. [1]

In this section I analyze the expression for the energy shift
δE computed in Ref. [1] and I compare it to the vdW potentials
of the previous section. In terms of Schrödinger’s propagators,
the probability amplitude of finding atom A excited at time T

reads, in the interaction picture,

bA(T ) = ∂T TrB〈A+| ⊗ 〈B| ⊗ 〈0γ |U†
0(T )U(T )|�(0)〉

= ∂T 〈�(0)|U†
0(T )U(T )|�(0)〉. (9)

In this equation U†
0(T )U(T ) is the time propagator in the

interaction representation, the trace in the first line is taken
over the atomic states of B, |B±〉, and |B+〉 has been dropped in
the second line because its contribution vanishes. From Eq. (9)
we read that bA(T ) is the wave function of the two-atom state
in the interaction representation (I ), 〈�(0)|�I (T )〉. Berman
identifies δE with the real part of i�〈ḃA〉T . This identification
lies in the assumption that, in the quasistationary approxima-
tion, bA(T ) can be approximated by e−i�−1T (δE−i�A/2), which
implies implicitly that |δE/��AB | � 1 in order to neglect
the population of the state |A−〉 ⊗ |B+〉. This being the case,
T δE/� is the phase shift accumulated by the two-atom wave
function since the time atom A was excited. Correspondingly,
δE/� is the rate of phase shift. Lastly, given that δE is already
of order W 4, at the lowest order in W it holds that [13]
δE  Re{i�〈ḃA〉T }.
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(a) (b) (c)

(d) (e) (f) (g) (h)

(i)

(m) (n)

(j) (k) (l)

FIG. 2. Diagrammatic representation of the phase-shift rate of
the two-atom wave function, δE . Beside the first 12 R-dependent
diagrams which contribute to the interaction potentials, there are
R-independent diagrams whose contributions are negligible in good
approximation. Only two of the latter are depicted for brevity. Each
diagram contributes with an only term to δE , as explicitly indicated
in diagrams (a)–(c). Reading those diagrams from the bottom up, it
is the last operator, either WA or WB , that is sandwiched between the
free propagator U†

0(T ) on the left and a term of δU(3)(T ) on the right.
The former propagates the state 〈ψ(0)|, while the latter propagates
|ψ(0)〉 towards the observation time T at which either WA or WB

applies.

In order to find the relation of δE with the vdW potentials,
I first retain the time dependence of Re{i�ḃA(T )} before
averaging in time. By differentiating Eq. (9) with respect to T

and using Eq. (1) one gets

Re{i�ḃA(T )} = Re{〈�(0)|U†
0(T )(WA + WB)U(T )|�(0)〉}.

(10)

The relation of Re{i�ḃA(T )} to the vdW potentials is better
shown diagrammatically. In Fig. 2 I have depicted the diagrams
which contribute to Re{i�ḃA(T )} up to order W 4. As can
be readily seen, only the contributions of the R-dependent
diagrams (a),(c),(d),(g),(i),(l) coincide with half of the con-
tributions of the same diagrams in Fig. 1 for 〈WA(T )〉/2,
while the contributions of the remaining six R-dependent
diagrams pertain to 〈WB(T )〉/2. Therefore, generally, it holds
that Re{i�ḃA(T )} �= 〈WA(T )〉/2, 〈WB(T )〉/2.

Let us first restrict ourselves to the quasiresonant approx-
imation, in which the dominant contribution comes from
diagram 2(a). Due to its up-down symmetry and to the fact
that, when read from bottom up, the last photon is annihilated

at atom A, its contributions to Re{i�ḃA(T )} and 〈WA(T )〉/2
coincide. Hence, the real part of the right-hand side (rhs) of
Eq. (33) in Ref. [1] for Re{i�ḃA(T )} equals the rhs of Eqs. (2)
and (SM2) in Ref. [2] for 〈WA(T )〉/2 (with �A,BT → 0).

Next, in the quasistationary approximation and beyond the
quasiresonant approximation, the discrepancy between δE and
〈WA/2〉T may be caused only by the resonant diagrams (a),
(c) of Figs. 1 and 2. However, again because of the up-down
symmetry of the diagrams (a), (c), they both give identical
contributions to δE and 〈WA/2〉T . In particular, they yield the
frequency poles [see Eq. (SM5) in Ref. [2] and Eq. (A5) in the
Appendix]

c/[�AB(k − kA − iη/c)(k′ − kA − iη/c)] and

− c/[(k + k′ − �AB)(k − kA − iη/c)(k′ − kA − iη/c)],
(11)

respectively, with η → 0+. The contribution of the poles
provided by diagram (c) is the same as that of diagram (a) in
Eq. (6) but for the replacement of 1/�AB with −1/(ωA + ωB)
[14,15].

From this analysis I conclude that the results of Refs. [1] and
[2] are fully equivalent in the quasistationary approximation
and beyond the quasiresonant condition, even though they refer
to different physical quantities.

C. The single-atom level shifts in Ref. [3]

In this section I analyze the expressions for the level shifts
computed in Ref. [3] in order to explain their relationship
with the vdW potentials and the phase-shift rate described
in the previous sections. As already mentioned, Milonni and
Rafsanjani [3] have identified the single-atom frequency shifts
δωA,B in the equations of motion of the expectation values of
the two-state lowering operators, 〈σA,B(T )〉. Neglecting radi-
ation reaction terms in the limit �A,BT � 1, the Heisenberg
equations for 〈σA,B(T )〉 read (cf. Eq. (2) in Ref. [3]), in terms
of Schrödinger’s (first two lines on the rhs) and Heisenberg’s
operators (last two lines on the rhs),

〈σ̇A,B(T )〉 = − iωA,B〈�(0)|U†(T )σA,BU(T )|�(0)〉
+ i�−1〈�(0)|U†(T )[WA,BσA,BU(T )|�(0)〉

= − iωA,B〈σA,B(T )〉 + i�−1[〈WA,B(T )σA,B(T )〉
− 〈σA,B(T )WA,B(T )〉]. (12)

The identifications of δωA,B rest on the assumption that, under
quasistationary conditions, Eq. (12) can be written as

〈σ̇A,B〉T  −i(ωA,B + δωA,B)〈σA,B〉T + 〈....〉, (13)

where 〈....〉 denotes terms which do not depend on 〈σA,B〉T in
either case and dissipative terms have been again discarded.
The quantities of interest are the second terms on the rhs of
Eq. (12), which I will refer to as δ〈σ̇A,B(T )〉. In the following,
I will restrict its calculation to the approximations considered
in Ref. [3], which are indeed equivalent to the approximations
of Refs. [1] and [2]. That is, the authors there consider the
contribution of resonant photons to δ〈σ̇A,B(T )〉 in the rotating
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(a) (b)

(c) (d)

FIG. 3. Diagrammatic representation of the single-atom level
shifts δEA+ = �δωA [(a)] and δEB− = −�δωB/2 [(b)] in the quasires-
onant approximation. Diagrams (c) and (d) depict the resonant con-
tributions to δEA+ and δEB− , respectively, beyond the quasiresonant
approximation.

wave approximation—which is equivalent in this context to
the quasiresonant approximation.

As for the shift δ〈σ̇A(T )〉, Eqs. (7) and (49) of Ref. [3] read,
in terms of Schrödinger’s operators,

δ〈σ̇A(T )〉qr  i�−1〈σA(T − 2R/c)〉
× 〈�(0)|U†

0(T )dA · E(−)(RA)δU(3)(T )|�(0)〉
+ 〈....〉. (14)

In this equation U†
0(T )E(−)(RA)δU(3)(T ) is the Heisenberg

field which, at RA and time T , annihilates the photons emitted
by dipole B, whose dipole moment has been induced by the
field emitted by atom A in the first place. It corresponds to the
field E (+)

AB (T )μ−1
A σ−1

A (T − 2R/c) in Eq. (48) of Ref. [3].
The relevant component of δU(3) is here proportional to WAW 2

B

(T-ordered). The corresponding frequency shift, δωA, is given
by the diagram (a) of Fig. 3, which is indeed equivalent to the
contributions of Fig. 2(a) to δE and of Fig. 1(a) to 〈WA/2〉T .
Therefore, up to the approximations used in Refs. [1–3], the
three quantities δE , 〈WA/2〉T , and �δωA are equivalent.

As for the shift δωB , Eqs. (13) and (29) of Ref. [3] for
δ〈σ̇B(T )〉 read, in terms of Schrödinger’s operators,

δ〈σ̇B(T )〉qr  − 2i�−1〈σB(T )〉
× 〈�(0)|δU(2)†(T )dB ·E(−)(RB)δU(1)(T )|�(0)〉
+ 〈....〉. (15)

In this equation U†
0(T )E(−)(RB)δU(1)(T ) is the Heisenberg

field, which annihilates at atom B and time T the photons
emitted by dipole A (cf. Eq. (21) of Ref. [3]), while
δU(2)†(T )dBU0(T ) is the Heisenberg dipole moment of atom
B, which is induced by the field emitted by atom A. Hence,
the relevant component of δU(2) is here proportional to
WAWB (T-ordered), while that of δU(1) is proportional to
WA. The contribution of Eq. (15) to δωB is represented
diagrammatically in Fig. 3(b). The same as for the case of δωA,
due to the symmetry of that diagram, �ωB equals −〈WB〉qr

T .
As well remarked by the authors of Ref. [3], atom A in

Eq. (15) remains unaffected by the presence of atom B, which
explains also the factor �(T − R/c) in Eq. (5) in the place of
�(T − 2R/c) in Eq. (4). Pictorially, this difference can be seen
from the diagrams of Fig. 3. In diagram 3(a), reading from the
bottom up, a first photon is emitted from A and absorbed by
B while a second photon is later emitted from B and absorbed
by A. Thus, the minimum time required for the two photons
to fly between the atoms, one after the other, is 2R/c. On the
contrary, in diagram 3(b) both photons are emitted from atom
A. That is, reading from the top down, the photon emitted from
A induces a dipole moment in atom B; while reading from the
bottom up, the photon emitted from A is absorbed by dipole
B. The minimum time required for the two photons to fly from
A to B is here R/c, since both photons can depart from A at
the same time.

Lastly, neglecting the level shifts due to the interaction of
the two atoms in their ground states, the authors of Ref. [3]
found for the single-atom shifts of the levels A+ and B−,
δEA+ = �ωA and δEB− = −�δωB/2, i.e., δEA+ = 〈WA/2〉T
and δEB− = 〈WB/2〉T , respectively, whose expressions are
those in Eqs. (6) and (7). Milonni and Rafsanjani have
interpreted the latter quantity as the quadratic Stark shift of
level B− under the field induced by the atom A excited, which
is certainly the case at our order of approximation, O(W 4).
Further, they argue that δEB− is the shift which accompanies
the irreversible excitation transfer from A to B, for which the
conditions �AT � 1, �BT � 1 are necessary. Although this
interpretation is of course possible, I rather prefer to interpret
δEB− as the quasistationary vdW potential of atom B, since
that is the quantity which explicitly appears in Eq. (15) upon
averaging 〈WB(T )〉qr/2 over time, even for �A,BT � 1 (see
also Sec. V).

Beyond the quasiresonant approximation, although not
explicitly computed by the authors of Ref. [3], the resonant
contributions to δEA+ and δEB− are depicted by diagrams
3(c) and 3(d), respectively. Again, because of the up-down
symmetry of both diagrams, their contributions are the same
as those of diagrams 1(c) and 1(o) for 〈WA〉/2 and 〈WB〉/2,
respectively. In the adiabatic approximation (i.e., quasistation-
ary), the frequency poles provided by diagrams 3(a) and 3(c)
were already given in Eq. (11). As for the poles provided by
the diagrams 3(b) and 3(d) for δEB− , or equivalently, by the
diagrams 1(m) and 1(o) for 〈WB/2〉T , Eqs. (A6) and (A7) yield

c/[�AB(k − kA − iη/c)(k′ − kA + iη/c)] and

−c/[(k + k′ − �AB)(k − kA − iη/c)(k′ − kA + iη/c)],

(16)

respectively, with η → 0+. In contrast to the complex poles of
Eq. (11), the signs of the imaginary parts of the two poles in
Eq. (16) differ. This results in the opposite contribution of the
term proportional to Im2[G(0)(R,ωA)] in Eq. (7) with respect
to that in Eq. (6); hence, the aforementioned monotonic form
of 〈WB/2〉T .

From this analysis I conclude that the results of Ref. [3] are
fully equivalent, in the quasistationary approximation, to those
of Refs. [1] and [2] together with the results of Sec. III A, even
though they refer to different physical quantities.
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FIG. 4. Diagrammatic representation of the single-atom level
shift δE0 [(a)] and the two-atom level shift δE ′ [(b)] for the interaction
of two identical excited atoms in the quasiresonant approximation.

IV. VDW POTENTIALS VS RATE OF PHASE SHIFT
IN THE INTERACTION BETWEEN TWO IDENTICAL

ATOMS EXCITED

I show in this section that the aforemention equivalence
between the phase-shift rate of the two-atom state, the vdW
potential, and the level shift of the excited atom does not hold
generally. Let us take as a counterexample the interaction
between two identical three-level atoms. Let us assume that
the states of each atom are connected through consecutive E1
transitions, |−〉 →E1 |0〉 →E1 |+〉, and let us consider as an
initial state that in which both atoms, A and B, are placed
in their intermediate states, |� ′(0)〉 = |0〉A ⊗ |0〉B ⊗ |0γ 〉.
The expressions for the phase-shift rate and for the vdW
potential of each atom are in this case δE ′ = Re{〈� ′(0)|U†

0(T )
(WA + WB)U(T )|� ′(0)〉T } and 〈W0/2〉T ≡ 〈WA,B/2〉T =
〈� ′(0)|U†(T )WA,BU(T )|� ′(0)〉T /2, respectively. In addition,
let us consider that quasiresonant conditions meet, meaning
here that �+− ≡ (ω+ − ω0) − (ω0 − ω−) is such that
|�+−| � (ω+ − ω0),(ω0 − ω−). This situation is of particular
interest, as it corresponds to the binary interaction between
identical circular Rydberg atoms [16]. It is easy to verify in
this example that, while the one-atom shift of the level 0,
δE0, still equals the vdW potential, the phase-shift rate of
the two-atom state is not equivalent. In Figs. 4(a) and 4(b)
I depict diagrammatically the processes which contribute to
δE0 = 〈W0/2〉T and δE ′ in the quasistationary approximation.
They yield [see Eqs. (A3) and (A4) in the Appendix]

δEqr

0 = 〈W0/2〉qr

T = −2(ω0 − ω−)4

ε2
0�c4�+−

μi
−μ

j
+μ

p
−μ

q
+

× Re
{
G

(0)
ij [R,(ω0 − ω−)]

}
Re

{
G(0)

pq[R,(ω0 − ω−)]
}
,

(17)

δE ′qr = −2(ω0 − ω−)4

ε2
0�c4�+−

μi
−μ

j
+μ

p
−μ

q
+

× [
Re

{
G

(0)
ij [R,(ω0 − ω−)]

}
Re

{
G(0)

pq[R,(ω0 − ω−)]
}

− Im
{
G

(0)
ij [R,(ω0 − ω−)]

}
Im

{
G(0)

pq[R,(ω0 − ω−)]
}]

,

(18)

where μi
− = 〈0|di

A,B |−〉, μ
j
+ = 〈0|dj

A,B |+〉. In the far-field
equations (17) and (18) approach, respectively,

δEqr

0  U ′
ijpq

R2
μi

−μ
j
+μ

p
−μ

q
+ cos2 [R(ω0 − ω−)/c],

δE ′qr  U ′
ijpq

R2
μi

−μ
j
+μ

p
−μ

q
+ cos [2R(ω0 − ω−)/c],

where U ′
ijpq = −2(ω0−ω−)4

(4πε0)2�c4�+−
αijαpq . This time both quantities

oscillate in space, but in a different manner.

V. DYNAMICAL VDW POTENTIALS

In Sec. III I have discussed the equivalence between the
energies computed in Refs. [1], [2], and [3] for the case
of the two-atom interaction with one atom in an excited
state. In principle, all those approaches consider that atom
A is initially excited, with the atoms in the unentangled
state, |�(0)〉 = |A+〉 ⊗ |B−〉 ⊗ |0γ 〉. As explained earlier, they
obtain equivalent stationary values out of their time-dependent
calculations, either by discarding rapidly oscillating terms [1],
by invoking the adiabatic switching of the interaction W [2],
or by averaging over time scales greater than |�−1

AB | [2,3].
Only Berman, in the Appendix of Ref. [1], adopts a more
realistic setup by considering that the excitation of atom A

is adiabatic with respect to the time scale |�−1
AB |. That is,

he considers that the duration of a π pulse resonant with
the transition of atom A, τ is such that |�−1

AB | � τ � T .
In turn, this procedure has the same effect as the adiabatic
approximation of Ref. [2] or the time average of Ref. [3], as
it allows him to get rid of the rapidly oscillating terms in the
two-atom wave function, b̃A(T ) = 〈�̃(0)|�̃I (T )〉, where this
time |�̃(0)〉 = |A−〉 ⊗ |B−〉 ⊗ |0γ 〉 and the interaction of the
atoms in their ground states is considered negligible.

In the opposite limit, the fully time-dependent result of
Ref. [2] for 〈WA(T )〉/2 relies on the sudden excitation of atom
A. In this case, the validity of Eq. (4) in Ref. [2] not only
requires that the temporal resolution be less than |�−1

AB |, but
also that τ � |�−1

AB | in order to neglect the effect of W within
the pulse.

In the following I consider the case in which the excitation
of atom A is neither sudden nor adiabatic but driven by a π

pulse of frequency �, resonant with the transition |A−〉 →
|A+〉 and such that � � ωA. Note that in this case only
the vdW potentials make physical sense since the interaction
becomes dynamical. In its simplest form, the interaction of the
pulse with the atom A is given by the Hamiltonian

HR(t) = ��

2
eiωAt |A−〉〈A+| + H.c., 0 � t � π/�. (19)

In addition, I incorporate the effect of free-space spontaneous
emission in a Weisskopf-Wigner approximation and consider
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FIG. 5. Diagrammatic representation of the vdW potentials under
the action of a π pulse in the quasiresonant approximation. Thick
dashed arrows represent the action of the pulse, and tilded propagators
incorporate its action in the states of atom A.

negligible the vdW interaction between the atoms in their
ground state. The calculation of 〈WA(T )〉/2 is analogous to that
carried out in Ref. [2], with the differences that the initial state
is now |�̃(0)〉 = |A−〉 ⊗ |B−〉 ⊗ |0γ 〉 and the unperturbed

time-propagator components of the states of atom A read [17]

cos (�t/2)|A−〉〈A−|, e−i(ωA−i�A/2)t cos (�t/2)|A+〉〈A+|,
− i sin (�t/2)|A−〉〈A+|,
− ie−i(ωA−i�A/2)t sin (�t/2)|A+〉〈A−|,

within the pulse, 0 � t � π/� � T ; whereas they are
|A−〉〈A−|, e−i(ωA−i�A/2)t |A+〉〈A+| outside the pulse, T �
t > π/�. As for the unperturbed time-propagator com-
ponents of the states of atom B, they are |B−〉〈B−|,
e−i(ωB−i�B/2)t |B+〉〈B+|, for 0 � t � T . In these equations
I consider �A,B � �,|�AB |. Again restricting the calcula-
tion to the quasiresonant approximation, at leading order
in �AB/ωA,B the diagram which contributes the most to
〈WA(T )〉qr/2 is that of Fig. 5(a), where the action of the pulse
is represented by thick dashed arrows and tilded propagators
incorporate its action in the states of atom A.

An analogous expression to that of Eq. (2) in Ref. [2] yields,
for T � π/�,

〈WA(T )〉qr/2 = 2αf c3

πε0e2
μi

Aμ
j

Bμ
p

Bμ
q

A

∫ +∞

−∞
dk k2Im

[
G

(0)
ij (kR)

] ∫ +∞

−∞
dk′ k′2Im

[
G(0)

pq(k′R)
]
�(T − 2R/c) �(T − π/�)

×
{∫ T

π/�

dt

∫ t

π/�

dt ′
∫ t ′

π/�

dt ′′ +
[∫ T

π/�

dt

∫ t

π/�

dt ′
∫ π/�

0
dt ′′ +

∫ T

π/�

dt

∫ π/�

0
dt ′

∫ t ′

0
dt ′′

+
∫ π/�

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′

]
sin2 (�t ′′/2)

}

× [(i ei(ωA+i�A/2)T e−i(T −t)ωe−i(t−t ′)(ωB−i�B/2)e−i(t ′−t ′′)ω′
e−it ′′(ωA−i�A/2)) + (ω ↔ ω′)∗],

where αf = e2/4πε0�c is the fine-structure constant and e is the electron charge. In this equation the first time integral yields
the contribution outside the pulse, which is equivalent to the expression of Eq. (4) in Ref. [2] but for the replacement of T with
T − π/�. The remaining time integrals, which are accompanied by a factor sin2 (�t ′′/2), yield the contribution within the pulse.
Putting it altogether one arrives at

〈WA(T )〉qr/2  (4π )2U ijpq

{
k4
Ae−�AT

[
Re

[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωA)
] − Im

[
G

(0)
ij (R,ωA)

]
Im

[
G(0)

pq(R,ωA)
]]

+ k4
B�2e−(�A+�B )T/2

2
(
�2

AB − �2
) [(

Re
[
G

(0)
ij (R,ωB)

]
Re

[
G(0)

pq(R,ωB)
] − Im

[
G

(0)
ij (R,ωB)

]
Im

[
G(0)

pq(R,ωB)
])

× (cos (�ABT ) + cos [�AB(T − π/�)]) − 2Re
[
G

(0)
ij (R,ωB)

]
Im

[
G(0)

pq(R,ωB)
]

× (sin (�ABT ) + sin [�AB(T − π/�)])
]}

. (20)

From this expression we see that, as anticipated by Berman [1], only the terms proportional to k4
A, which equal Eq. (6), survive

an adiabatic excitation with �/�AB → 0. Leading-order corrections are O[(�/�AB)2]. It is also only those terms that survive
the limits �BT � 1, �AT � 1, and regardless of the ratio �/�AB . In the opposite limit, i.e., for a sudden excitation with
�AB/� → 0, Eq. (20) equals Eq. (4) of Ref. [2] in the limit �A,BT � 1. Another interesting situation is that of a resonant
excitation with |�/�AB | → 1, in which case one obtains

〈WA(T )〉qr/2  (4π )2U ijpq

{
k4
Ae−�AT

[
Re

[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωA)
] − Im

[
G

(0)
ij (R,ωA)

]
Im

[
G(0)

pq(R,ωA)
]]

− πk4
Be−(�A+�B )T/2

4

[(
Re

[
G

(0)
ij (R,ωB)

]
Re

[
G(0)

pq(R,ωB)
] − Im

[
G

(0)
ij (R,ωB)

]
Im

[
G(0)

pq(R,ωB)
])

sin (�T )

+ 2Re
[
G

(0)
ij (R,ωB)

]
Im

[
G(0)

pq(R,ωB)
]

cos (�T )
]}

, |�/�AB | → 1. (21)
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As for the vdW potential of atom B, a similar calculation yields for T � π/� [see Eq. (A2) and Fig. 5(b)],

〈WB(T )〉qr/2  (4π )2U ijpq

{
k4
Ae−�AT

[
Re

[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωA)
] + Im

[
G

(0)
ij (R,ωA)

]
Im

[
G(0)

pq(R,ωA)
]]

+ k2
Ak2

B�2e−(�A+�B )T/2

2
(
�2

AB − �2
) [(

Re
[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωB)
] + Im

[
G

(0)
ij (R,ωA)

]
Im

[
G(0)

pq(R,ωB)
])

× (cos (�ABT ) + cos [�AB(T − π/�)]) − (
Re

[
G

(0)
ij (R,ωA)]Im

[
G(0)

pq(R,ωB)
]

− Im
[
G

(0)
ij (R,ωA)

]
Re

[
G(0)

pq(R,ωB)
])

(sin (�ABT ) + sin [�AB(T − π/�)])
]}

. (22)

Again, only the terms proportional to k4
A, which equal Eq. (7), survive the limit �/�AB → 0, regardless of the value of the ratio

�B/�A. Nonetheless, it is also those terms that survive the limits �BT � 1, �AT � 1, which are necessary for an irreversible
excitation transfer, and regardless of the excitation rate.

VI. DISCUSSION

I have shown that, for the problem of the interaction
between two dissimilar atoms with one atom in an excited
state, the expressions for the phase-shift rate of the two-atom
state computed by Berman [1], δE/�, for the level shift of the
excited atom computed by Milonni et al. [3], δEA+ , and for the
vdW potential of the excited atom computed by Donaire et al.,
〈WA〉T /2, are equivalent in the quasistationary approximation.
To this end, I have expressed all these quantities in terms
of time propagators and Schrödinger operators within the
framework of time-dependent perturbation theory. Their dia-
grammatic representations are given in Figs. 1, 2, and 3. As for
the level shift of the ground-state atom computed in Ref. [3],
δEB− , I have shown that it is equivalent to its quasistationary
vdW potential, 〈WB〉T /2, regardless of the relaxation rate �B

and of the existence of a continuous distribution of final states.
Although the latter condition together with �B/�A � 1 are
necessary for an irreversible excitation transfer, Eq. (7) is
equally applicable for �A,BT � 1, in which case the excitation
exchange is reversible. The lack of reciprocity which derives
from the inequality 〈WA〉/2 �= 〈WB〉/2 deserves further study
which lies outside the scope of the present article.

Beyond the quasistationary approximation, I have shown
the dependence of the dynamical vdW potentials on the
frequency of the excitation pulse � and on the spontaneous
emission rates �A,B . As anticipated by Berman [1], the
quasistationary results are recovered for �AT � 1 in the
adiabatic limit, �AB/� → 0. The same results are obtained
for �BT � 1, regardless of the ratio �AB/�. However, the
dynamical vdW potentials depend generally on the manner the
atom A was excited, as given by Eqs. (20) and (22).

I conclude that, in agreement with Berman [1], and Milonni
and Rafsanjani [3], the reason for the discrepancy between
the different expressions of the two-atom interaction energy
in precedent works is that they refer to different physical

quantities. In particular, while the van der Waals potential of
the excited atom oscillates in space, the van der Waals potential
of the ground-state atom presents a monotonic form.

The equivalence between the phase-shift rate of the two-
atom wave function and the quasistationary vdW potential
of an excited atom is, however, not generic. This point is
illustrated in Sec. IV where, for the problem of the interaction
between two identical atoms excited, it is shown that δE ′ �=
〈W0/2〉T .

Concerning the experimental observation of the quantities
computed in Refs. [1–3], the vdW potentials 〈WA,B(T )〉/2 can
be observed through the vdW forces experienced by each atom
when placed inside harmonic traps, which are proportional to
the displacements of the atoms with respect to their equilibrium
positions in the absence of interaction. On the other hand, the
phase shift of the two-atom state can be observed using atom
interferometry. In particular, it is the shift δE ′ calculated in
Sec. IV that is observed in the binary interaction of Rydberg
atoms through the measurement of population probabilities
[16,18]. In either case, forces and phase shifts make reference
to the dynamics of the atomic degrees of freedom. In addition
to these observables, the frequency of the photon emitted at
T → ∞ may serve also to quantify the two-atom interaction
by spectroscopic means. If no other dissipative channels
exist and the kinetic energy associated to the atomic recoil
is negligible, the energy of the emitted photon must equal
the energy supplied by the excitation pulse of Sec. V. The
computation of this quantity is left for a separate publication.
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APPENDIX: INTEGRAL EXPRESSIONS FOR EQS. (5), (11), (16), (17), (18), AND (22)

In this Appendix I write the integral expressions for 〈WB(T )〉qr/2, δEqr

0 and δE ′qr , as well as the time integrals from which
the poles in Eqs. (11) and (16) derive.
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As for 〈WB(T )/2〉qr in Eq. (5), it reads for a sudden excitation and �A,BT � 1,

〈WB(T )〉qr/2 = Re
2αf c3

πε0e2
μi

Aμ
j

Bμ
p

Bμ
q

A

∫ +∞

−∞
dk k2Im

[
G

(0)
ij (kR)

] ∫ +∞

−∞
dk′ k′2Im[G(0)

pq(k′R)] �(T − R/c)

×
∫ T

0
dt

∫ t

0
dt ′

∫ T

0
dt ′′[(−iei(T −t)ωB ei(t−t ′)ωeiωAt ′ e−i(T −t ′′)ω′

e−it ′′ωA) + (ω ↔ ω′)]. (A1)

In the case of an excitation driven by a π pulse of frequency � the expression for 〈WB(T )/2〉qr is that in Eq. (22), which is
computed from the integral

〈WB(T )〉qr/2 = Re
2αf c3

πε0e2
μi

Aμ
j

Bμ
p

Bμ
q

A

∫ +∞

−∞
dk k2Im

[
G

(0)
ij (kR)

] ∫ +∞

−∞
dk′ k′2Im

[
G(0)

pq(k′R)
]
�(T − R/c) �(T − π/�)

×
{[∫ T

π/�

dt

∫ t

π/�

dt ′ − i

(∫ T

π/�

dt

∫ π/�

0
dt ′ +

∫ π/�

0
dt

∫ t

0
dt ′

)
sin2 (�t ′/2)

]

×
[∫ T

π/�

dt ′′ + i

∫ π/�

0
dt ′′ sin2 (�t ′′/2)

]}

×[(−iei(T −t)(ωB+i�B/2)ei(t−t ′)ωei(ωA+i�A/2)t ′ e−i(T −t ′′)ω′
e−it ′′(ωA−i�A/2)) + (ω ↔ ω′)]. (A2)

The integral expressions which derive from the diagrams in Figs. 4(a) and 4(b), which yield the results of Eqs. (17) and (18),
respectively, read in the quasistationary (i.e., adiabatic) approximation,

δEqr

0 = 〈W0/2〉qr

T = Re
4αf c3

πε0e2
μi

−μ
j
+μ

p
+μ

q
−

∫ +∞

−∞
dk k2Im

[
G

(0)
ij (kR)

] ∫ +∞

−∞
dk′ k′2Im

[
G(0)

pq(k′R)
]

×
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)[i e2iω0T e−i(T −t)(ω+ω0+ω−)e−i(t−t ′)(ω++ω−)e−i(t ′−t ′′)(ω′+ω0+ω−)e−2it ′′ω0 ]

+ Re
4αf c3

πε0e2
μi

−μ
j
+μ

p
+μ

q
−

∫ +∞

−∞
dk k2Im

[
G

(0)
ij (kR)

] ∫ +∞

−∞
dk′ k′2Im

[
G(0)

pq(k′R)
] ∫ T

−∞
dt

∫ t

−∞
dt ′

∫ T

−∞
dt ′′ eη(t+t ′+t ′′)

× [−iei(T −t)(ω++ω−)ei(t−t ′)(ω+ω0+ω−)e2iω0t
′
e−i(T −t ′′)(ω′+ω0+ω−)e−2it ′′ω0 ], η → 0+, (A3)

δE ′qr = 2Re
4αf c3

πε0e2
μi

−μ
j
+μ

p
+μ

q
−

∫ +∞

−∞
dk k2Im[G(0)

ij (kR)]
∫ +∞

−∞
dk′ k′2Im[G(0)

pq(k′R)]
∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)

× [i e2iω0T e−i(T −t)(ω+ω0+ω−)e−i(t−t ′)(ω++ω−)e−i(t ′−t ′′)(ω′+ω0+ω−)e−2it ′′ω0 ], η → 0+. (A4)

In Eq. (A3) the first term corresponds to the diagram on the right of Fig. 4(a), while the second term corresponds to the diagram
on the left. In contrast, the factor 2 in front of the expression on the rhs of Eq. (A4) stand for the equivalent contribution of the
two diagrams in Fig. 4(b).

As for the poles appearing in the second equation of Eq. (11), which corresponds to the diagrams 1(c), 2(c), or 3(c), they
derive from the time integral∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ eη(t+t ′+t ′′)(i eiωAT e−i(T −t)ωe−i(t−t ′)(ω+ω′+ωB )e−i(t ′−t ′′)ω′

e−it ′′ωA), η → 0+. (A5)

The poles appearing in the first equation of Eq. (16), which corresponds to the diagrams 1(m) or 3(b), derive from the time
integral ∫ T

−∞
dt

∫ t

−∞
dt ′

∫ T

−∞
dt ′′ eη(t+t ′+t ′′)(−iei(T −t)ωB ei(t−t ′)ωeiωAt ′ e−i(T −t ′′)ω′

e−it ′′ωA), η → 0+. (A6)

Finally, the poles appearing in the second equation of Eq. (16), which corresponds to the diagrams 1(o) or 3(d), derive from the
time integral ∫ T

−∞
dt

∫ t

−∞
dt ′

∫ T

−∞
dt ′′ eη(t+t ′+t ′′)(−iei(T −t)(ω+ω′+ωB )ei(t−t ′)ωeiωAt ′ e−i(T −t ′′)ω′

e−it ′′ωA), η → 0+. (A7)
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