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Rayleigh scattering of two x-ray photons by an atom
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The process of elastic (Rayleigh) scattering of two x-ray free-electron laser (XFEL) photons by a free He
atom is theoretically investigated. We obtain the absolute values and the forms of the triple differential scattering
cross section. The main theoretical result is the highest probability of creation of scattered photons with energy
�ω± ∼= �ω ± I1s (�ω is the energy of the incident XFEL photon, I1s is the energy of the ionization threshold of
the 1s2 atomic shell). The probability of creation cooled (<ω−) and hot (>ω+) photons is smaller by many orders
of magnitude, and is identically zero when the formal (nonphysical) energy of one of the scattered photons is
2�ω.
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I. INTRODUCTION

The creation of x-ray free-electron laser (XFEL) (see
Ref. [1] and references therein) provides an opportunity to in-
vestigate fundamental nonlinear processes at the microscopic
scale. These processes, in particular, include elastic scattering
of two x-ray photons by a free atom. This process occurs via
creation of virtual excitation (ionization) states of the atom
with consequent return to the original state. In that sense
(creation of virtual atomic states) we retain the traditional
(anomalous-dispersive elastic scattering of one photon by the
atom) [2] name of Rayleigh scattering. The subject of our
investigation is the atom of He (nuclear charge is Z = 2,
configuration and ground-state term are [0] = 1s2[1S0]), as
it is the simplest element with a filled shell in the ground
state. The choice for the He atom as the research subject
was also due to the fact that He is affordable and is widely
used in high-precision experiments (see, for example, Feldhaus
et al. [1]).

II. THEORY

Let us consider the process of Rayleigh scattering of two
XFEL photons by He:

ω + ω + [0] → X → [0] + ω1 + ω2, (1)

where ω (ω1,2) is the angular frequency of the incident
(scattered) photon, X are the intermediate (virtual) scattering
states and the conservation of energy has the form of ω1 +
ω2 = 2ω. In (1) and hereafter, we assume the atomic system
of units: me = e = � = 1, where me is the electron mass
and e is the electron charge, and � is Planck’s constant. We
restrict ourselves to the second order in the nonrelativistic
quantum perturbation theory (as defined by the number of
interaction vertices, Fig. 1). Then we can define four interfering
probability amplitudes for process (1) over the scattering
states: ⎧⎪⎨

⎪⎩
X1 = 1sxl + ω + ω2 , xl > F,

X2 = 1sxl + ω + ω1 ,

X3 = 1sxl ,

X4 = 1sxl + ω + ω + ω1 + ω2 .

(2)
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Here, xl are the single electron excited (ionization) states of
the 1s2 shell, the orbital quantum number l ∈ [0; ∞), and F

is the Fermi level (set of quantum numbers of the 1s2 shell of
the atomic ground state).

The structure of scattering states (2) is defined by the form
of the contact transition operator [3]:

Ŵ = 1

2c2

N∑
n=1

(Ân · Ân), (3)

where c is the speed of light in vacuum, Ân = Â(0; �rn) is
the electromagnetic field operator in the second quantization
picture at time t = 0, �rn is the radius vector of the nth electron,
and N is the number of electrons in the atom. The notion of
“contactness” of the interaction means that wave functions
of two photons, electron, and vacancy converge in the same
space-time point (Fig. 1).

Expansion of the number of intermediate scattering states
investigated in (1) requires the transition to a third (and higher)
order of the perturbation theory, and the consideration of the
radiative transition operator [3,4]:

V̂ = −1

c

N∑
n=1

(p̂n · Ân), (4)

where p̂n is the momentum operator of the nth electron. In
this work we do not consider such an extension. The validity
of this approach is due to two factors. First, an increase in the
number of energy denominators suppressing partial scattering
probability amplitudes. Second, the theoretical result of
works [5] for bremsstrahlung probability amplitudes, mxy =
〈xl|p̂|y(l ± 1)〉 ∼ δ(x − y), where δ is the Dirac δ function.
Indeed, for example, for the intermediate scattering xl and
y(l ± 1) states of the continuum, the scattering probability
amplitudes of third (and higher) order of the perturbation
theory, taking into account the structure of the free-free
mxy matrix element, are proportional to δ(ω) = δ(ω1,2) = 0
when ω > 0, ω1,2 > 0. Thus, the amplitude of the third X =
1sx(s,d) + ω + ω2 → 1syp + ω2 [Fig. 1(e)] and fourth X =
1sxp + ω → 1sy(s,d) → 1szp + ω1 [Fig. 1(f)] orders of the
perturbation theory are proportional to δ(ω) and δ(ω)δ(ω1),
respectively. For the intermediate scattering xl states of the
discrete spectrum, scattering probability amplitudes of third
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FIG. 1. Partial probability amplitudes for the Rayleigh scattering
of two XFEL photons by a He atom in the Feynman diagram
representation. Right arrow: electron (x ≡ xl > F ); left arrow:
vacancy (1s). Open circle: contact transition operator Ŵ interaction
vertex. Solid circle: the vertex of interaction for the radiative transition
operator V̂ . ω (ω1,2) is the incident (scattered) photon. Time direction
of the process is t1 < t2. (a,b,c,d,e,f ); see Sec. II.

(and higher) perturbation theory orders contain a suppressing
energy factor ∼ω−1.

In the second-order perturbation theory for the probability
amplitude of process (1), operator (4) in the electromagnetic
field interaction Hamiltonian atom is not taken into account
[Figs. 1(a)–1(d)]. This leads to a violation of the requirement
of local gauge invariance [3] for the scattering cross section
(11) with respect to the Âμ → Âμ − ∂ϕ/∂xμ transformation
of electromagnetic potential and initial (intermediate) atomic
wave functions |�〉 → exp(iϕ)|�〉, where ϕ is an arbitrary
function of space-time coordinates xμ = (ct ; �x). To restore the
local gauge invariance for the cross section (11), it is necessary
to consider all orders of perturbation theory in the transition
operators (3) and (4), as well as the complete set of atomic xl

excitation and ionization states. Investigation of this problem
is the subject of future research. Such studies, in particular,
show a measure of violation (measure of the dependence on
the choice of calibration of the electromagnetic field operator
Âμ) of local gauge invariance for the cross section (11)
when constrained by the fixed order of the nonrelativistic
perturbation theory.

The physical interpretation of the probability amplitude
for process (1) and states (2) in the Feynman diagram
representation of nonrelativistic many-body quantum theory
[4] is given in Fig. 1 and Sec. III of this paper. We restrict
ourselves to the XFEL photon energies of 2ω 
 I1s , where the
ionization threshold energy of the 1s2 shell of He is defined
to be I1s = 23.45 eV (calculation of this work). Then, we can

neglect the probability amplitudes over states X3 [Fig. 1(c)]
and X4 [Fig. 1(d)]. Indeed, for xl states of the continuum, for
example, the probability amplitude singularity over state X3

is defined when x ∼= 2ω − I1s 
 0, whereas x ∼= ω − I1s −
ω1,2 → 0 when ω1,2 → ω − I1s for the singularities over states
X1,2. In Sec. III we shall show that for scattered photons
precisely in the energy range ω1,2

∼= ω ± I1s , giant maxima
in the scattering spectra occur. The probability amplitude
over state X4 is nonsingular and is suppressed by a large
(∼=2ω + I1s + x, x � 0) energy denominator. Therefore, in the
investigated range of energies for the XFEL photons, states X1

[Fig. 1(a)] and X2 [Fig. 1(b)] are the leading ones, and their
total probability amplitude takes the form (see Appendix A):

� = (�e · �e1)(�e · �e2)

(
π

V

)2 1

ω
√

2ω1ω2
D, (5)

D =
∑
x>F

Q

(
1

η1
+ 1

η2

)
, (6)

Q = (4l + 2)R(1)
l R

(2)
l Pl(cos �). (7)

Here, function Q is derived through methods of the irreducible
tensor operator theory (see Appendix B). We define the
following: V is the quantization volume of the electromag-
netic field,

∑
x>F is the symbol of summation over the

discrete spectrum states [x > F → nl > F ] and summation
(integration) over the states of the continuous spectrum
[
∑∞

l=0

∫ ∞
0 dx], ηm = ω − ωm − E(1sxl) + E(0), m = 1,2, �e

(�em) is the polarization vector of the incident (scattered)
photon, E is the total Hartree-Fock energies of atomic states,
R

(m)
l = 〈1s|jl(qmr)|xl〉, jl is the spherical Bessel function of

the first kind of order l, Pl(cos �) is the classical spherical
orthogonal Legendre polynomial, qm = |�qm| = |�k − �km| =
(ω/c)(1 + β2

m − 2βm cos θm)1/2, βm = ωm/ω, θm is the scat-
tering angle [the angle between wave-vectors of the incident
(�k) and scattered (�km) photons], and � is the angle between
vectors �q1 and �q2. When ηm → 0, the imaginary term iγ1s

(γ1s = 1s/2, 1s is the natural linewidth of the 1s-vacancy
decay) is defined in the energy denominators of (6):

η−1
m → (ηm + iγ1s)

−1 = Pm − iπLm, (8)

Pm = ηm �−1
m , Lm = (γ1s/π ) �−1

m , (9)

where �m = η2
m + γ 2

1s . Transformation (8) removes the corre-
sponding singularities in the D function.

Let us find the triple differential cross section of process
(1) over states X1 and X2. Consider the case of coplanar
(vectors �k, �k1, and �k2 are in the same plane) and symmetric
(θ1 = −θ2 ≡ θ ) scattering of linearly polarized (perpendicular
to the scattering plane, ⊥), incident (parallel to each other),
and scattered photons: (�e ‖ �em) ⊥ P , (�e · �em) = ±1. Here, P

is the scattering plane, defined by vectors �k and �km. In other
words, we propose an experimental scheme where detectors
for the scattered photons are placed in the scattering plane
symmetrically relative to the axis of propagation of the
incident XFEL radiation. Transition to the construction of
the noncoplanar and asymmetrical Rayleigh scattering cross
section and, as a result, the general picture of angular and
energetic distribution of the scattered photons is a subject of
future investigations. Taking into account Fermi’s golden rule
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FIG. 2. Triple differential cross section for the Rayleigh scattering of two linearly polarized (perpendicular to the scattering plane, ⊥)
XFEL photons by a He atom. (a) full scattering spectrum with ω = 250 eV and θ = 90◦; (b) part of the full scattering spectrum resolving the
structure of the 1s → nl excitation resonances accounted for in this work. Shadowed part of the spectrum in (b) is the contribution of 1sxl

continuous spectrum states before taking into account the interference of their amplitudes with the amplitudes of the discrete spectrum states.
ω(ω1) is the incident (scattered) photon energy, θ is the scattering angle. Spectral characteristics of the leading scattering resonances are given
in Table II.

(Fermi [3]):

d4σ⊥ = 2π

J
|�|2δ(2ω − ω1 − ω2) d2f1 d2f2. (10)

Here, J = cn/V is the density of flux of incident XFEL
photons (in our case, n = 2), d2fm = V (2πc)−3ω2

mdωmd�m,
and �m is solid angle of the outgoing scattered photon. Then,
integrating (10) over ω2 and fixing the quantization volume
V (cm3) = c [6], we obtain:

d3σ⊥
dω1 d�1 d�2

≡ σ
(3)
⊥ = c

128π
r4

0 β1 (2 − β1) |D|2, (11)

where r0 is the classical electron radius. From (11) with ω1 →
0 (ω2 → 2ω) it follows that σ

(3)
⊥ → 0. This result may be

interpreted as follows. In the investigated Rayleigh scattering
process, confluence of two XFEL photons into one scattered
photon with the disappearance of the other one cannot occur.

III. RESULTS AND DISCUSSION

Results of the calculation of triple differential scattering
cross section (11) for the scheme assumed here are shown
on Fig. 2 and Tables I, II, and they show the following. As
expected, with the largest probability, the energy of the incident
XFEL photons is redistributed into two regions of energies
for the scattered photons [Fig. 2(a)]: ω1 ∼ ω ± I1s . Indeed,
at time t1 [see, for example, Fig. 1(a)], one of the incident
photons gives up a part (∼I1s) of its energy for the excitation
(ionization) of the atom, and leaves the contact interaction

region as a scattered photon of frequency ω2 < ω. The other
incident photon at time t2 > t1 receives energy of the excitation
(ionization) of the atom, and leaves the contact interaction
region with the frequency ω1 > ω. From a mathematical
standpoint, the largest contribution to the improper integrals
over x in (6) comes from the neighborhood of the pole x ≈
0 ⇒ ω1 ≈ ω ± I1s . Moreover, this contribution has a stark
resonant character over the continuous spectrum of virtual
states of 1s → xl scattering (Fig. 2). According to Table I,

TABLE I. Energetic and angular dependence of the triple dif-
ferential Rayleigh scattering cross section of two XFEL photons by
a He atom for the leading giant resonance of the monopole 1s →
2s excitation {ω1 = ω ± [E(1s2s) − E(0)]}. γ1s = 1.69 × 10−14 eV.
ω(ω1) is the energy of the incident (scattered) photon, θ is the
scattering angle. The symbol [−n] denotes a multiplicative factor
of 10−n.

ω (eV) θ (degree) σ
(3)
⊥

(
r2

0 eV −1sr−2
)

250 1.275 [−27]
500 90 0.862 [−27]
750 0.425 [−27]

0 1.443 [−27]
45 1.392 [−27]

250 90 1.275 [−27]
135 1.166 [−27]
180 1.123 [−27]
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TABLE II. Spectral characteristics of the leading resonances of
the Rayleigh scattering spectrum of two XFEL photons by a He atom
with ω = 250 eV and θ = 90◦ [see. Fig. 2(b)]. ω1 = ω + E(1snl) −
E(0), γ1s = 1.69 × 10−14 eV for the metastable 1s(ns,nd,nf ) states
and γ1s = 5 × 10−8eV for the dipole-broadened 1snp states.

nl ω1 (eV) σ
(3)
⊥ (r2

0 eV −1sr−2)

2s 268.93 1.275 [−27]
3s 271.64 2.013 [−30]
4s 272.48 0.620 [−33]

2p 269.95 1.652 [−36]
3p 271.90 0.918 [−37]
4p 272.58 1.383 [−38]

3d 271.94 1.898 [−37]
4d 272.64 0.221 [−38]
5d 272.90 1.093 [−39]

4f 272.60 1.126 [−45]
5f 272.90 1.337 [−46]
6f 273.07 1.313 [−46]

the scattered XFEL radiation is concentrated with the largest
probability in the region of θ ≈ 0◦ (forward scattering).

According to Fig. 2, scattering probability happens to
be nonzero and without redistribution of energy of the
incident XFEL photons. This result may be interpreted as
the effect of Thomson scattering. Indeed, for the case of
scattering of one photon by an atom, Thomson scattering
in the nonrelativistic form-factor approximation for the f

amplitude of the scattering probability (Kissel et al. (1980)
[2]); f = ∑

nl�F Nnl〈nl|j0(qr)|nl〉, q = (2ω/c) sin(θ/2) (Nnl

is the filling number for the nl atomic shell) can be thought
of as the elastic contact scattering of the photon by atomic
electron shells without virtual excitation (ionization) of the
atom. In other words, the energy of the incident photon is
not transferred into an excitation (ionization) of the atomic
electron shells. Simultaneously, an exclusively quantum effect
is realized—spontaneous creation (annihilation) of a virtual
(1s,xl) pair for the 1s → xl ionization state at the contact
interaction vertices and with scattered photon energies ω1 =
ω2 = ω [see D = 2

∑
x>F Qη−1, η = E(0) − E(1sxl) < 0].

Therefore, the Rayleigh scattering of two XFEL photons by
an atom is commensurate with the process where the incident
photon energy is not spent on the creation of the (1s,xl) pair.
According to the uncertainty principle �t · �E � � [3], we
obtain an estimate of the timescale over which the conservation
of energy is violated for the virtual level: with �E ∼= mec

2 (rest
energy for the xl electron) we have �t � 10−21 s. Thus, in the
studied process (1), Thomson scattering is a special case of
Rayleigh scattering.

The leading structures in the scattering spectrum are giant
(σ (3)

⊥ ∼ 10−27 in Tables I, II, and ∼10−46 on Fig. 2) scattering
resonances defined by Cauchy-Lorentz functions Lm in (8).
An analogous theoretical result, but for the case of Rayleigh
scattering of one photon by a He atom, was obtained in
Ref. [7]. Large differences in the order of magnitude of cross
sections of scattering via discrete and continuous spectra
arise from the long lifetimes of the 1s vacancy of 1sxl

excitation (ionization) states of He. Thus, according to the

theoretical result of Ref. [8], the lifetime of the metastable
1s2s(1S0) state is τ = 19.5 ms. In this work, we take γ1s =
(1/2) τ−1 = 1.69 × 10−14 eV for the metastable 1snl (l �= 1)
excited states, γ1s = 5 × 10−8 eV (estimate from theoretical
work of Ref. [9]) for the dipole-broadened 1snp excited states;
from the complete set of states of the discrete spectrum,
we limit ourselves by considering 1sns (n = 2,3,4), 1snp

(n = 2,3,4), 1snd (n = 3,4,5), and 1snf (n = 4,5,6) states.
For the continuous spectrum states we took γ1s = 5 ×

10−8 eV, and limited ourselves to the consideration of the
quantum numbers l ∈ [0; 17]. Taking into account l � 18
changes the magnitude of the cross section (11) by no more
than 0.1%. While calculating integrals R

(m)
l in (7) within

the single-configuration Hartree-Fock approximation through
methods of the nonorthogonal orbitals theory [10], we included
the effect of radial relaxation [4] of the 1sxl atomic excited
(ionized) state wave functions:

R
(m)
l → 〈1s0|1s+〉〈1s0|jl(qmr)|xl+〉. (12)

This effect is characterized by the destruction of the 1s2

screen between the atomic nucleus and the xl electronic
states above the Fermi level. As a result, a decrease in the
average radius of the 1s+ electron of the atomic core, and
an additional delocalization of the radial part of the xl+ wave
function occurs. In (12), the radial part of the 1s0-electron wave
function is obtained by solving the Hartree-Fock nonlinear
integral-differential equation for the self-consistent field for
the ground-state atomic configuration [0]. Radial parts of wave
functions of 1s+ and xl+ electrons are obtained by solving
Hartree-Fock equations for the 1s+xl+(T ) (in the field of the
1s vacancy) configurations of the excited (ionized) atomic
state.

In particular, according to (12) and (B21), because
of the radial relaxation effect the probability of for-
ward Thomson scattering does not become zero: R

(m)
0 =

〈1s0|1s+〉〈1s0|xs+〉,R(m)
l>0 = 0. Thus, we establish a very im-

portant role of the radial relaxation in determining the nonzero
probability of Rayleigh scattering of two XFEL photons by
an atom. At θ = 90◦ for Thomson scattering [see Fig. 2(a)
with ω1 = ω] we obtain from (B13) cos � = 0 ⇒ Pl(0) =
0,l = 2n + 1; (−1/4)n Cn

2n,l = 2n, n � 0. Therefore, in con-
trast to the forward scattering, an infinite set of even Bessel
functions contributes to the Thomson scattering probability at
θ = 90◦. As a result, the interference of orbital l symmetries,
and the energetic dependency in (6) define the angular
anisotropy effect (see Table I) for the Rayleigh scattering of
two XFEL photons by an atom.

According to Fig. 2(b), scattering resonances are buried
within the scattering spectrum structures, which replicate the
form of Fano autoionization profiles [11] for the angular
anisotropy parameter in the He double photoexcitation cross
section ([12] and references therein). However, Rayleigh
scattering of two photons by an atom shows a different physical
mechanism for the appearance of such structures. In particular,
these structures are not due to the electrostatic mixing between
the continuous spectrum wave functions and the autoionization
states buried in them. These structures appear because of the
interference in (6) of the probability amplitudes of scattering
through ionization states with the real parts [see function Pm
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in (8)] of the probability amplitudes of scattering through
excitation states.

In concluding this section, let us note the following. The
process under investigation can be physically interpreted as
a process of photon-photon scattering [via virtual excitation
(ionization) of the atom]. Within the framework of quan-
tum electrodynamics, the attempt for theoretical description
of photon-photon scattering (via virtual excitations of the
electron-positron vacuum) has led to the discovery of correc-
tions (nonlinear in the electromagnetic field) to the classical
electrodynamics Lagrangian (see Ref. [13] and references
therein). There is interest in setting up the problem of searching
for similar corrections that rely on the atomic nature of
the medium through which laser radiation is propagating.
Full photon-photon scattering cross section via quantum
electrodynamics vacuum even for relativistic photon energies
(≈1 MeV) constitutes a small (and so far not experimentally
measured) value ∼3 × 10−30 cm2 [14]. However, for the case
of photon-photon scattering via an atomic medium the process
cross section might be quite observable (given the expected
brightness of XFEL radiation [1]) even for nonrelativistic
XFEL-photon energies. For example, for N ≈ 1026 photons
in the x-ray pulse, the observable triply differential Rayleigh
scattering cross section with ω = 250 eV, ω1 = 268.93 eV,
and θ = 90◦ (see Tables I and II), due to the theorem of addition
of probabilities of disjoint events [15], takes a quite measurable
value of C2

Nσ
(3)
⊥ ≈ 0.5 (cm2 eV−1 sr−2).

IV. CONCLUSIONS

We formulated a nonrelativistic quantum theory for the
process of Rayleigh (elastic) scattering of two XFEL photons
by a free atom. With the He atom as an example, we obtain the
absolute values and the forms of the triple differential scatter-
ing cross section. For the suggested experimental scheme we
find that (i) with largest probability, the incident photon energy
is redistributed into two starkly highlighted regions for the
scattered photons ω1 ∼ ω ± I1s and (ii) the leading structures
in the spectrum are the giant scattering resonances due to
virtual excitations of the atom into discrete spectrum states. At
the same time, the cross section does not become zero even for
photons with ω1,2 = ω (Thomson scattering). Thus, Rayleigh
scattering of two XFEL photons by a free atom is accompanied
by a quantum effect of spontaneous creation (annihilation)
of virtual ionization states of the atom. We also establish
the effect angular anisotropy of the Rayleigh scattering—
the scattering probability increases as the scattering angle
decreases.

The obtained results are important, first of all, for the case
of scattering of two XFEL photons by a many-electron atom
(multicharge positive atomic ion) with large values of Inl

energies of ionization thresholds for deep and intermediate
nl shells. We note here that for many-electron atoms (or
atomic ions) in (6) there is an additional summation (quantum
interference of the scattering probability amplitudes) over
all of the nl � F core shells. The corresponding analytical
representations for the Q function can be obtained by the
methods of Appendix B, and are not given in this paper. In
this case, hot photons with energy ω1 ∈ (ω + Inl ; 2ω) will
be created within the Rayleigh scattering process. Therefore,

a many-electron atom (multicharge positive atomic ion) can
significantly increase the energy of the incident XFEL photon.
This statement assumes that 2ω 
 Inl (see Sec. II). Lifting this
restriction by accounting for partial probability amplitudes
in Figs. 1(c) and 1(d), going outside of the Hartree-Fock
single-configuration approximation framework, and taking
into account the transition probability amplitudes while in-
cluding operator (4) and the completeness of the intermediate
scattering xl states are all subject of future investigations.
Also of interest is the generalization of this work’s results
for the processes of Rayleigh scattering of n (n � 1) XFEL
photons by a free atom (atomic ion) with the creation of m

(m � 1) scattered photons. It should be expected that in this
case too, the small scattering cross section of a single atom
(atomic ion) will be compensated by a large binomial factor in
the observed differential scattering cross section Cn

Nσ (2m−1).
Of course, Furry and Landau-Yang theorems [16] dictate that
n + m = 2g, where g is a positive integer (g � 1).
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APPENDIX A

The total probability amplitude for process (1) in the
second order of quantum mechanical perturbation theory over
the interfering scattering states X1 and X2 [see Figs. 1(a)
and 1(b)] has the following form in the Dirac notation:

�ij ≡ � =
∑
m

∑
x>F

∑
MT

W
(m)
ix W

(m)
xj

Ei − E(Xm)
, (A1)

W
(m)
ix = 〈i|Ŵ |Xm〉. (A2)

Here, we define the full wave functions of the initial |i〉 =
|0; ωω〉, intermediate |Xm〉 = |1sxl(MT ); ωωm〉, and final
|j 〉 = |0; ω1ω2〉 scattering states, E is full Hartree-Fock
scattering state energies, T = LSJ is a term, and M is a
projection of the full angular momentum J of the excitation
(ionization) state of the atom. Taking into account the structure
of the contact transition operator (3), the expression for Â

operator of the electromagnetic field in the second quantization
representation [17], and the factoring of full wave functions
of the scattering state into a product of atomic and photon
components, we obtain (5) from (A1) and (A2).

Here we note three things. First. The infinite sum over
the states of the discrete spectrum in (A1) is replaced by
a finite sum. Thus, the requirement of completeness of the
set [3] of virtual states of excitation and ionization of the
atom is violated. Moreover, together with the neglecting of
operator (4), the loss of completeness violates local gauge
invariance of the scattering cross section (11). An example
of an analytic solution for the problem of building such a set
is given in a recent paper [18] (the concept of an expanded
infinite-dimensional Hilbert space). However, the problem of
accounting for such a set in (A1) remains open. As a result,
in (A1) we conducted direct summation (integration) over
the xl states taking into account the finite number of the
discrete spectrum states only (see Table II). An alternative to
direct summation (integration) is the method of correlation
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functions used, for example, in the relativistic theory of
Rayleigh scattering of a photon by an atom (Kane et al. [2]).
In this method, the problem of the construction and direct
summation (integration) for the full set of xl-states does not
occur. However, in the nonrelativistic Hartree-Fock single
configuration approximation for wave functions of electron
states and the x-ray energy photons incident on the atom, it is
problematic to solve the integral-differential equations for an
infinite [l ∈ [0; ∞)] set of correlation functions. This problem
also remains open. Second. The region of integration over
the states of the continuous spectrum is represented by the
union of regions AN and BN = [x2N+1; ∞). The region AN ,
in turn, is represented by the joining of subdomains �i =
[x2i−1,x2i ,x2i+1], where i = 1,2, . . . ,N , x1 = 0,x2N+1 
 I1s .
In each subdomain �i , a parabolic interpolation of the
numerator in (A1) is assumed. In region BN , an asymptotic
behavior of the form (aNx + bN )2x−4 is adopted for the
numerator of the fraction in (A1), where aN -, bN - are the
parameters of the splicing (Hopersky and Yavna [2], and
references therein). During the summation over the states of the
discrete spectrum and the analytical integration of the states of
the continuous spectrum in the singular areas for the scattered
photon energies ω1 ∈ (0; ω − I1s2s] (I1s2s = E(1s2s) − E(0))
and ω1 ∈ [ω + I1s2s ; 2ω), the energy denominators in (A1)
are modified by transformation (8). The types of integrals
emerging in this case are expressed in terms of elementary
functions [19]. Third. The cross section 1s → xp [the dipole
approximation for operator (4)] of the He atom photoionization
in the single-configuration Hartree-Fock approximation with,
for example, the energy of the absorbed photon being 100 eV,
is equal to 0.304 Mb [20] and is significantly (∼23%) different
from the experimental value of 0.393 ± 0.012 Mb [21]. This
fact (see also Refs. [12,22] and references therein) indicates the
need for a treatment beyond the one-electron approximation
[4] in the description of wave functions of the transition
states in (A1), as well as for accounting of nondipole effects
involving operator (4) in the third (and higher) order of
the perturbation theory for the process probability amplitude
(1). Of course, the difference between the theory and the
experimental results cannot serve as a reliable measure of
the accuracy of the nonrelativistic Hartree-Fock calculations
of this work. Such an evaluation occurs only after obtaining
the solution to the problem (referred to in Sec. II) of
restoring the local gauge invariance for the cross section
(11) and taking into account the [important, especially for
light atoms] configuration interaction effects (Jucys [22])
in the description of the wave functions of the atomic
states.

APPENDIX B

According to (A1), the Q function has the following form:

Q =
∑
T M

〈0|L+
1 |lT M〉〈0|L−

2 |lT M〉, (B1)

L±
m =

N∑
n=1

exp{±i(�qm · �rn)}, (B2)

where we define the full wave functions of the ini-
tial |0〉 = |0; 1S0(J0 = M0 = 0)〉 and intermediate |lT M〉 =

|1sxl; T M〉 atomic states, and assume an approximation of
the energetic denominator in (A1) being independent of
quantum numbers MT . Let us take into account the following
mathematical facts [17].

(i) Expansion of the exponential into a double series over
the spherical functions,

exp{i(�qm · �rn)} =
∞∑
t=0

it [t]jt (qmrn)
t∑

p=−t

Spt
mn, (B3)

Spt
mn = (−1)pC

(t)
−p(�eqm

)C(t)
p (�en), (B4)

where �eqm
(�en) is the unit vector in the direction of �qm (�rn),

rn = |�rn| and [t] = 2t + 1.
(ii) The Wigner-Eckart theorem (δαβ is the Weierstrass-

Kronecker symbol),

〈0|V (t)
p,m|lT M〉 = (−1)J+M

(
0
∥∥V (t)

m

∥∥lT
)δJ t δM,−p√

[J ]
, (B5)

for the matrix element of the p-multipole contact transition
operator:

V (t)
p,m =

N∑
n=1

C(t)
p (�en)jt (qmrn). (B6)

(iii) The summation of spherical functions theorem,

t∑
p=−t

C
(t)
−p(�eq1 )C(t)∗

−p (�eq2 ) = Pt (cos �), (B7)

Pt (cos �) =
t∑

j=0

ajt cos[(t − 2j )�], (B8)

ajt = 1

4t
C

j

2jC
t−j

2t−2j , (B9)

Cμ
α = α!

μ!(α − μ)!
, (B10)

cos � = cos ξ1 cos ξ2 + sin ξ1 sin ξ2 cos(ϕ1 − ϕ2), (B11)

cos ξm = (�k · �qm)

kqm

, k = |�k|, (B12)

where the Legendre polynomial is represented as a finite
sum (B8) [23] and ξm ∈ [0; π ], ϕm ∈ [0; 2π ] is the spherical
angles of vector �eqm

. For the case of coplanar and symmetrical
scattering (B11) takes the form:

cos � = 1 − (β1 + β2) cos θ + β1β2 cos(2θ )√(
1 + β2

1 − 2β1 cos θ
)(

1 + β2
2 − 2β2 cos θ

) .

(B13)

In particular, with θ = 0◦ and 180◦ expression (B13) takes
the forms of cos � = −1 ⇒ Pt (−1) = (−1)t and cos � =
1 ⇒ Pt (1) = 1, correspondingly.
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Then, for (B1) we obtain:

Q = Pl(cos �)
∑
T

[J ]
(
0
∥∥V

(J )
1

∥∥lT
)(

0
∥∥V

(J )
2

∥∥lT
)
. (B14)

Finally, applying equation (29.5) of Ref. [24] to the reduced
matrix element in (B5),

(
0
∥∥V (J )

m

∥∥lT
) = (−1)l−J �

√
2[L,J ]

(
0
∥∥C(J )

∥∥l
)
R

(m)
J , (B15)

� = (s2(1S)‖s(2S)s)

{
0 0 0
L l J

}{
0 0 0
J L J

}
,

(B16)

also taking into account the qualities for the reduced matrix
element of the spherical function,

(0‖C(J )‖l) = δlJ , (B17)

the fractional parentage coefficient,

(s2(1S)‖s(2S)s) = 1, (B18)

and the Wigner 6j symbol,{
a b 0
d c f

}
= (−1)a+d−f δabδcd√

[c,b]
, (B19)

in the standard phase system from (B14) we obtain the Q

function from (7). In (7) for the spherical Bessel function, the
following integral Plana-Poisson representation is taken [25]:

jl(x) = 1

l!

(
x

2

)l ∫ 1

0
(1 − z2)l cos (xz) dz, x ∈ [0; ∞),

(B20)

jl(0) = {1,l = 0; 0,l > 0}. (B21)
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