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The tune-out wavelength at 413 nm for the 2 3S1 state of helium is expected to be sensitive to finite nuclear
mass, relativistic, and quantum electrodynamic (QED) corrections, which provides a scheme for testing atomic
structure theory [J. Mitroy and L.-Y. Tang, Phys. Rev. A 88, 052515 (2013)]. In the present work, a large-
scale full-configuration-interaction calculation based on both the Dirac-Coulomb-Breit Hamiltonian and the
nonrelativistic Hamiltonian is performed for the dynamic dipole polarizabilities of helium in the 2 3S1 state. The
tune-out wavelengths for the magnetic sublevels MJ = 0 and MJ = ±1 are determined to be 413.0801(4) nm
and 413.0859(4) nm, respectively, at sub-ppm accuracy, including finite nuclear mass and relativistic corrections.
Our value for the MJ = 1 sublevel agrees with the measured value of 413.0938(20)(9) nm [B. M. Henson et al.,
Phys. Rev. Lett. 115, 043004 (2015)] at the level of 19 ppm. The discrepancy between these two values is mainly
due to the uncalculated QED contribution. Our current value confirms quantitatively the prediction of Mitroy and
Tang. Also, for the state of 2 3S1 we find that the corrections due to finite nuclear mass and relativistic effects to
the static dipole polarizability of 315.7227(4)a3

0 are about 600 ppm and 310 ppm, respectively, which are about
1.4 and 5.4 times larger than those for the ground state. A measurement at the level of 10 ppm for the static dipole
polarizability of helium in 2 3S1 can be used to determine the transition matrix element between 2 3S and 2 3P at
the level of 10−5.
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Atomic helium is one of the simplest Coulomb three-body
systems. The accurate investigation of its energy levels can be
used to determine the fine-structure constant [1,2], to extract
the nuclear charge radius [3,4], and to test QED theory [5,6].
For theoretical calculations of energy levels, the most popular
approach starts with solving the eigenvalue problem for the
nonrelativistic Hamiltonian by using the correlated basis sets;
and then relativistic and QED corrections are added by using
perturbation theory [7,8]. The current comparison between
theory and experimental measurements for the ground-state
energy has reached a level of ppb [5,9]. In contrast to this,
very few experimental determinations of atomic transition
rates have a precision of 0.1% or better [10]. At present,
the most precise calculation among atomic properties that
are related to atomic transition matrix elements is the static
dipole polarizability of helium in the ground state [7,8,11],
where the measured precision has reached 9.1 ppm. However,
it is difficult to further improve this precision, since a
measurement of polarizability depends on modulating
precisely the electric field strength.

The tune-out wavelength λt is the wavelength at which
the dynamic dipole polarizability for a state of interest is
zero [12,13], which means that the atom is basically uneffected
by the irradiating laser. Since the position of the tune-out
wavelength does not depend on the details of laser power
or beam profile, a measurement of the tune-out wavelength
can have higher accuracy than a measurement of the static
dipole polarizability. For example, the tune-out wavelength
of potassium has been measured to an accuracy of 2 ppm,
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which opens the way to determine precisely the oscillator
strength ratio for the 4s → 4p spin-orbit doublet [14,15].
Recently the measurement of the tune-out wavelength for the
ground-state hyperfine of rubidium has been reported at a level
of sub-ppm [16].

In 2013 Mitroy and Tang [13] pointed out that the tune-
out wavelength around 413 nm for the helium metastable
2 3S1 state can provide a nonenergy test of QED theory.
In 2015 Baldwin’s group [17] measured the tune-out wave-
length of that state at the MJ = 1 magnetic sublevel to
be 413.0938(9stat)(20syst) with the experimental accuracy of
5 ppm. This measured value is more accurate than the
theoretical calculation of 413.02(9) nm [13] by two orders of
magnitude. Recently we used the nonrelativistic configuration
interaction (NRCI) method to obtain the tune-out wavelength
of 413.038 28(3) nm [18] for the case of infinite nuclear mass.
Compared to the experimental result, there exists a discrepancy
of 134 ppm for the NRCI value [18], which has motivated us to
do more detailed theoretical investigation on the finite nuclear
mass (FNM), relativistic, and QED effects in the tune-out
wavelength more rigorously.

The tune-out wavelength is extracted from the calculation
of dynamic dipole polarizabilities, which depend on the fun-
damental atomic structure information of energies and wave
functions. Recently Piszezatowski et al. computed the dynamic
dipole polarizability of 1.391 811 41 a3

0 at the He-Ne laser
wavelength for the ground state of helium by using the pertur-
bation method [19]. The accuracy of their result is 0.1 ppm.
Since the He-Ne laser wavelength of 632.9908 nm is far
from any 1 1S → n 1P resonance transition lines, the dynamic
dipole polarizability can be efficiently calculated from a power
series expansion in terms of the laser wavelength [20]. How-
ever, for the 2 3S1 state of He, the tune-out wavelength around
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413 nm is very near the excitation threshold of 389 nm relative
to the 1s3p 3P state. Therefore the power series expansion
method of Refs. [19,20] cannot be applied. Thus in the present
work, we carry out the relativistic configuration-interaction
(RCI) calculations for the dynamic dipole polarizabilities of
He in the 2 3S1 state by using the full-configuration-interaction
method based on B-spline functions to solve the eigenvalue
problems of the Dirac-Coulomb-Breit (DCB) Hamiltonian.
FNM correction to the tune-out wavelength is extracted from
the NRCI calculation. Combining the RCI and NRCI results,
we can determine the FNM and relativistic corrected tune-out
wavelength around 413 nm and the static dipole polarizability.

The RCI calculation is performed to solve the eigenvalue
problem of the DCB Hamiltonian:

HDCB =
2∑

i=1

[
cαi · pi + βmec

2 − 2

ri

]
+ 1

r12
+ HB (1)

with

HB = − 1

2r12
[α1 · α2 + (α1 · r̂12)(α2 · r̂12)], (2)

where me is the electron mass, c is the speed of light [21], pi

is the momentum operator, αi and β are 4×4 Dirac matrices,
r̂12 is the unit vector of the electron-electron distance r12, and
HB is the Breit operator with the retardation effect excluded.
When HB is neglected from Eq. (1), the Hamiltonian of Eq. (1)
becomes the Dirac-Coulomb (DC) Hamiltonian.

The wave function ψij (JMJ ) of helium is expanded as a
linear combination of the configuration-state wave functions
φij (JMJ ), which are constructed by single-electron wave
functions with the orbital quantum numbers �i and �j less than
the maximum number of partial wave �max. The configuration-
state wave functions are constructed by using the Notre Dame
basis set [22,23] with N B-spline functions to solve the single-
electron Dirac equation. The exponential knot distribution for
the B splines is the same as Eq. (24) of our previous paper [18].
Different from the most of RCI calculations [24,25], we do not
impose any truncation for the CI basis sets.

The NRCI calculation is performed by applying the
B-spline method to solve the eigenvalue problem for the
following nonrelativistic Hamiltonian:

H = −
2∑

i=1

[∇2
i

2μ
+ 2

ri

]
+ 1

r12
− 1

m0
∇1 · ∇2, (3)

where μ = mem0/(me + m0) is the reduced mass of the
electron and m0 = 7294.2995361me is the nucleus mass of
4He [21]. We adopt the same computational procedure as
our previous work [18] except that the mass-polarization term
−∇1 · ∇2/m0 is included here.

The dynamic dipole polarizability for the magnetic sublevel
MJg

at the laser frequency ω can be expressed as

α1(ω) = αS
1 (ω) + (

3M2
Jg

− 2
)
αT

1 (ω), (4)

where αS
1 (ω) and αT

1 (ω) are, respectively, the dynamic scalar
and tensor parts of the polarizability, which can be expressed as
the sum over all intermediate states, including the continuum:

αS
1 (ω) =

∑
n�=g

f (1)
gn

(	Egn)2 − ω2
, (5)

αT
1 (ω) = 3

∑
n�=g

(−1)1+Jn

{
1 1 2

1 1 Jn

}
f (1)

gn

(	Egn)2 − ω2
. (6)

In the above, the dipole oscillator strength f (1)
gn is

f (1)
gn = 2	Egn|〈2 3S1‖T1‖NnJn〉|2

9
, (7)

where T1 = ∑2
i=1 riC

(1)(r̂i) is the electronic dipole transition
operator, |NnJn〉 is the nth intermediate eigenfunction with
principal quantum number Nn, angular momentum quantum
number Jn, and energy En, and 	Egn = En − Eg is the
transition energy between the initial state and the intermediate
state.

Table I presents the RCI energies for some low-lying states,
which are relevant to the dynamic dipole polarizability of the

TABLE I. Comparison of energies from the RCI and NRCI calculations for some low-lying states. The FNM column is the finite nuclear
mass corrections extracted from the NRCI values of ∞He and 4He, and the QED column lists the QED corrections adopted from Ref. [27]. The
seventh column lists the total energies, which include the FNM, relativistic, and QED corrections. The experimental data are taken from the
National Institute of Standards and Technology (NIST) tabulation [28]. The numbers in parentheses are computational uncertainties. In atomic
units.

State RCI NRCI for ∞He NRCI for 4He FNM QED [27] Total Experiment

2 3S1 −2.175 344 5(2) −2.175 229 36(2) −2.174 930 17(2) 0.000 299 19(4) 0.000 016 72 −2.175 028 6(2) −2.175 028 942
2 3P2 −2.133 269 4(2) −2.132 969 9(2) −2.132 970 359
2 3P1 −2.133 269 1(2) −2.133 164 17(2) −2.132 880 60(2) 0.000 283 57(4) 0.000 015 91 −2.132 969 6(2) −2.132 970 010
2 3P0 −2.133 264 6(2) −2.132 965 1(2) −2.132 965 509
3 3P2 −2.058 187 4(4) −2.057 891 8(4) −2.057 891 998
3 3P1 −2.058 187 3(4) −2.058 081 08(2) −2.057 801 48(2) 0.000 279 60(4) 0.000 016 05 −2.057 891 7(4) −2.057 891 898
3 3P0 −2.058 186 1(5) −2.057 890 5(5) −2.057 890 665
4 3P2 −2.032 430 8(5) −2.032 137 2(5) −2.032 137 409
4 3P1 −2.032 430 8(5) −2.032 324 35(2) −2.032 046 81(2) 0.000 277 54(4) 0.000 016 08 −2.032 137 2(5) −2.032 137 368
4 3P0 −2.032 430 3(5) −2.032 136 7(5) −2.032 136 865
2 1P1 −2.123 947(2) −2.123 841 6(2) −2.123 544 2(1) 0.000 297 4(3) 0.000 016 11 −2.123 634(2) −2.123 638 389
3 1P1 −2.055 252(2) −2.055 145 9(2) −2.054 862 2(2) 0.000 283 7(4) 0.000 016 10 −2.054 952(2) −2.054 954 059
4 1P1 −2.031 176(2) −2.031 069 4(2) −2.030 790 2(2) 0.000 279 2(4) 0.000 016 10 −2.030 881(2) −2.030 881 359
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TABLE II. Comparison of reduced matrix elements for some transitions of 2 3S1 → n 1,3P of helium. The values in the FNM column are
extracted from the NRCI calculations for both ∞He and 4He, and they represent the finite nuclear mass corrections to the reduced matrix
elements, and the sixth column lists the total reduced matrix elements with the FNM and relativistic corrections included. The values from
perturbation theory (PT) for the dipole allowed and forbidden transitions are respectively from Refs. [29] and [30]. The numbers in parentheses
represent computational uncertainties. In atomic units.

Transition RCI NRCI for ∞He NRCI for 4He FNM Total PT for 4He

2 3S1 → 2 3P0 2.531 323(2) 2.531 782(2) 2.531 375
2 3S1 → 2 3P1 4.384 31(2) 4.384 432 5(4) 4.384 891 3(3) 0.000 458 8(7) 4.384 77(2) 4.384 692
2 3S1 → 2 3P2 5.660 13(2) 5.660 59(2) 5.660 605
2 3S1 → 3 3P0 0.524 23(2) 0.524 78(2) 0.524 549
2 3S1 → 3 3P1 0.908 17(2) 0.908 502 9(3) 0.909 049 1(2) 0.000 546 2(5) 0.908 72(2) 0.908 546
2 3S1 → 3 3P2 1.172 46(2) 1.173 01(2) 1.172 934
2 3S1 → 4 3P0 0.300 14(2) 0.300 39(2) 0.300 281
2 3S1 → 4 3P1 0.519 93(2) 0.520 078 8(3) 0.520 328 0(2) 0.000 249 2(5) 0.520 18(2) 0.520 103
2 3S1 → 4 3P2 0.671 24(2) 0.671 49(2) 0.671 450
2 3S1 → 2 1P1 0.001 27(2) 0.001 262
2 3S1 → 3 1P1 0.000 12(2) 0.000 121

2 3S1 state. The NRCI energies for ∞He and 4He are also listed
in the third and fourth columns. For the RCI energies, our
values for the triplet states have seven significant digits. For
the singlet states, the present RCI energies have converged to
the sixth significant digit. For the NRCI energies, our results
have eight and seven significant digits for the triplet and singlet
states, respectively. From the RCI energies of 2 3P0,1,2 state, we
can obtain the fine-structure splittings of ν01 = 29 609 MHz
and ν02 = 31 582 MHz, which may compare to the values of
29 564 MHz and 31 881 MHz [26] that include the leading-
order relativistic correction. By comparing the results for
∞He and 4He, we can extract the FNM corrections to the
energies listed in the fifth column. Finally by adding the
QED corrections [27] listed in the sixth column and the FNM
to our RCI values we obtain the total energies listed in the
seventh column. We can see that our total energies are in good
agreement with the NIST energies [28].

Table II lists some reduced matrix elements for 2 3S1 →
n 1,3P transitions in helium. The last column contains the
perturbation values of Refs. [29,30] where both the FNM

and the leading-order relativistic corrections are included. In
the last column, the results for the dipole allowed transitions
are derived from Ref. [29], and the values for the dipole
forbidden transitions are converted by using the oscillator
strengths fα and the transition energies 	εα in Table 6 of
Ref. [30]. It is seen that our NRCI results for ∞He and 4He
have six to seven significant digits, and our RCI values have
four to six significant digits. If we add the FNM correction
of 0.0004588(7) to the RCI value of 4.38431(2) for the
2 3S1 → 2 3P1 transition, we obtain a value 4.38477(2), which
has five significant digits compared to the value 4.384692 [29]
using perturbation theory. The detailed comparison for the
energies and matrix elements listed in Tables I and II has
shown that the present RCI and NRCI calculations for the
dynamic dipole polarizability and the tune-out wavelength of
helium are reliable.

Table III shows a convergence study for the static dipole
polarizability and the tune-out wavelength for the MJ = 0
sublevel of 2 3S1 obtained from the RCI calculations under the
DC Hamiltonian. The numbers of configurations for the 3S1,

TABLE III. Convergence of the static dipole polarizability α1(0) (in a3
0 ) and the tune-out wavelength λt (in nm) under the DC Hamiltonian

for the 2 3S1(MJ = 0) state of helium as the number of B-splines N increases and the number of partial wave �max is fixed at 5, and as the number
of partial wave �max increases and the number of B splines N is fixed at 30. N3S1

, N3P0
, N1,3P1

, and N3P2
are the numbers of configurations for the

3S1, 3P0, 1,3P1, and 3P2 symmetries, respectively. The numbers in parentheses in the extrapolated values represent computational uncertainties.

�max = 5

N (N3S1
, N3P0

, N1,3P1
, N3P2

) α1(0) λt

30 (9285, 4500, 12 600, 15 300) 315.542 767 16 412.990 357 56
35 (12 670, 6125, 17 150, 20 825) 315.542 477 89 412.990 248 23
40 (16 580, 8000, 22 400, 27 200) 315.542 403 44 412.990 219 55
Extrap. 315.542 38(2) 412.990 21(1)

N = 30

�max (N3S1
, N3P0

, N1,3P1
, and N3P2

) α1(0) λt

5 (9285, 4500, 12 600, 15 300) 315.542 767 26 412.990 357 60
6 (11 055, 5400, 15 300, 18 900) 315.543 805 18 412.991 398 79
7 (12 825, 6300, 18 000, 22 500) 315.544 149 55 412.991 768 97
Extrap. 315.5443(2) 412.9919(2)
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TABLE IV. Convergence study of the tune-out wavelength λt (in nm) under the DCB Hamiltonian for the 2 3S1 state of He as the number
of partial wave �max increases and the number of B splines N is fixed at 30. N3S1

, N3P0
, N1,3P1

, and N3P2
are the numbers of configurations

for the 3S1, 3P0, 1,3P1, and 3P2 symmetries, respectively. The numbers in parentheses of the extrapolated values represent computational
uncertainties from finite �max. The last line lists the recommended values where the uncertainties are doubled due to finite sizes of CI
basis sets.

�max (N3S1
, N3P0

, N1,3P1
, N3P2

) 2 3S1(MJ = 0) 2 3S1(MJ = ±1)

3 (5745, 2700, 7200, 8100) 412.957 203 22 412.963 070 12
4 (7515, 3600, 9900, 11 700) 412.974 017 84 412.979 876 96
5 (9285, 4500, 12 600, 15 300) 412.977 620 94 412.983 476 59
6 (11 055, 5400, 15 300, 18 900) 412.978 662 92 412.984 516 96
7 (12 825, 6300, 18 000, 22 500) 412.979 032 83 412.984 886 06
Extrap. 412.9792(2) 412.9850(2)
Rec. 412.9792(4) 412.9850(4)

3P0, 1,3P1, and 3P2 symmetries are also listed as N3S1 , N3P0 ,
N1,3P1 , and N3P2 , respectively. It is seen that both the static
dipole polarizability and the tune-out wavelength converge
more rapidly as the number of B splines N increases and at the
same time the number of partial-wave �max is fixed at five, than
the case when �max increases and N is fixed at 30. When �max is
fixed, the extrapolated values of α1(0) and λt are, respectively,
315.54238(2)a3

0 and 412.990 21(1) nm, which are one order
of magnitude more accurate than the extrapolated results of
315.5443(2)a3

0 and 412.9919(2) nm when N is fixed. Thus in
the following calculations, we will fix N at 30 and increase
�max to test convergence for the dynamic dipole polarizability
and the tune-out wavelength. The incompleteness of the basis
sets due to the truncation of N will be combined with the
truncation of �max to estimate the uncertainties in the final
recommended values. The same convergence style exists for
the MJ = ±1 sublevels, and the same extrapolated values of
α1(0) = 315.5443(2)a3

0 and λt = 412.9919(2) nm with N =
30 are obtained for the MJ = ±1 sublevels, since the tensor
part of the polarizability makes small contribution to the total
dynamic polarizability in Eq. (4).

Table IV is a convergence study for the tune-out wavelength
as �max increases under the DCB Hamiltonian for the magnetic
sublevels MJ = 0 and MJ = ±1 in the state of 2 3S1 of helium.
N3S1 , N3P0 , N1,3P1 , and N3P2 represent the total numbers of
configurations for the 3S1, 3P0, 1,3P1, and 3P2 symmetries,
respectively. According to the convergence pattern, we obtain
the extrapolated values as �max increases to infinity. In order to
estimate the effect from the incompleteness due to truncation
of B splines, we double the uncertainties in the recommended
values listed in the last line of Table IV. The RCI values
under the DCB Hamiltonian for the MJ = 0 and MJ = ±1
states are, respectively, 412.9792(4) nm and 412.9850(4) nm,
which have six significant digits. Compared to the DC value
of 412.9919(2) nm in Table III, we can see that the Breit
interaction reduces the tune-out wavelength by 13 picometers
for MJ = 0 and by 7 picometers for MJ = ±1.

Table V lists the tune-out wavelength obtained from the
NRCI and RCI methods, as well as a comparison with
published values. From the NRCI values for ∞He and 4He,
the FNM correction to the tune-out wavelength is determined
to be 0.10091(5) nm. After adding this correction to the
RCI values, we obtain the total tune-out wavelengths of

413.0801(4) nm and 413.0859(4) nm for the sublevels of MJ =
0 and MJ = ±1, respectively. The averaged value over the
magnetic sublevels is λt = 413.0845(4) nm with an accuracy
of sub-ppm. Compared to the hybrid value [13], which is
obtained by incorporating Hylleraas matrix elements for the
2 3PJ and 3 3PJ states and the core-polarization model matrix
elements for the rest transitions, our averaged result improves
the value of Mitroy and Tang [13] by two orders of magnitude.
Compared the present value of 413.0859(4) nm for the MJ = 1
sublevel with the measured value of 413.0938(9stat)(20syst)
nm, the agreement is at the level of 19 ppm. The existing
discrepancy between the two values is from the uncalculated
QED correction.

In Table V we present a comparison for the static dipole
polarizability of helium in the 2 3S1 state. It is seen that
our NRCI value for ∞He is in perfect agreement with the
result from the Hylleraas calculations [32] and is more
accurate than the NRCI result using Slater basis sets [31].
Comparing our NRCI values for both ∞He [18] and 4He, the
FNM correction increases the α1(0) by 0.1889(4)a3

0 . After
adding this correction to our RCI values, we obtain the
values of 315.7165(4)a3

0 and 315.7248(4)a3
0 for the MJ = 1

and MJ = ±1 sublevels, respectively. The averaged value
of 315.7227(4)a3

0 over the magnetic sublevels is also listed

TABLE V. Comparison of the tune-out wavelength (in nm) and
the static dipole polarizability α1(0) (in a3

0 ) for the 2 3S1 state of
helium. The numbers in parentheses are computational uncertainties.

Method λt (nm) α1(0) (a.u.)

NRCI for ∞He [18] 413.038 28(3) 315.6315(2)
NRCI for 4He 413.139 19(2) 315.8204(2)
Correction from FNM 0.100 91(5) 0.1889(4)
RCI for 2 3S1(MJ = 0) 412.9792(4) 315.5276(2)
RCI for 2 3S1(MJ = ±1) 412.9850(4) 315.5359(2)
Total for 2 3S1(MJ = 0) 413.0801(4) 315.7165(4)
Total for 2 3S1(MJ = ±1) 413.0859(4) 315.7248(4)
Averaged over MJ 413.0845(4) 315.7227(4)
Hybrid [13] 413.02(9) 315.462
Expt. [17] 413.0938(9stat)(20syst)
Slater NRCI [31] 315.611
Hylleraas [32] 315.631 468(12)
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in the table for a direct comparison. We can see that the
present averaged value is 0.023% larger than the hybrid
value of 315.462a3

0 . Compared with previous experimental
measurements [33,34], our averaged value is much more
accurate than the measured result 322(6.8)a3

0 by four orders of
magnitude.

Meanwhile, we find that for the metastable 2 3S1 state, the
FNM and relativistic corrections to α1(0) are, respectively,
600 ppm and 310 ppm. However, for the ground-state helium,
the corresponding corrections are 447 ppm and 58 ppm [7,8].
This means that the FNM and relativistic corrections to the
static dipole polarizability of 2 3S1 are, respectively, 1.4 and
5.4 times larger than those for the ground state. Therefore a
precise measurement of the static dipole polarizability of 2 3S1

can test atomic structure theory related to the transition matrix
elements.

Furthermore, since the 2 3S → 2 3P transition contributes
about 304.8351a3

0 to the static dipole polarizability of
315.8204(2)a3

0 for the 2 3S state of 4He, the static dipole
polarizability can be expressed as

α1(0) = 2X2

3	E2 3S→2 3P

+ αrem(0). (8)

Here X = 〈2 3S‖T1‖2 3P 〉 is the reduced matrix element,
αrem(0) is the contribution from all the 2 3S → n 3P (n �
3) transitions, which can be calculated accurately as
10.9670(8)a3

0 by replacing the first nine energies and matrix
elements of our RCI values with the NIST energies and
Hylleraas matrix elements. Since the accuracy of 	E2 3S→2 3P

is better than 0.05 ppb [35], we can derive the following rela-
tionship between the relative uncertainty for X and α1(0) from
Eq. (8):

δX

X
	 1

2

δ[α1(0) − αrem(0)]

[α1(0) − αrem(0)]
. (9)

At the present precision of αrem(0), we have

δX

X
	 1

2

δα1(0)

α1(0)
+ 10−6. (10)

If the experimental measurement accuracy for α1(0) of the 2 3S

state can reach 10 ppm, which is possible using modern atom
interferometry technique [14], the transition matrix element
of 〈2 3S‖T1‖2 3P 〉 would be determined at the level of 10−5

according to Eq. (10).
In summary, the tune-out wavelengths of 413.0801(4) nm

and 413.0859(4) nm for the magnetic sublevels MJ = 0 and
MJ = ±1, respectively, in the state of 2 3S1 of helium have
been determined by combining the RCI and NRCI calcu-
lations, including the FNM and relativistic corrections. The
present value for the MJ = 1 sublevel reduces the discrepancy
between the previous theoretical calculation and experimental
measurement from 134 ppm to 19 ppm. The existing 19 ppm
discrepancy between theory and experiment for the tune-out
wavelength calls for further QED calculation. In addition, we
have found that the FNM and relativistic corrections to the
static dipole polarizability of the 2 3S1 state of helium are
about 1.4 and 5.4 times larger than those for the ground state.
Therefore high-precision measurement of the static dipole
polarizability of helium in 2 3S1 will not only provide a test on
atomic structure theory, but also can determine the transition
matrix element of 2 3S → 2 3P at a level better than 10−4.
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