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Dynamics of observables and exactly solvable quantum problems: Using time-dependent
density-functional theory to control quantum systems
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We use analytic (current) density-potential maps of time-dependent (current) density-functional theory
[TD(C)DFT] to inverse engineer analytically solvable time-dependent quantum problems. In this approach the
driving potential (the control signal) and the corresponding solution of the Schrödinger equation are parametrized
analytically in terms of the basic TD(C)DFT observables. We describe the general reconstruction strategy and
illustrate it with a number of explicit examples. First we consider the real space one-particle dynamics driven
by a time-dependent electromagnetic field and recover, from the general TDDFT reconstruction formulas, the
known exact solution for a driven oscillator with a time-dependent frequency. Then we use analytic maps of
the lattice TD(C)DFT to control quantum dynamics in a discrete space. As a first example we construct a
time-dependent potential which generates prescribed dynamics on a tight-binding chain. Then our method is
applied to the dynamics of spin-1/2 driven by a time-dependent magnetic field. We design an analytic control
pulse that transfers the system from the ground to excited state and vice versa. This pulse generates the spin flip
thus operating as a quantum NOT gate.
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I. INTRODUCTION

Exact analytic solutions of the Schrödinger equation have
always been of great methodological interest as they underlie
our intuitive understanding of quantum systems. Numerous
solutions of the stationary Schrödinger equation are known
since the early days of quantum mechanics [1]. However,
for a long time there were very few examples of analytic
solutions describing an evolution of a quantum system driven
by time-dependent external field, like solutions of the Landau-
Zener [2,3] and Rabi [4] problems, or the solution for a
driven harmonic oscillator [5,6] closely related to a so-called
harmonic potential theorem [7–9]. The interest in analytic
solutions to time-dependent quantum problems was renewed
with the emergence of quantum computing in which an
accurate control of qubit dynamics [10–12] and the state
preparation [13–15] is required. It has been shown that analytic
pulses in the quantum control can be used in the efficient design
of robust evolutions against errors in the system and pulse pa-
rameters [10,16–19], which explains the practical importance
of finding new solvable quantum problems and the popularity
of a few known pulses for the analytic control of two-level
systems [20–28]. In the past decade a number of new analytic
solutions to the Schrödinger equation have been constructed by
inverse engineering time-dependent Hamiltonians from given
dynamics of state vectors. We note that most of these studies
focus on dynamics of two-level systems [26,29–32] and a
few examples of three-level systems [33]. In the present work
we propose an alternative strategy of reconstructing time-
dependent driving potentials for analytically solvable quantum
problems. Our proposal employs the ideas and theorems
of time-dependent density-functional theory (TDDFT) and
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time-dependent current density-functional theory (TDCDFT)
[34–36].

Originally TDDFT and TDCDFT were developed as
an extensions of the static DFT [37] for addressing time-
dependent quantum many-body problems. The key statement
underlying this approach is a so-called mapping theorem that
establishes a one-to-one map from the time-dependent density
or current to the external driving potential. The existence
of this map implies that the knowledge of some properly
chosen one-particle observables (collective variables, such as
the density or the current) is sufficient to uniquely reconstruct
the corresponding conjugated driving fields, and, therefore, the
full wave function of the system. For a general many-particle
system the density-potential map is practically never known
explicitly. In some simple situations it can be constructed
numerically. For example, recently a numerical fixed-point
algorithm has been used to reconstruct a potential that produces
a prescribed time-dependent density in a model system [38,39].

Remarkably, for one-particle systems the density-potential
and the current-vector potential maps can be found explicitly
in a closed analytic form [40–44]. In the present work we
propose an application of the explicit one-particle TDCDFT
maps to design analytic control signals driving a system in
such a way that the prescribed behavior of the basic collective
variable, the current and/or the density, is reproduced. The
time dependence of the control signal and the dynamics of
the wave function are then parametrized in terms of the
physically intuitive observable. The analytic TDCDFT maps
are known both for a particle in the real continuum space and
for discrete, lattice (e.g., tight binding) systems. This allows
us to address, within a common scheme, control problems for
the real-space dynamics and for dynamics of discrete systems
with a finite-dimensional Hilbert space, such as a motion of
quantum particle on tight-binding lattices, or the dynamics of
a spin in the presence of a time-dependent magnetic field. To
illustrate our strategy of inverse engineering we will recover
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the known exact solution for a driven harmonic oscillator [5,6],
and present nontrivial examples of analytic control for a
particle on a finite 1D chain and for a spin-1/2 (qubit) system.

The structure of the paper is the following. In Sec. II we
present the general idea of reconstructing driving potentials
for solvable problems using analytic TD(C)DFT maps. In
Sec. III we use TDCDFT to construct solvable problems for
the real-space one-particle dynamics. As a particular example
we reconstruct the potential and the wave function generated
by a density evolution in a form of a time-dependent rescaling
of some initial distribution supplemented with a rigid shift in
space. The corresponding solution recovers the one for the
driven harmonic oscillator [5,6]. In Sec. IV the formalism for
discrete spaces is presented. In the first subsection we give an
explicit example for controlling motion of a particle on atomic
chain. In the second subsection the formalism is appied to a
spin-1/2 control that is isomorphic to the control problem for
a particle on a two-site lattice. Finally, in Sec. V we summarize
our results.

II. CONSTRUCTION OF SOLVABLE PROBLEMS VIA
TDDFT MAPS: THE BASIC IDEA

In the standard “direct” statement of a quantum mechanical
problem the Schrödinger equation determines evolution of the
wave function ψ(t) from the initial state ψ0 in the presence
of a given time-dependent external potential. Thus for a given
initial state the Schrödinger equation generates a map V �→ H
from the space V of external potentials to the Hilbert space
H. This direct map is shown schematically on Fig. 1(a).
Unfortunately, the solution of the time-dependent Schrödinger
equation, even for the simplest two-level systems, practically
always requires numerical calculations. Analytically solvable
time-dependent quantum problems is exceptionally rare.

(a)

(b)

FIG. 1. (a) Direct map from a trajectory in the space V of
potentials to the trajectory in the Hilbert space H, generated by the
time-dependent Schrödinger equation for a given initial state ψ0.
(b) TDDFT mappings between trajectories in the space N of
observables (densities or currents), space V of potentials, and the
Hilbert space H. For a given initial state, by choosing a desired time
evolution of the density or current we can reconstruct the driving
potential and the wave function.

To understand how TDDFT can help in finding analytically
solvable problems we analyze mapping between different sets
of object entering this approach. All TDDFT-type theories rely
on the existence of a unique solution to a special “inverse”
quantum problem. That is a possibility to uniquely reconstruct
the driving field from a given evolution of the conjugated
observable (such as the density in TDDFT or the current in
TDCDFT) and a given initial state. In other words, if N is
the space of basic observables, then the existence of TDDFT
implies that for a given initial state there exist two unique maps
N �→ V and N �→ H, which relate a given trajectory in the
space N of observables to the corresponding trajectories in V
and in H. The composition of these TDDFT maps recovers
the usual direct map V �→ H generated by the time-dependent
Schrödinger equation .

In general for many-particle systems the solution of the
inverse problem is even more difficult than the solution
of the usual Schrödinger equation. In fact, mathematical
construction of the TDDFT maps is equivalent to solving a
certain nonlinear quantum many-body problem [42]. However,
there are special situations when the inverse problem possesses
a simple analytic solution. These situations cover, in particular,
generic driven one-particle dynamics both in the real space
and on lattices with some mild restrictions on allowed initial
states and the behavior of observables. For those cases the
TD(C)DFT mapsN �→ V andN �→ H can be found explicitly
in the analytic form [40–44]. For example, in the case of a
particle driven by a time-dependent vector potential A(t) the
wave function and the vector potential are the explicit analytic
functionals of the current density j(r,t) and the initial state, that
is A[j,ψ0] and ψ[j,ψ0]. By construction the wave function
and the potential, obtained in such a way, are connected by
the Schrödinger equation with the proper initial condition.
Hence by assuming different space-time distributions of the
observable we can generate infinitely many solutions to the
Schrödinger equation, where the potential in the Hamiltonian
and the solution are expressed analytically in terms of the
prescribed observable. In this setup the space of observables
plays a role of the parameter space, while the TD(C)DFT maps
provide us with the analytic parametrization formulas for the
Hamiltonian and the solution.

In the next sections we present the explicit framework
for designing solvable one-particle problems in continuous
and discrete spaces and illustrate our strategy of inverse
engineering with several nontrivial examples.

III. RECONSTRUCTION OF THE REAL-SPACE
POTENTIALS

In this section we illustrate our strategy of generating the
exact solutions for a simpler and more familiar case of a single
quantum particle in the real space. Let us consider an electron
in the three-dimensional space subjected to a time-dependent
external electromagnetic field. It is convenient to use the
temporal gauge in which the electric E and magnetic B fields
are related to the vector potential A(r,t) as follows [45]:

B = ∇ × A, E = −∂tA. (1)

Given the vector potential A(r,t) and the initial state ψ0(r) =
|ψ0(r)|eϕ0(r) the wave function ψ(r,t) is obtained by solving
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the following Schrödinger equation :

i∂tψ(r,t) = 1

2m
[−i∇ − A(r,t)]2ψ(r,t). (2)

Here we are interested in the vector potentials for which
the Schrödinger equation possesses an analytic solution.
Therefore, we follow our strategy and apply TDCDFT maps
j �→ A and j �→ ψ from the time-dependent current j(r,t) to
the vector potential and the wave function. These maps can
be easily found explicitly provided the initial state is nodeless
ψ0(r) �= 0, and the current j(r,t) fulfills the condition∫ t

t0

∇ · j(r,t) �= |ψ0(r)|2 = n0(r), (3)

which ensures that the state remains nodeless in the course of
evolution. Then A(r,t) and the time-dependent wave function
ψ(r,t) are uniquely reconstructed from the given current [42],

A[ψ0,j] = ∇ϕ(r,t) − mv(r,t), (4a)

ψ[ψ0,j] =
√

n(r,t)eiϕ(r,t), (4b)

ϕ[ψ0,j] = ϕ0 +
∫ t

t0

dt ′
( ∇2√n(r,t ′)

2m
√

n(r,t ′)
− 1

2
mv2(r,t)

)
, (4c)

where the density n(r,t) and the velocity v(r,t) are defined as
follows:

n(r,t) = −
∫ t

t0

∇ · j(r,t) + n0(r), (5a)

v(r,t) = j(r,t)
n(r,t)

. (5b)

One can straightforwardly check by a direct substitution
that these formulas indeed give a solution to Eq. (2). These
equations allow us to reconstruct the driving potential for a
prescribed evolution of the current.

Using Eqs. (4) with different time-dependent currents we
can construct infinitely many Schrödinger equations with time-
dependent vector potentials, which are all analytically solvable
and the solutions are given by Eqs. (4b) and (4c).

Now we turn to a more specific situation when the system
is driven by a longitudinal electric field E at zero magnetic
field, B = 0. In the absence of the magnetic field ∇ × A = 0
and therefore Eq. (4a) implies that the curl of the velocity also
vanishes, ∇ × v = 0. The velocity of a one-particle system
driven by a potential field must be potential. In this case it is
natural to use the Coulomb gauge (∇ · A = 0) and express the
electric field as a gradient of the scalar potential V (r,t), that
is E = −∇V . By applying the standard gauge transformation
to Eq. (2) we obtain the Schrödinger equation of the following
form:

i∂tψ(r,t) =
(

− ∇2

2m
+ V (r,t)

)
ψ(r,t), (6)

where ψ(r,t) is now the time-dependent wave function in the
Coulomb gauge.

Applying the gauge transformation Eqs. (4) we find the
mapping from the current j(r,t) or equivalently the velocity
and density n(r,t) to the external potential V (r,t) and the

wave function ψ(r,t) [40],

V (r,t) = ∇2√n(r,t)

2m
√

n(r,t)
− m

∫ r

0
v̇(r′,t) · dr′

− 1

2
mv2 − Ċ(t), (7a)

ψ(r,t) =
√

n(r,t)eiφ(r,t), (7b)

φ(r,t) =
∫ r

0
mv(r′,t) · dr′ + C(t), (7c)

where C(t) is a time-dependent constant. Since by construction
the velocity is irrotational the line integrals in Eqs. (7a) and (7c)
do not depend on the integration path. Therefore, we indicate
only the initial and the final points of the path. The value
C(t0) at the initial time is uniquely determined by the initial
condition, while for t > t0 the function C(t) is arbitrary and
can be chosen at convenience, for example to fix the value
of the potential at infinity. The presence of a time-dependent
constant in the density-potential mapping is in agreement with
the Runge-Gross theorem [34]. The first term in Eq. (7a) is
the Bohm potential that can be interpreted physically as an
adiabatic potential for which the prescribed (nodeless) n(r,t)
is the instantaneous ground-state density. The second and the
third terms in Eq. (7a) are related to inertia forces. These
terms compensate the inertia forces exerted on a particle in a
local noninertial frame moving with the velocity v(r,t). As a
result in this comoving frame the density stays stationary and
equal to the initial density distribution. In the original frame
the velocity-dependent contribution appears as a deformation
of the adiabatic potential, which is aimed at supporting the
prescribed density in the case of arbitrary fast evolution.

There is an important difference of the present construction
and the explicit current-vector potential mapping of Eqs. (4)–
(5b). Equations (7) state that given the density n and the
corresponding velocity v, the external potential V and the wave
function ψ can be found analytically. However, the density and
the velocity are not independent variables as they have to be
consistent through the continuity equation

ṅ(r,t) = −∇ · [n(r,t)v(r,t)]. (8)

The complication comes from the requirement of irrotational
velocity, ∇ × v = 0, which implies the velocity field of the
form v = ∇�. Because of this condition there is no simple
and universal analytic relation between the observables enter-
ing (7). Such a relation can be found only for 1D systems, or if
we assume a 1D inhomogeneity of the observables. In higher
dimensions our ability of constructing solvable quantum
problems is limited by the possibility to solve analytically a
classical hydrodynamics problem of reconstructing the density
from the velocity or vice versa for an irrotational flow. Below
we present a simple example of such a reconstruction.

Exact solution generated by a time-dependent scaling
of observables

Let the evolution start from the ground state ψ0 of a potential
V0(r) with the ground-state density n0(r) and the energy E0.
The simplest irrotational velocity field v(r,t) for which Eq. (8)
can be solved analytically is a linear function of coordinates
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with time-dependent coefficients,

v(r,t) = λ̇(t)[r − r0(t)] + ṙ0(t). (9)

This velocity corresponds to rigid motion of a fluid sup-
plemented with a uniform expansion/compression relative to
the origin moving along the trajectory r = r0(t). The expan-
sion/compression scaling factor is related to the parameter
λ(t) as α(t) = eλ(t). This interpretation is confirmed by solving
the continuity equation (8) with the velocity of Eq. (9). The
corresponding solution for the density takes the form

n(r,t) = 1

α3(t)
n0

(
r − r0(t)

α(t)

)
, (10)

which indeed corresponds to a rescaled density moving
along the trajectory r = r0(t). The assumed initial conditions,
n(r,t0) = n0(r) and v(r,t0) = 0, are fulfilled if the time-
dependent parameters λ and r0 have zero values and zero
time derivatives at the initial time, that is λ(t0) = 0, r0(t0) = 0,
λ̇(t0) = 0, and ṙ0(t0) = 0.

Now we can insert the prescribed observables, Eqs. (9)
and (10), into Eq. (7) to reconstruct the corresponding potential
and the wave function.

To calculate the Bohm potential entering Eqs. (7a) we
make use of the fact that n0(r) is the ground-state density
of the potential V0(r) with the energy E0. This implies that
the shifted and rescaled density n(r,t) of Eq. (10) corresponds
to the instantaneous ground state of the shifted and rescaled
potential α−2V0((r − r0)/α) with the ground-state energy
α−2E0. Therefore, the Bohm potential can be represented as

∇2√n(r,t)

2m
√

n(r,t)
= 1

α2(t)
V0

(
r − r0(t)

α(t)

)
− 1

α2(t)
E0. (11)

The final results for the potential and the wave function gen-
erated by the velocity (9) [or equivalently by the density (10)]
take the following form:

V (r,t) = 1

α2
V0

(
r − r0

α

)
− mr̈0 · r − m

2

α̈

α
(r − r0)2, (12a)

ψ(r,t) =
√

1

α3
n0

(
r − r0

α

)
eiϕ(r,t), (12b)

ϕ(r,t) = m

2

α̇

α
(r − r0)2 + mṙ0 · r

−
∫ t

0

(
1

α2
E0 + m

2
ṙ2

0

)
dt ′. (12c)

Obviously, the first term in Eq. (12a) is the adiabatic potential.
The other two terms describe two types of inertia forces—
the usual linear acceleration force (the second term) and the
inertial force related to a time-dependent deformation.

In the special case of rigid motion, α = 1 or λ = 0, only
a linear acceleration inertial correction survives, so that the
potential of Eq. (7a) simplifies as V (r,t) = V0(r − r0) − mr̈0 ·
r. This potential rigidly transports a quantum system along a
given trajectory without any reshaping of the initial density
profile. It is worth noting that in this particular case our solution
to the Schrödinger equation is not limited to one particle and
can be trivially generalized to a system of any number of
interacting identical particles. Indeed, the solution generated

by a spatially uniform velocity field v(r,t) = ṙ0(t) can be
obtained by the transformation to a uniformly accelerated
reference frame [8]. Since the relative motion of particles
is unaffected by this transformation the above potential will
transport the center of mass while keeping unchanged the
quantum state for the relative motion. It is absolutely obvious
that if the initial state ψ0 corresponds to that of the harmonic
potential, our solution is identical to the harmonic potential
theorem [7–9].

One can also easily see that the analytic solution of the
Schrödinger equation for a harmonic oscillator with a time-
dependent frequency ω(t) and a driving force f(t) [6]

i∂tψ(r,t) =
(

− ∇2

2m
+ 1

2
mω2(t)r2 − f(t) · r

)
ψ(r,t) (13)

is a particular case of our Eq. (12). Assuming V0(r) = 1
2mω2

0r2

in Eq. (12a) we find that the reconstructed potential V (r,t)
coincides (up to irrelevant constant) with the potential in
Eq. (13), where

ω2(t) = ω2
0

α4
− α̈

α
, (14)

f(t) = m

(
ω2

0

α4
− α̈

α

)
r0 + mr̈0. (15)

From these two equations we observe that the center-of-mass
position r0 is the solution to the Newton equation for a driven
harmonic oscillator

mr̈0 + mω2(t)r0 = f(t). (16)

Hence in this particular case the solution of Schrödinger
equation for the driven quantum oscillator is expressed in terms
of the solution for the classical driven oscillator, which is the
main observation made in Refs. [5,6].

IV. INVERSE ENGINEERING OF SOLVABLE QUANTUM
PROBLEMS ON A DISCRETE SPACE

In this section we describe and illustrate our general
reconstruction strategy for lattice systems. In this case we use
the maps for a generalized lattice-TDCDFT [43] to inverse
engineer analytically solvable one-particle problems (or prob-
lems isomorphic to one-particle dynamics on a lattice) [43].

Our starting point is the Schrödinger equation for the wave
function ψi(t0) describing a particle on an M-site lattice with
time-dependent complex hopping parameters Tij ,

i∂tψi(t) = −
M∑

j=1

Tij (t)ψj (t), Tii = 0, (17)

where indexes i and j take values on the lattice sites indicating
the position in the discrete space, and Tij = T ∗

ji to have a
Hermitian Hamiltonian. In the Schrödinger equation (17) we
adopted a temporal gauge in which the scalar on-site potential
and, possibly, a magnetic field enter via the phase of the
hopping parameters Tij (t) [43]. For generality, we also allow
a time-dependent hopping rate |Tij (t)|.

In the generalized lattice-TDCDFT of Ref. [43] the complex
hopping Tij (t) plays a role of a driving potential. The
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corresponding observable in this approach can be called a
“complex current” [43]

Qij (t) = 2Tij (t)ψ∗
i (t)ψj (t). (18)

The real part of Qij (t) is equal to physical current Jij on the
lattice link connecting sites i and j , while the real part Kij

represents the kinetic energy on the link

Qij = Kij + iJij . (19)

The link current Jij (t) and the on-site density ni(t) = |ψi(t)|2
are connected by the lattice continuity equation

ṅi(t) = −
∑

j

Jij (t). (20)

Since the link current and the link kinetic energy are, respec-
tively, antisymmetric and symmetric with respect reversing
the direction of the lattice link, Jij = −Jij and Kij = Kij ,
the combined complex observable Qij is a Hermitian matrix,
Qij = Q∗

ij .
Given the complex current Qij (t) and the initial state

ψi(t0) = |ψi(t0)|eϕi (t0) �= 0, the complex hopping Tij (t) and the
wave function ψi(t) = |ψi(t)|eϕi (t) can be expressed explicitly
as functions of Qij and ψi(t0)

Tij (t) = Qij (t)

2ψ∗
i (t)ψj (t)

, (21a)

|ψi(t)| =
√√√√|ψi(t0)|2 −

∫ t

t0

∑
j

Jij (t ′)dt ′, (21b)

ϕi(t) = ϕi(t0) +
∫ t

t0

∑
j Kij (t ′)

2|ψi(t ′)|2 dt ′. (21c)

These formulas provide us with the analytic lattice-TDCDFT
map from the observable to the conjugate driving potential and
the corresponding solution of the time-dependent Schrödinger
equation . Using this map we can construct infinitely many
analytically solvable problems generated by different time-
dependent Hermitian observables Qij (t).

Below we will give two examples which illustrate the
possibility to analytically control quantum dynamics time in a
discrete space.

A. Dynamics of one particle on a 1D chain

In this subsection we use our approach to manipulate the
on-site density of a quantum particle on a finite tight-binding
chain. Let us consider a particle on an atomic chain with
nearest-neighbor hopping parameters Ti,i+1 of fixed amplitude
|Ti,i+1| = T0. The dynamics of the system is described by
Eq. (17). Since for 1D systems only scalar (on-site) driving
potentials are allowed, one can always gauge transformation
of the Hamiltonian to the form with real hopping parameters
Ti,i+1 = T0 and the real on-site potential vi(t) [43]. In the new
gauge, which is the lattice analog of the Coulomb gauge, the
time-dependent Schrödinger equation reads

i∂tψi = −T0(ψi+1 + ψi−1) + vi(t)ψi. (22)

In the following we assume for definiteness that the evolution
starts from the ground state ψ0 of the chain.

The equations for the observables (18) and (19) for Qij ,
Jij , and Kij remain the same except in the right-hand side of
Eq. (18), where the hopping Tij and the density matrix ρij need
to be replaced by their counterparts in the Coulomb gauge.

The map (21) from the complex current Qij to the hopping
Tij and the wave function ψi in the new gauge is transformed
to an analytic map from Qij to the on-site potential vi and the
wave function ψi

vi =
M∑

j=i

(
−Kj,j+1 + Kj−1,j

2nj

+ Kj,j+1 + Kj+1,j+2

2nj+1

+ J̇j,j+1Kj,j+1 − Jj,j+1K̇j,j+1

4T 2
0 ninj+1

)
, (23a)

ψi(t) =
√

ni(t)e
iϕi (t), (23b)

ϕi(t) = ϕi(t0) +
∫ t

t0

[
Ki,i+1 + Ki−1,i

2ni

− vi

]
dt ′. (23c)

The important point is that in the considered physical
situation with the fixed hopping amplitude the above formulas
are not sufficient to reconstruct the potential from the given
dynamics of observables. The fixed value of the hopping
amplitude sets an upper bound on allowed values of link
currents. As a result not all possible Q become physically
allowed, or v representable in the TDDFT terminology. In
fact, from the definition of Eq. (18) we find that the modulus
of physically allowed Qij (t) is bounded from above:

|Qij (t)|2 = 4T 2
0 ni(t)nj (t) < 4T 2

0 . (24)

Formally the condition of the fixed hopping amplitude
reduces the dimension of the space N of observables. In
the present case this restriction can be taken into account by
expressing Jij (t) and Kij (t) in terms of on-site density ni(t).
First, in 1D we can solve the continuity equation (20) to get
the link current

Ji,i+1 = −
i∑

j=1

ṅj . (25)

Secondly, we express Kij (t) in terms of ni(t) using Eqs. (24)
and (25)

Ki,i+1 = ±

√√√√√4T 2
0 nini+1 −

⎛
⎝ i∑

j=1

ṅj

⎞
⎠

2

, (26)

where the sign is determined by the sign of Kij (t0) at the
initial time through the given initial state ψ0 [44]. Finally,
by inserting Eqs. (25) and (26) into Eq. (23) we obtain the
explicit analytic formulas for the reconstruction of the on-site
lattice potential and the corresponding wave function from
a given time-dependent density distribution. These formulas
correspond to the maps of the lattice TDDFT [41,44]. It is
interesting to note that the exact solution proposed recently in
Ref. [30] for a driven two-level system is, in fact, based on the
above lattice TDDFT maps for a particular case of a two-site
lattice.

Let us now demonstrate how this map works in practice by
constructing a potential that produces a prescribed evolution
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of a density. Consider a particle on an atomic chain with 11
sites and a positive hopping constant T0 = 1 and assume that
the dynamics starts from the ground state of the chain with
zero on-site potential,

ψi(0) = ψ
gs

i = 1√
6

sin

(
πi

12

)
. (27)

We will construct the driving potential which generates the
following two-stage evolution. (i) On the first stage for 0 <

t < t1 the system evolves from the ground state of Eq. (27) to a
state with a homogeneous density distribution ni = 1/11. (ii)
On the second stage for t1 < t < t2 the homogeneous density
distribution shrinks to the center of the chain and by t = t2

concentrates at site 6 with a Gaussian envelope, ni ∝ e−(i−6)2
.

The the required time evolution of density ni(t) for this two-
stage process is the following:

ni(t) =
{

1
11S(t/t1) + (

1 − S(t/t1)
)∣∣ψgs

i

∣∣2
, 0 � t � t1,

N (t) exp [−S( t−t1
t2−t1

)
(i − 6)2

]
, t1 < t � t2,

(28)

where N (t) is the normalization factor

N (t) =
(

11∑
i=1

e
−S( t−t1

t2−t1
)(i−6)2

)−1

. (29)

Here S(x) is a smooth steplike function which starts from zero
at x = 0 and reaches unity at x = 1. For the reason that will be
clear later we choose a function which has zero first and second
derivatives at x = 0,1. Specifically here we use the following
smooth step function which satisfies the above conditions

S(x) = x − 1

2π
sin(2πx). (30)

The time dependence of on-site densities ni(t) defined by
Eq. (28) with t1 = 3 and t2 = 12 is shown on Fig. 2. Each line
on the figure shows the prescribed evolution of the density on a
particular site. At t = 0 the system is in the ground state (27),
then it goes gradually to the homogeneous distribution at
t = 3. Afterwards the density starts shrinking and finally at

t
site

n

FIG. 2. Time evolution of the on-site densities determined by
Eq. (28). Each line represents the dynamic of the density in a particular
site. The time duration for the first stage is three units, t1 = 3 and for
the second stage is nine units, t2 = 12. Dots and their envelopes
indicate the density distribution in the initial t = 0, intermediate (t =
3), and the final (t = 12) states. Time is given in units of 1/T0, where
T0 is the hopping parameter.

site

t

n

FIG. 3. On-site potentials (23), for the first stage of the evolution,
0 � t � 3, as a function of time. The on-site potentials for all sites are
zero at the beginning. At t = 3 all vi except those for the boundary
sites reach 1, while the potentials for the two ending points stay zero.
Time is given in units of the inverse of the hopping parameter T0.

t = 12 it reaches a bell-shaped Gaussian centered at the middle
site.

The analytic representation for the corresponding driving
potential can now be found immediately by inserting Eq. (28)
into Eq. (23) where the link current Jij and the kinetic energy
Kij are given by Eqs. (25) and (26), respectively. and plugging
in to the equation for the on-site potential vi (23). Since for the
initial ground state Kij (0) is negative the minus sign must be
chosen in Eq. (26) [44]. Figure 3 shows the on-site potentials
for the first stage of the dynamics, 0 � t � 3. Each curve
represents the time dependence of the potential for a particular
site. Similarly, Fig. 4 shows the driving potential for the second
stage of the time evolution.

Our reconstructed potential has one interesting property. On
the first stage of the evolution the potential shown on Fig. 4
drives the system from its ground state at t = 0 and takes it
into a state with a homogeneous density at t = 3, which is also
the ground state of the system with the instantaneous potential
vi(t = 3). Similarly, for the second stage of the evolution the

FIG. 4. On-site potentials (23) as functions of time for the second
stage of the evolution, 3 � t � 12. The evolution for 3 < t < 7 is
zoomed in the magnified box. Time is given in units of 1/T0.
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driving potential shown in Fig. 4 takes the system from ground
state and brings it into a new ground state with a Gaussian
envelope. At first glance this behavior looks surprising as the
dynamics is by far nonadiabatic. The explanation is, however,
simple. The system at t = t1 and t = t2 is in its instantaneous
ground state because the first and second derivative of the
step function S (30) are zero at those times and therefore
the current Jij and its first time derivative also vanish. By
setting Jij = J̇ij = 0 in Eq. (23) we find the potential of the
form

vi = T0

M∑
j=i

(√
nj + √

nj+2√
nj+1

−
√

nj−1 + √
nj+1√

nj

)
. (31)

This is a lattice analog of the Bohm potential that corresponds
to the ground-state potential for a given instantaneous density.
Therefore, our construction can be used to make a fast transfer
of a system between different ground states.

B. Reconstruction of a driving magnetic field
for a spin-1/2 system

As the last example we inverse engineer an analytically
solvable Schrödinger equation for a driven spin-1/2 system,
or, equivalently, a generic two-level system. This formalism
can be used, for example, to control the state evolution of
a spin-1/2 using the time-dependent magnetic field; see the
Appendix for an example of a Heisenberg spin chain. A similar
problem has been addressed recently in Ref. [31]. Below we
apply our general reconstruction strategy based on the lattice
TDCDFT mapping.

Assume a spin in the initial state |ψ0〉 subject to a
time-dependent magnetic field B(t). The time-dependent
Schrödinger equation for the state vector |ψ(t)〉 reads

i∂t |ψ(t)〉 = −B(t) · Ŝ|ψ(t)〉, (32)

where Ŝ is the spin-1/2 operator.
By a gauge transformation one can always eliminate z

component of the magnetic field and therefore reduce the
problem to solving the Schrödinger equation with the magnetic
field in the xy plane

i∂t

(
ψ↑(t)
ψ↓(t)

)
= −

(
0 B
B∗ 0

)(
ψ↑(t)
ψ↓(t)

)
, (33)

where the “complex” magnetic field B is

B = (Bx − iBy)/2, (34)

and ψ↑(t) = 〈ψ(t)| ↑〉 and ψ↓(t) = 〈ψ(t)| ↓〉 are the projec-
tions of the state vector on the eigenstates of Ŝz.

Equation (33) is identical to the Schrödinger equation (17)
for a two-site lattice where the spin indexes ↑ and ↓
label the sites, and B(t) is the complex hopping parameter.
Therefore, we can directly apply the lattice-TDCDFT maps
of Eqs. (21) to reconstruct the driving magnetic field and the
wave functions ψ↑,↓ = |ψ↑,↓|eiϕ↑,↓ from given dynamics of the
complex observable Q(t) = K(t) + iJ (t) defined in Eq. (18).
In the present case the reconstruction formulas reduce to the

form

|ψ↑,↓(t)| =
√

|ψ↑,↓(0)|2 ∓
∫ t

0
ImQ(t ′)dt ′, (35a)

ϕ↑,↓(t) = ϕ↑,↓(0) +
∫ t

0

ReQ(t ′)
2|ψ↑,↓(t ′)|2 dt ′, (35b)

B(t) = Q(t)

2ψ∗
↑(t)ψ↓(t)

. (35c)

Equations (35) provide an analytic parametrization of the
driving field and the wave function in terms of a given trajec-
tory in the two-dimensional space N = {K,J } of observables.
The point in the space N corresponds to a given kinetic
energy K and intersite current J for a particle on the two-site
lattice. This physical parametrization is universally applicable
to lattice systems with any number of sites. In the particular
two-site case one can propose an alternative parametrization
to the driving field, which has an intuitive interpretation in the
physical context of the spin-1/2 system. Below we map the
spaceN = {K,J } onto a Bloch sphere and rearrange Eqs. (35)
accordingly to relate the driving field to a given trajectory in
the projective Hilbert space for spin-1/2.

As a first step we represent the state vector of spin-1/2 as
follows:

|ψ(t)〉 = eiβ[cos(θ/2)|↑〉 + eiφ sin(θ/2)|↓〉], (36)

where θ (t) and φ(t) are the spherical angles representing a
point on the Bloch sphere, and β(t) is an overall phase of the
wave function. Next, to map the trajectory Q(t) to a trajectory
on the Bloch we use Eq. (35) and express Q in terms of the
wave-function amplitudes |ψ↑,↓| and the relative phase φ

Q = 2φ̇
|ψ↑|2|ψ↓|2

|ψ↑|2 − |ψ↓|2 − i∂t |ψ↑|2. (37)

By substituting |ψ↑,↓| from Eq. (36) we relate the complex
coordinate Q in the space N to the spherical coordinates (θ,φ)
on the Bloch sphere

Q = 1
2 (φ̇ sin θ tan θ + iθ̇ sin θ ). (38)

This equation gives the required map between the trajectory
in the original space of observables to the corresponding
trajectory of spin-1/2 on the Bloch sphere. Finally, by inserting
Q of Eq. (38) into Eq. (35c) for B (35c) we get a new analytic
representation for components of the magnetic field

Bx = φ̇ tan θ cos φ + θ̇ sin φ, (39a)

By = −θ̇ cos φ + φ̇ tan θ sin φ. (39b)

The spherical coordinates (θ,φ) determine the wave function
Eq. (36) up to a common phase β. The phase β = ϕ↑
is calculated directly from Eq. (35b) by substituting the
expressions of |ψ↑| and ReQ in terms of θ and φ,

β(t) = β(0) + 1

2

∫ t

0
dt ′φ̇ tan θ tan

θ

2
. (40)

Equations (39), (36), and (40) solve the problem of recon-
structing the driving field and the wave function from a given
trajectory on the Bloch sphere.
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Equations (39) demonstrate one subtlety, which is very
similar to the v-representability problem in TD(C)TDFT. Not
all trajectories on the Bloch sphere are physically reproducible
if the driving magnetic field is limited to the (x,y) plane. For
example, it is impossible to drive the system along the equator
[π/2,φ(t)] with a finite magnetic field because the right-hand
side in Eq. (39) diverges at θ = π/2. Similarly, any trajectory
which causes a divergence in the right-hand side of Eq. (39) is
not B representable. All physically allowed trajectories when
crossing the equator should approach it in a way that φ̇ tan θ

stays finite, which translates to the condition φ̇ → 0 when
θ → π/2. In other words, a physical trajectory, generated on
the Bloch sphere by an in-plane magnetic field, can cross the
line θ = π/2 only if it is perpendicular to that line at the
crossing point. This is absolutely clear physically because at
any instant the magnetic field generates rotation of the spin
vector about the direction of B. Therefore, the initially coplanar
to B spin is always driven out of the plane. Apparently when
reconstructing the driving field from a trajectory on the Bloch
sphere we should take it from a B-representable set containing
trajectories which either do not touch the equator or cross it
perpendicularly.

Now we are ready to present an explicit example of the
reconstruction.

Analytically controlled spin flip: Design of a quantum not gate

To illustrate our inverse engineering formulas we construct
a control pulse which does the operation. Initially the system is
in the ground state corresponding to some magnetic field B(0).
During the pulse duration τ the magnetic field is changing and
at the end of the pulse returns to its initial value B(τ ) = B(0),
while the system is driven to the excited state in the field B(0).
Therefore, after the pulse the Hamiltonian returns to the initial
form, but the direction of the spin is reversed.

For definiteness we assume the initial or final field in
the x direction, B(0) = B(τ ) = x̂B0. Therefore, the initial
state is |←〉 = 1/

√
2(|↑〉 + |↓〉). The target state which

should be reached at the end of the pulse corresponds
to another eigenstate of Ŝx , that is |→〉 = 1/

√
2(|↑〉 −

|↓〉). On the Bloch sphere the initial and the final (tar-
get) states correspond to the points (π/2,0) and (π/2,π ),
respectively.

The first step in constructing the required control pulse is
to find a B-representable trajectory which at t = 0 starts at
the point (π/2,0) and arrives at the point (π/2,π ) at the time
t = τ . We note either boundary point belongs to the equatorial
line. Therefore, the trajectory should leave the initial point and
arrive at the final point along the corresponding meridians. To
automatically take care of the B representability we introduce
a new independent variable γ = φ̇ tan θ . The angle θ in the
relevant range of 0 < θ < π is related to the new variable as
follows:

θ = 2 arctan[
√

(φ̇/γ )2 + 1 − φ̇/γ ]. (41)

Now the “dangerous” equatorial points correspond to the
points of the trajectory with φ̇/γ = 0.

By reexpressing the magnetic field of Eqs. (39) and the
common phase β of Eq. (40) in terms of γ and φ we find

Bx = γ cos φ − ∂t (φ̇/γ )

(φ̇/γ )2 + 1
sin φ, (42a)

By = ∂t (φ̇/γ )

(φ̇/γ )2 + 1
cos φ + γ sin φ, (42b)

and

β(t) = β(0) + 1

2

∫ t

0
dt ′[γ

√
(φ̇/γ )2 + 1 − φ̇]. (43)

Now we need to find two functions γ (t) and φ(t) which
will do the required job. The first obvious set of conditions for
φ(t) is

φ(0) = 0, φ(τ ) = π, φ̇(0) = φ̇(τ ) = 0. (44)

It follows from Eq. (42) that the requirement B(0) = B(τ ) =
B0x̂ will be fulfilled if

γ (0) = −γ (τ ) = B0, (45)

and ∂t (φ̇/γ ) = 0 at the boundary points, t = 0,τ . The latter
condition is satisfied if at t = 0,τ the second derivative of φ(t)
vanishes

φ̈(0) = φ̈(τ ) = 0. (46)

In addition, we have to make sure that the ratio φ̇/γ is finite
for all 0 < t < τ .

As an example we suggest the following γ (t) and φ(t)
which fulfill all the above conditions:

γ (t) = 1

2
Bx0(1 − 2t/τ )[(1 − 2t/τ )2 + 3], (47a)

ϕ(t) = πt

τ
− 1

4
sin

(
4πt

τ

)
. (47b)

Here γ (t) is a smooth monotonically decreasing function
antisymmetric with respect to the point t = τ/2. It goes from
B0 to −B0 and crosses zero at the middle of the pulse. As
an extra condition we required that γ̇ (0) = γ̇ (τ ) = 0 which
allows one to smoothly continue the driving field beyond the
interval 0 < t < τ . The function φ(t) in Eq. (47b) increases
monotonically from 0 to π and has zero first and second
derivatives at the boundary points t = 0 and t = τ , and at
t = τ/2. The derivative φ̇(t) = 2πt

τ
sin2( 4πt

τ
) is symmetric with

respect to the middle point t = τ/2.
The corresponding trajectory on the Bloch sphere is shown

in Fig. 5 for B0 = 1 and τ = 12. The trajectory starts from the
state |←〉 on the equator, goes to the upper hemisphere, then
at t = τ/2 it crosses the equatorial line at the point (π/2,π/2)
and reaches the final state |→〉 from the lower hemisphere.
Because of the special symmetry of the generating functions
the trajectory has a central symmetry with respect to the middle
point.

Substituting γ (t) and φ(t) into Eqs. (42) we find the
magnetic field generating this dynamics. In Fig. 6 we plot
the path of the time-dependent magnetic-field vector in the
xy plane. Each dot represents the magnetic-field vector at
integer times from 0 to 12.
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FIG. 5. Trajectory of the spin state on the Bloch sphere generated
by Eqs. (47) for τ = 12 and B0 = 1. The trajectory leaves ground
state | ←〉 and arrives at the excited state | →〉 perpendicular (φ̇ = 0)
to the equatorial line. Time is given in units of 1/B0.

The corresponding wave function is given by Eq. (36)
with the common phase β(t) defined after Eq. (43). For our
particular example we easily find the overall phase at the end
of the pulse, β(τ ) = β(0) − π/2 [46]. Hence by the end of the
pulse the system, initially in the ground state, is transferred to
the excited state, and the wave function acquires a common
phase shift of π/2.

One can check that if the pulse defined by Eqs. (42) and (47)
is applied to the initial excited state |ψ(0)〉 = |→〉, the system
is driven to the ground state |←〉. Therefore, our pulse can
be viewed as a realization of a quantum NOT gate which

FIG. 6. Trajectory traced out the magnetic-field vector (42) in
the xy plane. Starting from the initial value B(0) = x̂ the magnetic
field follows the trajectory clockwise and comes back at t = τ = 12.
Each arrow represents the magnetic-field vector at integer times t =
0,1, . . . ,12. Time is given in units of 1/B0.

transforms (up to a common phase shift) |←〉 into |→〉, and
|→〉 into |←〉.

V. CONCLUSION

In conclusion, we proposed and worked out the strategy
of using the TD(C)DFT observable-potential maps to inverse
engineer analytically solvable time-dependent Schrödinger
equations and thus to design analytic pulses for quantum con-
trol problems. We considered a number of situations in which
the TD(C)DFT maps are known analytically. In all those cases
the basic observables, such as the density or the current, can be
used for a convenient and physically intuitive parametrization
of the driving potential and the corresponding wave function.
As the first pedagogical example we considered the control
problem for the standard textbook Schrödinger equation
describing dynamics of a single quantum particle driven by a
time-dependent electromagnetic field. In the most general case
the driving vector potential and the solution to the Schrödinger
equation can be uniquely reconstructed from a given current. If
the dynamics is restricted to be generated by a scalar potential,
the latter can be reconstructed from the dynamics of the density
or, equivalently, from the given (irrotational) velocity field.
We have demonstrated how from the general reconstruction
formulas one can recover the known analytic solutions of the
time-dependent Schrödinger equation for a driven harmonic
oscillator with a time-dependent frequency [5,6].

In the second part of this work we applied our general
strategy to a less obvious problem of quantum dynamics on
lattices (discrete spaces). Here we used the analytic maps
for the one-particle generalized lattice TDCDFT [43], where
the basic observables are the intersite current and the kinetic
energy. As a first illustration of this setup we considered a
manipulation of a one-particle state on a finite tight-binding
chain. We constructed an analytic driving field that generates a
fast reshaping of the initial ground-state density to the ground-
state density of another potential. In the second example we
demonstrated the engineering of analytically solvable two-
level Schrödinger equations describing, in particular, dynamics
of a spin-1/2 system driven by a time-dependent magnetic
field. Here we constructed a cyclic analytic control pulse which
works as a quantum NOT gate, that is, it flips the direction
of the spin for two basis stats. Finally, in the Appendix
we showed how to use lattice-TDDFT formalism to control
the state of a spin chain with three interacting spins. In the
last two examples the application of our strategy is possible
because the corresponding spin Hamiltonians are equivalent to
the Hamiltonians of effective one-particle lattice systems for
which the explicit density-potential mapping is known.

This work further develops and extends promising ap-
plications of TDDFT to the quantum control [38,39,47,48].
More importantly, it connects the ideas of the density-potential
mapping in TDDFT and TDCDFT to a wider range of coherent
control [49] and the state preparation problems in the quantum
computing [13–15].

ACKNOWLEDGMENTS

We acknowledge financial support by the Spanish Grant No.
FIS2013-46159-C3-1-P, “Grupos Consolidados UPV/EHU

052515-9



M. FARZANEHPOUR AND I. V. TOKATLY PHYSICAL REVIEW A 93, 052515 (2016)

del Gobierno Vasco” (Grant No. IT578-13), and Air Force
Office of Scientific Research (Grant No. FA2386-15-1-0006
AOARD).

APPENDIX: CONTROLLING A SPIN CHAIN

In this Appendix we show how to use the TDDFT formalism
to control the state of a three-site spin chain.

Let us assume a Heisenberg spin chain with three spins
and with the nearest-neighbors interaction, where each spin
experiences a time-dependent magnetic field in the z direction.
The evolution of state of the chain |ψ(t)〉 is governed by the
time-dependent Schrödinger equation

i∂t |ψ(t)〉 = Ĥ (t)|ψ(t)〉, (A1)

where the Hamiltonian reads

Ĥ (t) =
3∑

j=1

Bj (t)Ŝz
j + λŜ1 · Ŝ2 + λŜ2 · Ŝ3. (A2)

Ŝj is the spin operator for the j th spin and Ŝz
j is its z component.

Bj (t) is the amplitude of the magnetic field at the position of
j th spin and λ is the coupling constant between neighboring
spins.

Like before, Sec. IV A, our goal is to design a time-
dependent magnetic field Bj (t) which drives the system from
an initial state |ψ0〉 into a target state |ψf 〉 through a prescribed

time evolution of an observable. The observable here is the
occupation of each eigenstate of the Zeeman Hamiltonian∑

j

Bj (t)Ŝz
j |(i)2〉 = Ei |(i)2〉, (A3)

which is equivalent to the on-site density in the tight-binding
model; (i)2 stands for i in base 2.

To parametrize both the time-dependent state |ψ(t)〉 and the
magnetic field Bj (t) in terms of Zeeman states’ occupations,
|〈(i)2|ψ(t)〉|2, we can use the fact that the Hamiltonian (A2)
commutes with the z component of the total spin

Ŝz =
3∑

j=1

Ŝz
j . (A4)

Thus the total number of spins in the z direction are conserved
which indicates that the Hilbert space H is partitioned into the
subspaces with different mz, the eigenvalue of Ŝz.

The Hamiltonian in the basis of the Zeeman Hamiltonian
is equivalent to that of a single particle on an eight-site tight-
binding chain with four disjointed parts; see Fig. 7. The site
indices are given by writing the binary index of each state in
base 10, for example, (101)10 = 5. Each connected portion has
a defined mz which means that sites 0 and 7 with maximum
and minimum mz are isolated from the rest. This leaves us with
two interesting cases which are two three-site chain segments
in the middle with mz = 1

2 and mz = − 1
2 . The Hamiltonian

blocks for these two chain segments read

Ĥ± 1
2

= 1

2

⎛
⎝B1 ± B2 − B3 λ 0

λ ±B1 ∓ B2 ± B3 − λ λ

0 λ −B1 ± B2 + B3

⎞
⎠. (A5)

As we see each block has the form of the Hamiltonian for a
single particle on a three-site chain with a constant hopping,
T0 = λ

2 . This allows us to reconstruct analytic quantum
dynamics using the explicit map of lattice-TDDFT (23).

In the first case where the system is initially at a state with
mz = 1

2 using (23a) we can find the magnetic field in terms
of the population of each spin state or in the lattice terms the
on-site density, ni = |〈(i)2|ψ(t)〉|2,

B1 = B0(t) − K1,2

2n1
− K1,2 + K2,4

2n2

+ K1,2J
′
1,2 − J1,2K

′
1,2

λ2n1n2
− λ

2
, (A6a)

B2 = B0(t), (A6b)

B3 = B0(t) − K2,4

2n4
+ K1,2 + K2,4

2n2

+ K2,4J
′
2,4 − J2,4K

′
2,4

λ2n2n4
+ λ

2
, (A6c)

where Ji,j and Ki,j are given by Eqs. (25) and (26),
respectively, with T0 = λ

2 and the summation over j = 1,2,4.
The free term B0(t) is equivalent to the constant shift in the
potential in TDDFT. It appears here because a constant shift in

the magnetic field only changes the Zeeman splitting between
mz = 1

2 and mz = − 1
2 and does not change the dynamics.

The state of the system is given by Eqs. (23b) and (23c)
if we substitute the on-site potentials vi using the following
instructions:

v1 → B1 + B2 − B3, (A7a)

v → B1 − B2 + B3, (A7b)

v4 → −B1 + B2 − B3. (A7c)

In the second case where the system is in an initial state with
mz = − 1

2 we can use the same strategy and find the magnetic

FIG. 7. Hamiltonian of a three-site spin chain Eq. (A2) and its
equivalence to the Hamiltonian of an electron on an eight-site tight-
binding chain with four disconnected segments. Each tight-binding
site is equivalent to an eigenstate of the Zeeman Hamiltonian and
each chain segment has a distinct mz. The sites are numbered by
writing the binary index of each eigenstate in base 10.
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field Bi in terms of the state population,

B1 = −B0(t) + K3,5

2n3
− K5,6

2n6
+ − J3,5K

′
3,5 + K3,5J

′
3,5

λ2n3n5

+ K5,6J
′
5,6 − J5,6K

′
5,6

λ2n5n6
, (A8a)

B2 = B0(t), (A8b)

B3 = B0(t) + K3,5 + K5,6

2n5
− K5,6

2n6
+ K5,6J

′
5,6 − J5,6K

′
5,6

λ2n5n6

− λ

2
. (A8c)

The state of the system is given by Eqs. (23b) and (23c) using
the following instructions:

v3 → B1 − B2 − B3, (A9a)

v5 → −B1 + B2 − B3, (A9b)

v6 → −B1 − B2 + B3. (A9c)

Therefore, using these analytical formulas for a given
dynamic of the state population ni we can analytically
reconstruct both the driving magnetic field and also find
the time evolution of the state of the system as long as no
state population becomes zero ni �= 0, which is equivalent to
Ji,j < λ2ninj .

To conclude, this example shows how one can use TDDFT
formalism which is intended for a completely different
physical setup to design a control signal for a spin chain. The
extension of this approach to longer spin chains, M > 3, is
trivial as long as the initial state is in a subspace of Hilbert
space with mz = ±(M/2 − 1), which means all the spins
except one are in the same direction. In this case the number of
the connected “sites” in the equivalent tight-binding chain is
equal to M , the number of spins. Therefore, we have the same
number of driving magnetic fields Bi(t) as the tight-binding
sites so we can easily find the magnetic fields Bi(t) in terms
of on-site potentials vi and vice versa; see Eqs. (A7) and (A9).
Otherwise, the number of equations is greater than the number
of spins and existence of a solution for a given evolution is not
guaranteed.
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