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Positronium energy levels at order mα7: Product contributions in the two-photon-annihilation
channel
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Ongoing improvements in the measurement of positronium transition intervals motivate the calculation of the
O(mα7) corrections to these intervals. In this work we focus on corrections to the spin-singlet parapositronium
energies involving virtual annihilation to two photons in an intermediate state. We have evaluated all contributions
to the positronium S-state energy levels that can be written as the product of a one-loop correction on one side
of the annihilation event and another one-loop correction on the other side. These effects contribute �E =
−0.561971(25)mα7/π 3 to the parapositronium ground-state energy.

DOI: 10.1103/PhysRevA.93.052511

I. INTRODUCTION

Positronium, the exotic atom composed of an electron
and its antimatter partner, the positron, plays a crucial part
in our understanding of binding in quantum field theory.
Positronium has several interesting properties that, taken
together, set it apart from other Coulombic two-body bound
states. The constituents of positronium are pointlike particles
with no complicating internal structure. The dynamics of
positronium is governed almost completely by QED: strong
and electromagnetic effects are negligible at current levels of
precision. Recoil effects in positronium are maximal: the mass
ratio of the constituents is 1. Finally, positronium is subject
to real and virtual annihilation into photons. Positronium is
accessible to high-precision measurements of energy levels,
decay rates, branching ratios, etc., and so forms an ideal
system for testing relevant theories, calculational methods,
and experimental techniques.

Positronium was first produced in 1951 by Deutsch [1],
who, with Dulit, made the first measurement of a transition
energy: the ground-state hyperfine splitting (hfs) [2]. (Details
about the discovery of positronium along with reflections and
background material are given in [3].) Numerous measure-
ments of the ground-state hfs, the n = 2 fine-structure inter-
vals, and the 2S-1S interval were made over the years, as sum-
marized in a number of reviews [4–11]. The highest-precision
results for the n = 1 hfs [12–15], n = 2 fine-structure [16–19],
and 2S-1S interval [20] all have uncertainties near the 1-MHz
level. Recently, there have been vigorous efforts to develop
new approaches to the measurement of the various energy
intervals and to improve their precision [11,21–31], raising the
promise of significant progress in the not-too-distant future.

The corrections to the Bohr energy levels of positronium
can be expressed as a double series in α and L ≡ ln (1/α):

�E = mα4{C0 + C11αL + C10α + C21α
2L + C20α

2

+C32α
3L2 + C31α

3L + C30α
3 + · · · }. (1)

All positronium energies through terms of order mα6 =
18.7 MHz are known [32–35], along with the lead-
ing log correction of order mα7L2 = 3.30 MHz [36–38].
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The subleading log correction of order mα7L = 0.67 MHz
is known for the hfs [39–41]. Several of the pure order
mα7 = 0.14 MHz corrections are known as well. Some,
those involving “ultrasoft” photons (those having energy and
momentum of order mα2), give contributions as large as
several tenths of a MHz [42,43]. Corrections at O(mα7) can
be classified as either annihilation (involving intermediate
states consisting only of photons) or nonannihilation, and the
annihilation contributions can be organized by the number of
intermediate-state photons. Some nonannihilation corrections
have been calculated [42,44,45]. All terms having a one-
photon intermediate state are known [43], as are all terms
having a three-photon intermediate state [46]. Terms involving
a two-photon intermediate state are the subject of this paper.

Contributions to the parapositronium energies at O(mα7)
that involve virtual annihilation to two photons can be
organized into four groups. Contributions that contain a
light-by-light scattering subgraph as in Fig. 1(a) have been
evaluated [47], as have those involving vacuum polarization
corrections to the annihilation photons as in Fig. 1(b) [48].
In the present work we give the result for all contributions
containing one-loop corrections on either side of the virtual
annihilation process as in Fig. 1(c). We call these terms the
“product” contribution as they involve the product of two
one-loop self-energy, vertex, or ladder corrections. Terms that
involve two-loop corrections either before or after the virtual
annihilation as in Fig. 1(d) remain to be done.

This work is organized as follows. In Sec. II we give
some details of the calculation of the O(mα5) and O(mα6)
two-photon-annihilation contributions. Important aspects of
the calculational procedure and notation are introduced in this
section. In Sec. III we describe our calculation of the O(mα7)
product terms. Section IV contains our results.

II. LOWER-ORDER CONTRIBUTIONS

In this section we evaluate the two-photon-annihilation
(2γ A) contributions at orders mα5 (done originally by Karplus
and Klein [49]) and mα6 (see [50,51]) in order to illustrate our
calculational method and set notation. We are free to use any
convenient bound-state formalism because, for the calculation
at hand, the energy levels depend only on the spin structure of
the wave function and its value at spatial contact but not on
more detailed aspects of the formalism. We use the formalism
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FIG. 1. Representatives of the four classes of two-photon-
annihilation corrections that contribute to the parapositronium energy
levels at O(mα7). They are (a) light-by-light corrections, (b) terms in-
volving vacuum polarization corrections to the annihilation photons,
(c) terms containing the product of two one-loop corrections, one on
each side of the virtual annihilation, and (d) terms with a two-loop
correction on one side of the virtual annihilation.

of [52] in which the energy shift is the expectation value

�E = i�̄δK� (2)

of a two-particle-irreducible interaction kernel taken between
appropriate wave functions. The positronium states can be
approximated as

� → φ0

(
0 χ

0 0

)
, �̄T → φ0

(
0 0

χ † 0

)
, (3)

where χ = 1/
√

2 is the spin-singlet 2 × 2 matrix and φ0 =√
m3α3/(8πn3) is the wave function at spatial contact for

a state of principal quantum number n and orbital angular
momentum 
 = 0.

The graphs making leading-order (LO) 2γ A energy contri-
butions of O(mα5) are pictured in Fig. 2. The energy shift due
to the graph in Fig. 2(a) is

�Ea = (−1)iφ2
0

∫
d4p

(2π )4

−i

p2

−i

(P − p)2

×tr

[(
0 0
χ † 0

)
(−ieγμ)

i

γ (P/2 − p) − m
(−ieγν)

]

× tr

[
(−ieγ ν)

i

γ (P/2 − p) − m
(−ieγ μ)

(
0 χ

0 0

)]
,

(4)

where P = (2m,0) is the approximate positronium four-
momentum in the center-of-mass frame and the initial (−1)
is a fermionic sign factor required for annihilation graphs. We
can simplify this expression by using projection operators to
write the spin matrices in terms of γ matrices (in the Dirac
representation) [53]:

(
0 χ

0 0

)
= 1

2
√

2
(γ n + 1)γ5, (5a)

(
0 0
χ † 0

)
= 1

2
√

2
(−γ n + 1)γ5, (5b)

FIG. 2. The LO 2γ A contributions. Both (a) uncrossed and (b)
crossed photons are included to account for Bose symmetry. The wave
functions bracketing these kernels on the left and right are implicit.

where n = (1,�0 ) is the timelike unit vector. We also scale a
factor of the electron mass m out of each momentum vector
and give the dimensionless momentum p/m the same name p

as before. The LO contribution is

�ELO = ILO
mα5

π
, (6)

where

ILO = 4
∫ ∞

0
d| �p |

∫
dp0

2πi

�p 2T

p2(p − 2n)2
, (7)

with

T ≡ 1

4
tr{γ ν[γ (n − p) − 1]−1γ μ(γ n + 1)γ5}

× 1

4
tr{γμ[γ (n − p) − 1]−1γν(−γ n + 1)γ5}. (8)

It is easy to see that the contributions of both parts of Fig. 2
are equal, and the factor of 2 has been included in (7). The
| �p | integral is over the magnitude of the three-vector �p
and runs from 0 to ∞. The trace evaluates to T = −2 �p 2/

[(n − p)2−1]2, and so

ILO = −8
∫ ∞

0
dp p4

∫
dp0

2πi

{(
p2

0 − p2 + iε
)

×[(p0 − 2)2 − p2 + iε][(p0 − 1)2 − ω2
p + iε]2

}−1
,

(9)

where now p stands for | �p |, ωp ≡ (p2 + 1)1/2, and we have
reinserted the iε factors that were implicit up until now. We use
the residue theorem to evaluate the p0 integral after closing the
contour with an infinite semicircle in either the upper or lower
half plane, yielding a result of the form A(p)/(p − 1 − iε) +
B(p). The singularity at p = 1 represents the possibility that
the annihilation photons could be real [54] and leads to an
imaginary part of �E that is connected to the parapositronium
decay rate according to

� = −2Im(�E). (10)
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We extract the imaginary part using the identity∫ ∞

0
dp

A(p)

p − 1 − iε

=
∫ 2

0
dp

(
A(1)

p − 1 − iε
+ A(p) − A(1)

p − 1

)

+
∫ ∞

2
dp

A(p)

p − 1
= iπA(1) +

∫ ∞

0
dp

A(p̃)

p − 1
, (11)

where

A(p̃) =
{
A(p) − A(1) if 0 < p < 2,

A(p) if 2 < p,
(12)

as in earlier related calculations [47,55]. The LO energy
shift is

ILO = 1

2
ln 2 − 1

2
− iπ

4
(13)

in units of mα5/π .
The next-to-leading-order (NLO) graphs that contribute

O(α) corrections to �ELO are shown in Fig. 3. Each
of these graphs comes with a symmetry factor giving the
number of identical contributions represented by the graph.
For the vacuum polarization (VP) contribution of Fig. 3(a),
the symmetry factor is 4, coming from the two photons that
the vacuum polarization correction could act on and the two
configurations of annihilation photons: uncrossed and crossed.
The symmetry factors for the self-energy (SE) correction of
Fig. 3(b), the vertex (V) correction of Fig. 3(c), and the ladder
(lad) correction of Fig. 3(d) are 4, 8, and 4, respectively.

Our approach is to start with the LO expression (7) and
insert a vacuum polarization, self-energy, or vertex correction,
or a ladder photon. We give our O(α) corrections in units
of mα6/π2. The vacuum polarization correction has the
value [48,51]

IV P = − 1
6ζ (2). (14)

We used the Feynman gauge versions of the one-loop self-
energy and vertex parts from [56]. The renormalized electron
self-energy function corrects the bare-electron propagator of
four-momentum p according to

1

γp − 1
→ α

π
[S1 + S2(p)]

1

γp − 1
, (15)

where

S1 = ln λ + 1
2 (16)

and

S2 =
∫

dxdufSE(u)
N (p)

D(p)
, (17)

with fSE(u) = −1/(2u), N (p) = {2 − (1 − x)γp}(γp + 1),
and D(p) = p2 − 1 − x/[(1 − x)u]. A photon mass λ was
introduced in the course of mass-shell renormalization to
regularize the infrared divergence, and all parametric integrals
run from 0 to 1. The renormalized vertex function corrects the
bare vertex γ μ according to the replacement

γ μ → α

π

{
V

μ

1 + V
μ

2 (p′,p) + V
μ

3 (p′,p)
}
, (18)

where

V
μ

1 = γ μ

(
− ln λ − 5

4

)
, (19a)

V
μ

2 (p′,p) =
∫

dxdu
−Nμ

4H
, (19b)

V
μ

3 (p′,p) = γ μ

∫
dxdudz

−x(H − x)

2H
, (19c)

with

Nμ = γ λ[γ (p′ + Q) + 1]γ μ[γ (p + Q) + 1]γλ, (20a)

H = (1 − x)[u(1 − p′2) + (1 − u)(1 − p2)]

−xu(1 − u)(p′ − p)2 + x, (20b)

H = x + z(H − x), (20c)

where p and p′ are the incoming and outgoing momenta [as in
Fig. 1(c) of [56]] and Q = −x[up′ + (1 − u)p]. Finally, the
ladder correction as applied to, say, the first term in (8) has the
form

γ ν 1

γ (n − p) − 1
γ μ →

∫
d4q

(2π )4
(−ieγ κ )

i

γ (−n + q) − 1

× γ ν 1

γ (n + q − p) − 1
γ μ i

γ (n + q) − 1
(−ieγκ )

−i

q2 − λ2
.

(21)

Using the techniques described above, the one-loop self-
energy and vertex corrections to the parapositronium energies
are straightforward to obtain. The results are shown in Table I.

FIG. 3. The four types of one-loop radiative corrections in the 2γ A channel that contribute at NLO: (a) vacuum polarization, (b) self-energy,
(c) vertex, and (d) ladder. Additional contributions having crossed annihilation photons and with the radiative corrections acting on different
parts of the graphs give contributions equal to those shown and are included by means of appropriate symmetry factors.
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TABLE I. NLO corrections to the parapositronium energy levels
in the 2γ A channel. These energy shifts include all multiplicity
factors and are given in units of mα6/π 2. The “IR div” part should be
multiplied by ln(λ)ILO, and the “imaginary part” must be multiplied
by iπ . The results for SE1, V1, and lad1 were obtained analytically
in the current work, while those for SE2, V2, V3, lad2, and lad3
were obtained numerically in the current work. Analytic results for
the total SE, V, and lad contributions were taken from [51] and are
consistent with the numerical values obtained here.

Term IR div Real part Imaginary part

VP 0 − 1
6 ζ (2) 0

SE1 2 1
2 ln 2 − 1

2 − 1
4

SE2 0 −0.092016(4) − ln 2

SE total 2 − 1
2 ζ (2) + ln2 2 + 1

2 ln 2 − 1
4 − ln 2 − 1

4

V1 −4 − 5
2 ln 2 + 5

2
5
4

V2 0 0.7628944(2) − 3
4 ζ (2) + ln 2 + 1

4

V3 0 0.5594205(7) 3
8 ζ (2) − 1

2

V total −4 21
16 ζ (3) − 3

2 ζ (2) ln 2 − 3
8 ζ (2) + ln 2 + 1

− 1
4 ζ (2) − ln2 2 − 2 ln 2 + 9

2

lad1 2 1 − ln 2 1
2

lad2 0 −0.9739264(4) 0.346573594(6)

lad3 0 −0.5822406(3) −0.346573594(4)

lad total 2 − 5
4 ζ (2) − ln 2 + 3

2
1
2

Total 0 21
16 ζ (3) − 3

2 ζ (2) ln 2 − 3
8 ζ (2) + 5

4

− 13
6 ζ (2) − 5

2 ln 2 + 23
4

Separate contributions for each part of the self-energy and
vertex functions are shown along with the totals. The ladder
contribution from (21) is a bit more involved, having the form

F (p) ≡ −i(4πα)2
∫

d4q

(2π )4

N (p,q)

D(q)Z(p,q)
, (22)

where

D(q) = [(n − q)2 − 1][(n + q)2 − 1](q2 − λ2), (23a)

Z(p,q) = [(n + q − p)2 − 1], (23b)

N (p,q) = γ κ [γ (−n + q) + 1]γ ν[γ (n + q − p) + 1]γ μ

× [γ (n + q) + 1]γκ . (23c)

The ladder correction has a binding singularity that is regulated
by the photon mass. This singularity is present because we
are working just at the threshold for real production of the
electron-positron pair and have set the relative momentum to
zero and the positronium mass to 2m. The singularity can be
isolated by writing

N (p,q)

D(q)Z(p,q)
= N (p,0)

D(q)Z(p,0)
+ N (p,0)

D(q)

×
(

1

Z(p,q)
− 1

Z(p,0)

)
+ N (p,q)−N (p,0)

D(q)Z(p,q)
.

(24)

We label these terms 1, 2, and 3. The first contains the
singularity, and its trace factor is proportional to the LO trace:

tr[N (p,0)(γ n + 1)γ5]

= −4tr{γ ν[γ (n − p) + 1]γ μ(γ n + 1)γ5}. (25)

In this term, the whole q dependence is isolated in D(q), and
the integral of 1/D(q) is given by [57]∫

d4q

iπ2

−1

D(q)
= π

λ
+ ln λ − 1 + O(λ). (26)

The linear binding singularity is the photon mass regularization
scheme version of the “Sommerfeld factor” that represents the
effect of Coulombic binding and should be removed from the
radiative correction [58–61]. It can also be interpreted as an
infrared effect that is canceled in the course of the matching
procedure in the context of an effective nonrelativistic field
theory approach to the problem [57,62,63]. The net result
is that the ladder correction acts as the sum of three terms,
(α/π )(L1 + L2 + L3), where

L1 = ln λ − 1 (27)

and multiplies the LO contribution, while L2 and L3 come
from the final two terms of (24).

The values for the NLO energy corrections are shown in
Table I. We note that the total infrared divergence vanishes, as
it must. The real parts for SE2, V2, V3, lad2, and lad3 were
obtained numerically. They are consistent with known analytic
results [51] that are listed in Table I as “total” contributions
for the SE, V, and lad corrections. The NLO energy correction
is �ENLO = INLO(mα6/π2), where

INLO = [
21
16ζ (3) − 3

2ζ (2) ln 2 − 13
6 ζ (2) − 5

2 ln 2 + 23
4

]
+ iπ

[− 3
8ζ (2) + 5

4

]
. (28)

This result is consistent with the known O(α) energy correc-
tion [50,51]. The imaginary parts for the various contributions
are related to decay rate contributions as discussed above and
are in agreement with the results of [58,64].

The only NLO contribution that was problematic to evaluate
numerically was SE2. The problem was in the large-p region
of the integration space. The integral was clearly convergent
for large p but could only be evaluated to relatively low
precision before numerical difficulties set in. Our solution was
to break the large-p region up into smaller pieces and integrate
them separately. Specifically, we used the change of variables
p = xp/(1 − xp), dp = (1 + p)2dxp, with 0 � xp < 1, to
map the infinite p range onto a finite interval. Then we
broke the region 0 � xp < 1 up into subintervals 1, 2, 3, . . . ,
where the nth interval covers 1 − sn−1 < xp < 1 − sn with
s = √

1/10. Regions 1 and 2 made the largest contributions
but were not problematic to integrate, while the contributions
of the higher-n regions decreased rapidly with n and were
readily integrable to the desired precision.

III. THE PRODUCT CONTRIBUTIONS

The product corrections have a one-loop correction, self-
energy, vertex, or ladder, on each side of the central anni-
hilation event. These next-to-next-to-leading-order (NNLO)
contributions are shown in Fig. 4. The symmetry factors
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FIG. 4. The seven types of NNLO terms in the 2γ A channel having a one-loop correction on each side of the annihilation event. The
contributions are (a) self-energy–self-energy, (b) self-energy–vertex, (c) self-energy–ladder, (d) vertex-vertex (type A), (e) vertex-vertex (type
B), (f) vertex-ladder, and (g) ladder-ladder. Each of these diagrams represents two configurations of annihilation photons (uncrossed and
crossed); additional factors have been included to account for the various places in the diagram where the corrections could act.

associated with these seven graphs are {2, 8, 4, 4, 4, 8, 2 },
coming from uncrossed and crossed annihilation photons and
the possible positions of the one-loop parts in the diagram,
all of which contribute equal energy corrections. Figures 4(d)
and 4(e) represent the two types of vertex-vertex corrections:
those acting on the same annihilation photon (type A) and
those acting on different photons (type B).

Numerical results for the various product corrections are
shown in Table II. The real parts were the result of straight-
forward, if sometimes extremely time-consuming, numerical
integration using the adaptive Monte Carlo integration routine
VEGAS [65]. All contributions that involved the SE2 correction
were done by separation into regions like for the one-loop SE2
contribution described above. The imaginary parts were done
numerically and checked against analytic results obtained by
the following considerations. The imaginary part of the energy
correction is related to the decay rate correction according
to (10). There is only one independent amplitude for the decay
of pseudoscalar 
 = 0 parapositronium to two real photons:
k̂ · ε̂∗

1 × ε̂∗
2 , where k̂ represents the direction of the momentum

of one of the photons (in the center-of-mass frame) and ε̂i is
the polarization vector of the ith photon. It follows that the
amplitude for one-loop corrections to the decay can be written
as

A = ALO

{
1 + α

π
(B + C + · · · )

}
, (29)

where ALO is the LO decay amplitude and B and C represent
one-loop corrections. Then the decay rate, as corrected by B

and C (coming from SE2 and V2, for example), is

� = �LO

{
1 + 2α

π
(B + C + · · · ) + α2

π2
(B + C + · · · )2

}
,

(30)

where �LO = mα5/2 is the LO rate. On conversion into an
expression for the imaginary part of the energy correction, (30)

becomes

Im(�E) =
(

−π

4

)
mα5

π
+

[
−π

2
(B + C + · · · )

]
mα6

π2

+
[
−π

4
(B + C + · · · )2

]
mα7

π3
+ · · · , (31)

TABLE II. Contributions to the parapositronium energy levels
coming from products of one-loop corrections, one on either side of
the annihilation event. The one-loop parts are the self-energy (SE2),
vertex (V2 and V3), and ladder (lad2 and lad3) corrections. For type-A
vertex corrections the two vertex parts act on the same photon, while
for type-B corrections they act on different photons. The energy shifts
are given in units of mα7/π 3.

Term Figure Real part Imaginary part

SE2-SE2 3(a) 0.188882(5) −1.509388
SE2-V2 3(b) 1.384328(5) −1.265410
SE2-V3 3(b) 0.700844(8) 0.508903
SE2-lad2 3(c) −1.795766(8) 1.509388
SE2-lad3 3(c) −0.582731(4) −1.509388
V2-V2 (A) 3(d) 1.024802(6) −0.132609
V2-V3 (A) 3(d) 0.056872(3) 0.106661
V3-V3 (A) 3(d) −0.113306(3) −0.021448
V2-V2 (B) 3(e) −0.344233(4) −0.132609
V2-V3 (B) 3(e) −0.079219(3) 0.106661
V3-V3 (B) 3(e) −0.117118(3) −0.021448
V2-lad2 3(f) −1.854200(8) 0.632705
V2-lad3 3(f) 0.379183(3) −0.632705
V3-lad2 3(f) −0.063542(8) −0.254452
V3-lad3 3(f) 0.609061(8) 0.254452
lad2-lad2 3(g) 1.241728(7) −0.377347
lad2-lad3 3(g) −0.422514(3) 0.754694
lad3-lad3 3(g) −0.371805(8) −0.377347

Total −0.158734(25) −2.360685
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so that, for the one-loop correction due to B, for instance,

Im(IB) = −π

2
B, (32)

while for two-loop corrections with a B correction on each
side, one has

Im(IBB) = −π

4
B2 = − 1

π
Im(IB)2, (33)

and for a two-loop correction with a B on one side and a C on
the other, one has

Im(IBC) = −π

2
BC = − 2

π
Im(IB)Im(IC). (34)

So all NNLO imaginary parts of the product type can be
expressed analytically in terms of the known NLO imaginary
parts. The numerical results we obtained for the NNLO
imaginary parts are in accord with these analytic results. The
total imaginary part from the contributions listed in Table II is
−π (π2 + 4)2/256.

We can now work out the total NNLO correction to the para-
positronium energy levels coming from product contributions.
It is useful to write the NLO corrections as

ISE = 2S1ILO + ISE2, (35a)

IV = 4V1ILO + IV23, (35b)

Ilad = 2L1ILO + Ilad23, (35c)

where S1 is given in (16), V1 = − ln λ − 5/4, L1 is given
in (27), and

ISE2 = [− 1
2ζ (2) + ln2 2 + 1

4

] + iπ (− ln 2), (36a)

IV23 = [
21
16ζ (3) − 3

2ζ (2) ln 2 − 1
4ζ (2) − ln2 2 + 1

2 ln 2 + 2
]

+iπ
[− 3

8ζ (2) + ln 2 − 1
4

]
, (36b)

Ilad23 = [− 5
4ζ (2) + 1

2

]
. (36c)

Finally, the NNLO contribution from all product contributions
is given by the sum of the following six terms:

ISE−SE = S2
1ILO + S1ISE2 + ISE2−SE2, (37a)

ISE−V = 4S1V1ILO + S1IV23 + 2V1ISE2 + ISE2−V23, (37b)

ISE−lad = 2S1L1ILO + S1Ilad23 + L1ISE2 + ISE2−lad23, (37c)

IV−V = 4V 2
1 ILO + 2V1IV23 + IV23−V23, (37d)

IV−lad = 4V1L1ILO + L1IV23 + 2V1Ilad23 + IV23−lad23, (37e)

Ilad−lad = L2
1ILO + L1Ilad23 + Ilad23−lad23, (37f)

where ISE2−SE2, etc., are taken from Table II, V 23 and lad23
include both parts 2 and 3, and IV−V is the sum of the six V-V
contributions including both parts A and B. Upon adding up the

contributions of (37), we obtain the total product contribution

Iproduct = 9ILO − 3(ISE2 + IV23 + Ilad23) + IXY, (38)

where we have used

S1 + 2V1 + L1 = −3 (39)

and IXY is the total from Table II:

IXY = −0.158734(25) − iπ

(
π2

16
+ 1

4

)2

. (40)

In all, then, the final product result is

Iproduct = −0.561971(25) − iπ

(
π2

16
− 5

4

)2

. (41)

IV. RESULTS

On combining the light-by-light contribution of
Fig. 1(a) [47] and the vacuum polarization contribution
of Fig. 1(b) [48] with the new product contribution of Fig. 1(c)
given in (41), we have for the NNLO 2γ A energy corrections
the results

�ELbyL = {1.58377(8) − 1.016262(15)i}mα7

π3
, (42a)

�Evac.pol. = {−0.153095(3)}mα7

π3
, (42b)

�Eproduct = {−0.561971(25) − 1.259397i}mα7

π3
, (42c)

with the NNLO contribution of Fig. 1(d) not yet known. These
make a net contribution to the real part of the parapositronium
energy levels of

Re
(
�Enet

) = 0.86870(9)
mα7

π3
= 3.81 kHz. (43)

Numerically, this is significantly below the present experimen-
tal precision of order 1 MHz. Expression (43) applies to all S

states, although an additional factor of 1/n3 must be applied
to states with higher principal quantum number n.

Our results are also applicable to true muonium, the μ+μ−
bound state. Even though true muonium has not yet been
detected, it has interesting properties and is the subject of
current searches. Some recent discussions with references to
earlier works include Refs. [66–71]. All of the positronium
corrections considered in this paper apply as well to true
muonium with the electron mass m replaced by the muon
mass mμ ∼ 206.8m. The net energy shift for true muonium
from known 2γ A contributions, the analog of (43), is

Re
(
�E

μ+μ−
net

) = 0.86870(9)
mμα7

π3
= 0.79 MHz. (44)

This results takes into account light-by-light and vacuum
polarization contributions with muons both in the bound state
and in the virtual fermion loops. Additional contributions
analogous to the light-by-light and vacuum polarization ones
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but with electrons in the fermion loops instead of muons also
exist but are not calculated here.

In summary, we have obtained the third of four classes
of NNLO 2γ A contributions to the parapositronium energies
at order mα7 (and the analogous corrections to the energies
of true muonium). Much work remains to be done before
these results have experimental relevance. The contributions
of Fig. 1(d), those from four-photon virtual annihilation, and
most of the nonannihilation corrections must first be completed
in order to obtain the full O(mα7) result that can be compared

with experiment. The contributions obtained in the present
work form an essential part of that eventual complete result.
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