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We consider the dissipative single-qubit circuit QED architecture in which the atomic transition frequency
undergoes a weak external time modulation. For sinusoidal modulation with linearly varying frequency we
derive effective Hamiltonians that resemble the Landau-Zener problem of finite duration associated with a two-
or multilevel systems. The corresponding off-diagonal coupling coefficients originate either from the rotating
or the counter-rotating terms in the Rabi Hamiltonian, depending on the values of the modulation frequency.
It is demonstrated that in the dissipationless case one can accomplish almost complete transitions between the
eigenstates of the bare Rabi Hamiltonian even for relatively short durations of the frequency sweep. To assess
the experimental feasibility of our scheme we solved numerically the phenomenological and the microscopic
quantum master equations in the Markovian regime at zero temperature. Both models exhibit qualitatively
similar behavior and indicate that photon generation from vacuum via effective Landau-Zener transitions could
be implemented with the current technology on the time scales of a few microseconds. Moreover, unlike the
harmonic dynamical Casimir effect implementations, our proposal does not require precise knowledge of the

resonant modulation frequency to accomplish meaningful photon generation.
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I. INTRODUCTION

The area of circuit quantum electrodynamics (circuit QED)
offers unprecedented possibilities to manipulate in situ the
properties of mesoscopic systems composed of superconduct-
ing artificial atoms interacting with the electromagnetic field
inside the waveguide resonator on a chip [1-3]. Along with
practical applications for quantum-information processing
(QIP) this solid-state architecture allows for the experimental
study of some of the most fundamental physical processes,
such as the light-matter interaction at the level of a few photons.
Due to the relative ease to achieve the strong-coupling regime
in which the coherent light-matter coupling rate is much
larger than the system damping and dephasing rates [1,4],
this setup can probe novel phenomena with tiny coupling
rates. One example is the implementation of the dynamical
Casimir effect (DCE) and associated phenomena using actively
controlled artificial atoms, which may serve both as the
source and as the detector of modulation-induced radiation
[5-11]. We recall that DCE is a common name ascribed to
the processes in which photons are generated from vacuum
due to the external time variation of boundary conditions for
some field [12—-15]. For the usual electromagnetic case this
corresponds to the fast motion of a mirror or modulation of
the dielectric properties of the mirror or intracavity medium
[16]. Analogs of DCE were recently verified experimentally
in the setups resembling a single mirror [17] and a lossy cavity
[18] where the modulation of the boundary conditions was
achieved by threading a time-dependent magnetic flux through
superconductive quantum interference devices located inside
the coplanar waveguide. These experiments stimulated new
theoretical research on role of dynamical Casimir physics in
quantum-information processing, quantum simulations, and
engineering of nonclassical states of light and matter [19-24].

Recent studies have indicated that DCE could be im-
plemented even using a single two-level atom (qubit) with

2469-9926/2016/93(5)/052505(9)

052505-1

time-dependent parameters, such as the transition frequency
or the atom-field coupling strength [5,25-28]. Generation of
excitation from vacuum occurs due to the counter-rotating
terms in the Rabi Hamiltonian, which for many years had
been neglected under the rotating-wave approximation (RWA).
Moreover, single-atom DCE carries some new characteristics,
such as the atom-field entanglement, saturation in the number
of created photons (due to intrinsic nonlinearities associated
with a nonharmonic spectrum of the composite system), and
emergence of additional resonant modulation frequencies [27].
Since the ultra-strong-coupling regime [29-32] (for which the
atom-field coupling rate is comparable to the cavity and atomic
frequencies) is experimentally demanding, especially in non-
stationary configurations, here we assume moderate values of
the coupling strength, which in turn imply small transition
rates for the phenomena originating from the counter-rotating
terms. Hence the dissipation must be sufficiently weak,
and the frequency of modulation must be tuned with high
precision, typically on the order of 10-100 kHz for modulation
frequencies in the gigahertz range, that ultimately should be
determined experimentally or numerically. For the harmonic
modulation of system parameters the observable quantities,
e.g., the average photon number or the atomic excitation
probability, exhibit an oscillating behavior as a function of
time [5,28]. Therefore the duration of modulation must also be
minutely adjusted to grasp a meaningful amount of excitations
since the detection is typically carried out when the modulation
has ceased.

In this paper we propose a simple scheme to implement the
phenomena induced by the counter-rotating terms that does
not require accurate knowledge of the resonance frequencies
and is a little sensitive to the duration of the perturbation. Our
method is based on the adiabatic variation of the modulation
frequency of the atomic level splitting through the expected
resonance when one can steadily create excitations from

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.93.052505

A. V.DODONOYV, B. MILITELLO, A. NAPOLI, AND A. MESSINA

vacuum and other initial states without the aforementioned
sporadic comebacks of the system to the initial state. This
phenomenon can be understood in terms of some effective
two- or multilevel Hamiltonians with constant nondiagonal
couplings (dependent on the modulation depths) and time-
dependent diagonal terms, which are responsible for Landau-
Zener (LZ) processes.

By the way, Landau-Zener transitions [33-36] are very
fundamental phenomena since they occur every time a two-
level system is subjected to a time-dependent Hamiltonian
whose bare energies change with time and cross at some
instant in time. In its original form, the LZ model is
characterized by bare energies changing linearly in time. Over
the years, the original scheme has been extended in several
directions: nonlinear time dependence of the diagonal matrix
elements of the Hamiltonian [37,38], multilevel systems,
even with n-fold crossings [39,40], and, of course, including
environmental effects inducing dissipation and decoherence
[41-44]. This ubiquitous model has been applied to describe
similar dynamical situations in several physical scenarios.
For example, it has been useful in such systems as spinorial
Bose-Einstein condensates [45], Josephson junctions [46,47],
in optical lattices with cold atoms [48], and even—in its
modified version known as the “hidden crossing model”
[49]—in classical optics [50]. Also in the context of circuit
QED, Landau-Zener tunneling has been extensively used to
suitably manipulate the state of a single qubit [41,51,52]. In our
case, Landau-Zener processes naturally rise from the fact that
the frequency sweep allows realizing a series of resonances
between the (time-varying frequency) external perturbation
and a series of couples of the Rabi-Hamiltonian eigenstates.

One possible downside of our method is the relatively long
implementation times. Nonetheless, we demonstrate that it
can work with the current dissipative parameters provided the
modulation depth of the atomic transition frequency is on the
order of a few percent of its bare value. Besides, we show that
the states generated from vacuum can be quite different from
the squeezed vacuum state (SVS) that is typically generated
for strictly harmonic modulations [16,53], so our scheme may
find new applications in QIP.

This paper is organized as follows. In Sec. I we deduce the
effective Hamiltonians similar to the Landau-Zener physics in
the resonant and dispersive regimes of atom-field interaction.
In Sec. III we describe our approach to realistically account for
the dissipation with thorough numerical analysis carried out
in Sec. IV. Finally, in Sec. V we discuss the obtained results
and present our conclusions.

II. EFFECTIVE LANDAU-ZENER SWEEPS

We consider a single qubit in nonstationary circuit QED.
Our starting point is the Hamiltonian (we set i = 1),

N Q(t N
Hg(t) = woft + %61 +go@+a') oy +6-), (1)

where @ and a' are cavity annihilation and creation op-
erators and A = a'a is the photon number operator; 6, =
le){(gl, 6- = |g){el, and &: = |e)(e| — |g)(g| are the atomic
ladder operators, where |g) (]e)) denotes the atomic ground
(excited) state. wy is the cavity frequency, €2 is the atomic
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transition frequency, and g is the atom-field coupling strength.
For the sake of simplicity here we consider the external
modulation of the atomic transition frequency as Q(r) = ¢ +
eq sin[n(?)r + ¢q], although it was shown that for gy < wyp, <2
the weak modulation of any system parameter produces similar
results. In this paper we suppose that the modulation frequency
n(t) may also slowly change as a function of time. It will
be shown that in specific regimes we obtain the two-level
or multilevel effective Landau-Zener physics, so initially
unpopulated system states can be excited without undergoing
oscillations back to the initial state.

For eq <« Qo and eq < go we can treat the external modu-
lation as a perturbation that drives the transitions between the
bare eigenstates of the Rabi-Hamiltonian FI,(QO)|R,-) = E;|R;),
where

7 (0) A QOA N At A N
Hy’ = woht + - 0 + gola +a') 64 +6-), 2

and E; increases with the index i. Expanding the wave function
corresponding to the Hamiltonian (1) as

W) =Y Ain)e ""I[R;), 3)

the probability amplitudes obey the coupled differential
equations,
nt + ¢)

L £q sin( iE—E; .
iA;() = 5 D Aie M ETENR 18, R;).

4)

Thus one can induce the coherent coupling between the Rabi
dressed states {|R;),| R )} by setting the modulation frequency
roughly equal to | E; — E|. The remaining rapidly oscillating
terms can be neglected according to the RWA approach, which
sets the criteria for the validity of the resulting effective
equations. In addition, the RWA method introduces small
intrinsic frequency shifts in the final equations, which slightly
alter the resonant modulation frequency [26,27]. One of the
advantages of the present scheme is that such frequency shifts
are completely irrelevant for the experimental implementation.

For the weak qubit-field coupling considered here gy < wo,
we can find the approximate spectrum of the Rabi Hamiltonian
by performing the unitary transformation [54],

Ur = exp[A@6_ —a'6,) + @ —a)e6l. (5

where A = go/A4, § = Ago/2wp, and Ay = wy £ 2. For
the first order in A we get the Bloch-Siegert Hamiltonian [55],

Hgs = ULAV Ug = (w0 + 8,6.)h
+

Qo+, o A
%Uz + go(a6y +a'éo). (6)

Hence the approximate eigenvalues of I-AI,(QO) are

Ey = —(Q0+684+)/2, (7

wo + 6 1 =
Epo0+ = won — % 2 [A- P +4gin. (8)

where 8+ = g2/A+, A_(n) = A_ —28,n, and the integer n
is the number of total excitations associatAed with Hgs. The
approximate eigenstates of (2) are |R;) = Ug|Y;), where | ;)
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are the eigenstates of Hps,
ITo) = 18,0), ©)
| Yps=0,+) = sin 6,|g,n) + cos O,le,n — 1), (10)
|Yys0,—) = cos 6,|g,n) — sin O,le,n — 1), 1D

A_(n)+,/IA_(n)]* + 4g2n
0,-0 = arctan . (12)

2g0v/n

Contrary to the standard studies on DCE and related reso-
nant effects where the precise knowledge of the spectrum is
necessary to accomplish the desired transitions [25,27,28,56],
in this paper only an approximate knowledge of the spectrum
is enough to achieve the phenomena of interest. Therefore the
lowest-order eigenvalues and eigenstates derived above are
sufficient for our purposes. The essence of our proposal is
most clearly seen in specific regimes of the system parameters
as illustrated below for the resonant and dispersive regimes.

A. Resonant regime

First we consider the resonant regime A_ = 0 and assume
a small number of excitations A%z < 1. For the initial system
ground state |Rp) and the modulation frequency,

N = 2w % gov/2 — v(1), (13)

one can show [by neglecting the rapidly oscillating terms in
Eq. (4)] that to the lowest order in A the dynamics is described
by the effective Hamiltonian,

A

H; = Eo|Ro){Ro| + E> +|Ro +) (R +|

2¢ .
+ ig0£S—Qe”[EZfEO*“<'>1|R0)(RM|+H.c. . (14)
4 Ay

Here we defined the complex modulation depth e, = eqe’??,
and v(¢) is a small time-dependent function |v(t)| < go to be
specified later. This Hamiltonian can also be obtained after
cumbersome calculations using the method of Refs. [26,27],
although in this paper it is derived just in a few lines [57].
Performing the time-dependent unitary transformation,

. . v(t)
S(t) = exp {—UKEO + T)IRo)(Rol

+<E2,i - %)mmmz,ﬂ“, (15)

we obtain the “interaction-picture” effective Hamiltonian,

A =i L sas
p=—is— i
dt
V()
= LO1Ry 21 Ro 41 ~ 1RO B
£ (IR} (o] + Hoc (16)

V(t) = v(t) + (),
_ 1, ¢

a7
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Notice that this Hamiltonian only holds for the modulation
frequency (13) and B is nonzero due to the presence of the
counter-rotating terms in the Rabi-Hamiltonian (2).

When v(¢) is a linear function of time, Eq. (16) describes
the standard two-level Landau-Zener problem, so for adiabatic
variation of V(¢) across the avoided crossing one can transfer
steadily the population from the initial state |R) to the final
one | R, +). For the linear variation of V(¢) from —oo to 400
the probability of such a transition is 1 — exp(—mB2/|V]),
which is close to one provided we have |V| <« 8. However,
Eq. (16) is only valid for small values of |v|, so our scheme
corresponds to the finite duration Landau-Zener sweeps in
which we have |v(t)] < K|B|, where K is on the order of
10. Nonetheless, as shown later, in this way we can achieve
the desired transition with sufficiently high probability and
compensate for the ignorance in the knowledge of the exact
eigenvalues of the system Hamiltonian.

B. Dispersive regime

The dispersive regime is defined as gg/n < |A_|/2 for all
relevant values of n, and we assume the standard condition
|A_] < wp. Repeating the above reasoning one finds that for
the initial ground state and the modulation frequency,

8

n=A+_2(8—_3+)+4a_U(t)s 3

the interaction-picture effective Hamiltonian reads

V@)
Hy = T(|R2,—D)(R2,—D| — |Ro){Rol)
—D(B|Ro){R2,_p| + H.c.), (19)
_ . fa
ﬂ = 80 2A+ B (20)

where D = =, being the sign of A_/|A_|. Thus one can
achieve the steady population transfer from |Ry) to |Ry _p),
which corresponds approximately to the transition |g,0) —
le,1). For v(t) = 0 this behavior was previously named the
anti-Jaynes-Cummings regime [5,6] or the blue-sideband
transition [54].

On the other hand, for

n = 2wy +2(6_ — 84) — 4o — v(2), 2n

we obtain an analog of the DCE Hamiltonian in the presence
of the Kerr nonlinearity [27],

Y g — 2
A =3 [<$)n|Rn.D><Rn,D|

n=0 2
1 2
+ (z‘\/ %ﬁmn,mmm,m 4 Hc)}
22)
8/
=5 —L 23
Bt (23)

Here we defined |Ry p) = |Rp), and np,x denotes the limiting
value for the validity of the dispersive regime. If |8| 2 |«/,
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we get the multilevel Landau-Zener problem in which one can
couple several dressed states | Ry, p) = |g,2n) at each avoided
crossing (although the avoided crossings for different pairs of
levels do not coincide exactly), so one can asymptotically
create several photons from the initial vacuum state |g,0).

Our approach is not limited to the initial ground state. For
example, for the initial state with a finite number of excitations
one can apply the low modulation frequency,

n=|A_—28.m|+2|6_|m — 2]a|m* — v(t). (24)

For e < A_ we find the interaction-picture effective Hamil-
tonian,

Hy = ni: [(DV —20-- 8+)(m2— n) + 2a(m? — n2)>

n=I

X(|Rn, ) (R, p| = |Rp,—D)(Rn,—Dl)

+(i*/7zﬂ|Rn,_D)<Rn,D| + Hc):| (25)
ep?)
B= 80—, (26)

where & =¢ and ¢ =¢*. The nondiagonal terms
in the Hamiltonian (25) rely only on the rotating terms
in the Rabi Hamiltonian, so the parameter A does not
appear in the coupling coefficient 8. For eq /m < go and
[Vlmax S 10|8| we achieve the coupling only between the
states {|R, p),|Rm.—p)}, that corresponds approximately to
the steady transition |g,m) — |e,m — 1). For larger variations
of |v| several dressed states may become successively coupled

during the frequency sweep.

III. ACCOUNT OF DISSIPATION

For open quantum systems the dynamics must be described
by the master equation (ME) for the system density operator,

dp/dt = —i[Hg(t),p] + Lp, 27)

where £ is the Liouvillian superoperator whose form depends
on the details of system-reservoir interaction. In this paper
we do not aim to develop a microscopic ab initio model
for dissipation in nonstationary systems, instead we assess
whether the effective Landau-Zener transitions discussed in
the previous section could be implemented in real circuit QED
architectures. So we use the simplest consistent dissipation
approaches available in the literature to evaluate numerically
the dynamics during the time scales of interest.

We consider independent reservoirs for different processes,
such as dissipation and pure dephasing. Moreover, we assume
that their correlation times are much shorter than the system
relevant time scales, virtually zero so that we can treat the noise
in the Markovian limit. Applying the Davies-Spohn theory
[58], we can consider that in a given time window the bath
sees the system as if it was governed by a time-independent
Hamiltonian and if such a time window is larger than the
typical correlation time of the bath, then the bath acts on
the system as if it was governed by a time-independent
Hamiltonian, time interval after time interval. If the transition
frequencies of the system are all different for any pair of
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eigenstates of HRg(t), which is true for the examples discussed
below, then at zero temperature the master equation reads [54]

Lrp = D[Z ¢l|l><ll]ﬁ + D TE DU (k1A
[

1.kl

+ ) (T 4+ TODII (k]15, (28)
L k>1

where D[0]p = 120507 — 010p — pO10) is the Lind-
bladian superoperator and we use the shorthand no-
tation |/) to denote the time-dependent eigenstates of
Hg(r), where the index [ increases with the eigenenergy
Ai(¢). The time-dependent parameters of Eq. (28) are de-
fined as @' = [y,(0)/2]'"*c!, T} = yp(Aw)lot¥|?/2, T =
k(Ag)|a™*|?, and Fi,k = y(Ak1)|6£k|2. Here «(w), y (@), and
ve (7o) are the dissipation rates corresponding to the resonator
and qubit dampings and dephasing noise spectral densities at
frequency @ ; we also defined the time-dependent quantities
Agy = h(1) = (1), ol = (116-1k), a'* = (I|(a + a%)|k), and
ot = (1|64 + 6)Ik).

From the lowest-order approximate expressions for the
eigenvalues and the eigenstates [consider equations (7)—(12)],
we see that for e < max{gp,A_} the time-dependent eigen-
values and eigenstates are very close to the time-independent
ones evaluated at the bare-qubit frequency €2¢. In this paper we
assume a small modulation depth and gy < wy, 2, hence in
the ME (28) we can use the lowest-order time-independent
Rabi eigenvalues and eigenstates given by Egs. (7)—(12)
[59]. Moreover, we do not restrict our analysis to a specific
model for the reservoirs’ spectral densities and make the
simplest assumption that the dissipation rates are zero for
@ < 0 and take on constant values «, y, and y, for @ > 0.
Since our primary goal is to study the photon generation
from vacuum, such an assumption is the most conservative
with regard to the spurious generation of excitations due to
dephasing [54,60,61]. Besides, eventual random fluctuations
in the modulation frequency may be treated as additional
dephasing noise [54,60], so the simultaneous inclusion of k, y,
and y, covers the most common experimental situations.

The numeric integration of the master equation (28) with
the approximate Rabi eigenstates |R;) is still cumbersome
from a practical viewpoint, so we also evaluate the kernel
Lyc in which one uses the time-independent Jaynes-Cummings
eigenvalues and eigenstates obtained by setting§; = A =& =
01in Egs. (7)—-(12). It will be shown that in our examples, where
A =~ (.02, these two approaches give almost indistinguishable
results, which are qualitatively similar to the prediction of
the phenomenological “standard master equation” of quantum
optics (in whose microscopic derivation one assumes that the
qubit and resonator do not interact [62]),

P

Lpnp =«Dlalp +yDl6-1p + %D[ﬁz]ﬁ, (29)

with constant dissipative rates «, ¥, and y,. So the knowledge
of regimes in which £ ph provides the same results as L may
be important for future studies where the numerical evaluation
of Ly or Lyc is prohibitively complicated.
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time (us)
00 14 28 42 56

7.0

8.4

25 30

FIG. 1. Time behavior of (a) average photon number (7}, (b)
Mandel’s Q factor, and (c) the atomic excitation probability P, in the
resonant regime for the modulation frequency 7 = 2wo + gov/2 —
v(t) and initial state |g,0). The black lines correspond to the unitary
evolutions, whereas the red, blue, and green lines correspond to
the three dissipative models characterized by L,;, Lyc, and Lg,
respectively. The three dissipative models give almost the same
results. The inset in (a) displays the photon statistics at the time
instant 8¢ = 10 under the dissipative kernel L.

IV. NUMERICAL RESULTS

We verified the feasibility of photon generation from
vacuum via Landau-Zener sweeps of the modulation frequency
in actual circuit QED setups by solving numerically the
master equation (27) for the kernels ﬁR, ﬁJC, and ﬁph. We
considered the standard value of wy/2m = 8 GHz for the
cavity frequency, the realistic qubit-field coupling strength
go/wo = 4 x 1072, and the currently available dissipative rates
Kk =10"%gg, ¥y = yp = 7 x 107*g( [63-65].

In Fig. 1 we exemplify the implementation of the
transition |g,0) — |R, 4+) in the resonant regime for the
parameters: A_ =0, eg = 0.01 x Qq, n = 2wy + g()\/_—
v(t), where v(t) = —88 + (ﬂ2/2)t and 8 = gOSQ/(Z«/EAJr).

PHYSICAL REVIEW A 93, 052505 (2016)

time (us)

FIG. 2. Behavior of (a) (1), (b) Q, and (c) P, for the coupling
between the states |g,0) — |R,_p) in the dispersive regime and
modulation frequency n = A, —2(6_ — 84) + 4o — v(¢). For the
dissipator L;c we also show the probabilities P,, = Tr(|e,n)(e,n|p)
(a) and the photon statistics for ft = 32 [inset in (c)].

We plot the average photon number (7i), Mandel’s Q-factor
0 = [((AA)*) — (A)]/(A) (that quantifies the spread of the
photon number distribution) and the atomic excitation prob-
ability P, = Tr[|e)(e|p]. In the ideal case the system ends
up approximately in the dressed state |R, ). Under realistic
conditions the photon generation from vacuum persists for
initial times, but later the system decays to the ground state
associated with the kernel £ because the external modulation
goes off-resonance. We notice that the predictions of different
dissipation models are quite similar in this example so for an
estimative of the time behavior one can employ the simplest
phenomenological master equation. In the inset we show the
photon statistics evaluated at the time interval 8¢ = 10 for the
dissipator Lg, which confirms that one or two photons could
be measured with roughly 70% probability.

In Fig. 2 we consider the transition |g,0) — |Ry _p)
in the dispersive regime for the parameters: A_ = 9g,
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eq=0.04 x Q, n=A4 —2(6- — 1) +4a — v(t), where
v(t) = =8B + (B2/2)t and B = goeq/2A . Under the unitary
evolution one would generate approximately the state |e, 1),
but the dissipation alters dramatically such behavior due
to successive couplings |R; p) — |R3 _p), |Rap) = |Rs._p)
(roughly |g,1) — |e,2) and |g,2) — |e,3)) induced by the
modulation for long times, whereas the transitions | Ry _p) —
|R;p)and |R3 _p) — |R, p) are caused by dissipation. These
additional transitions are tested by plotting the behavior
of probabilities P,, = Tr[|e,n)(e,n|p] obtained from the
kernel Ljc [Fig. 2(a)]; they can be avoided by sweeping the
modulation frequency in the opposite direction v(¢) — —v(¢)
since in this case the transition |R;p) — |R3 _p) becomes
off-resonant for longer times. In the inset of Fig. 2(c) we
show the photon statistics obtained from the kernel Lyc for the
time instant 8¢ = 32, which proves that two photons could be
observed experimentally. Again we notice that the predictions
of the kernels Ljc and Lg are almost indistinguishable and
qualitatively identical to the predictions of £,;. So in the
remainder of the paper we will only employ the dissipators

time (us)
00 20 41 6.1 81 101 122
(a) . . : : : .
44
A L. unitary
C 2_
A4
ﬁph
O T T T T T 1

0O 5 10 15 20 25 30

0 5 10 15 20 25 30
pt

(c) time (us)
00 20 41 61 81 101 122
0.10 T T T T T T T T T T T 1
Pe

L

0 5 10 15 20 25 30
Bt

FIG. 3. Coupling of states |g,0) — |Ry. p) in the dispersive
regime for the modulation frequency n = 2wy + 2(6- — 6+) — 4o —
v(t). The inset in (b): photon statistics under the unitary evolution for
the time instant 8t = 25.
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ﬁJc and £ ph as the evaluation of L r becomes too demanding
for a large number of excitations.

In Figs. 3 and 4 we consider multiple transitions |g,0) —
|Ro.p) (k= 1,2,...)1n the dispersive regime for the parame-
ters of Fig. 2 and the modulation frequency n = 2wy + 2(6- —
84) —da — Sv(t), where v(t) = [88 — (B?/2)t], S = %, and
B =38_eo/v2A.. For these parameters we have 8/a ~ 0.9,
so from the Hamiltonian (22) we expect Landau-Zener
transitions among several dressed states during each avoided
crossing. In Fig. 3 we set S = +, so only the states |Ry p)
with k ~ 1 may become populated from the initial vacuum
state as can be seen from the plots. In the ideal case the atom
acquires a small probability of excitation, and up to six photons
are created with non-negligible probability—this is shown in
the inset of Fig. 3(b) where the photon statistics is displayed
for the time instant 8¢ = 25. Besides, the created field state
is nonclassical and quite different from the usual squeezed

time (us)

0.0 4.1 8.1 12.2 16.2

FIG. 4. Similar to Fig. 3 but for the modulation frequency n =
2wy + 2(6- — 84) — 4o + v(t). (a) and (b) Time behaviors of (/i)
and Q under different dissipators where the green lines labeled “n =
const” correspond to harmonic modulation with constant frequency
adjusted to maximize (7). The inset in (a): photon statistics for St =
10 under dissipator Ljc. (¢) Photon statistics under unitary evolution
for two time instants: Sz = 15 and 30.

052505-6



EFFECTIVE LANDAU-ZENER TRANSITIONS IN THE ...

vacuum state created during standard DCE as corroborated
by the negative values of the Q factor (recall that for the
SVS one has Q = 1 + 2(1)). In the presence of dissipation
the system tends to the ground state for long times since
the modulation becomes off-resonant. Still it is possible to
measure a meaningful average photon number (/i) ~ 2 on the
time scales of a few microseconds.

When & = — one can generate a quite large amount of
photons from vacuum in the ideal case since the system
undergoes successive Landau-Zener transitions towards the
higher-energy dressed states. This is illustrated in Fig. 4.
For adiabatic variation of 1 only a few photon states are
populated at a time [see Fig. 4(c) for the photon statistics
at the time instants Bt = 15 and 30], which is reflected
in the sub-Poissonian photon statistics for long times. The
amount of created photons can substantially exceed the average
photon number achievable for the harmonic modulation with
constant frequency [27,28] [green lines in Figs. 4(a) and 4(b)
for which n was found numerically to optimize the photon
generation]. Our numerical simulation of dissipation is not
accurate for large photon numbers, so we only show the
dissipative dynamics for St < 21. The differences between
the predictions of kernels Lyc and £, become significant for
(A1) Z 4 due to the differences in the available decay channels,
but the overall behavior is qualitatively similar. Our results
demonstrate that several photons can be generated on the time
scales of a few microseconds, but the dissipation modifies the
photon statistics to super-Poissonian [see the inset in Fig. 4(a),
evaluated at the time instant 8¢ = 10 for the kernel L;c].

Finally, in Fig. 5 we study the transitions between the
dressed states |R, +) — |R,,—) in the dispersive regime for
n < M, which roughly correspond to the transitions |g,n) —
le,n —1). We consider the initial state |g,o«), where |o)
denotes the coherent state with o = +/4.5. Other parameters
are as follows: A_ = 10gg, eq/wy=4x 1073, n=A_ +
2M(5_ — 8.) — v(t), where v(t) = =78 + (B*/2)t, M = 4,
and B = goeq/A_. As expected, the dissipation strongly af-
fects the dynamics since excitations are lost to the environment
from the very beginning and the slow modulation is unable to
create additional excitations. To confirm the selective Landau-
Zener sweeps between states {|R, +),|R, —)} in Figs. 5(c) and
5(d) we show the time evolution of the probabilities P, , =
Tr(|g,n)(g,n|p), which change one at a time from the initial
value to roughly zero (P, , also undergoes fast oscillations
due to the dispersive exchange of excitations between the
field and the qubit). For n > M the probabilities P, , are not
affected by the perturbation since the corresponding avoided
crossings are not swept during the frequency variation [for
the frequency change in the opposite directions v(¢) — —v(t),
only the states withn > M would be affected]. Although under
dissipation the occurrence of the Landau-Zener transitions is
almost completely washed out in the behavior of (7) [Fig. 5(a)],
the atomic excitation probability P, still preserves the charac-
teristic Landau-Zener plateaus, which are transformed into
peaks due to the damping [Fig. 5(b)].

V. DISCUSSION AND CONCLUSIONS

In this paper we have discussed a simple scheme to achieve
photon generation from vacuum due to the counter-rotating
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FIG. 5. Coupling of states |R, ) — |R, ) for n <4 in the
dispersive regime for the initial state |g,«) and modulation frequency
n=A_+4+2M(_ — ;) — v(t).(a)and (b) Time behavior of (7i) and
P, under different dissipators. (c) and (d) Behavior of probabilities
Py, =Tr(|g,n){g,n|p) under the unitary evolution and the kernel
L i, respectively.

terms in a time-dependent Rabi Hamiltonian where a suitable
perturbation characterized by a sinusoidal time dependence
with a slowly changing frequency is present. Because of this
frequency change the perturbation intercepts several resonance
frequencies of the system (described by the time-independent
Rabi Hamiltonian) and can induce a single or a series of
Landau-Zener processes that allow for populating the upper
levels starting from the ground state. This scheme then works
quite well without the need to know accurately the resonant
unperturbed frequencies of the system nor accurately adjusting
the shape of the modulation frequency. Besides, it is only a
little sensitive to the duration of the external perturbation. The
latter property is related to the fact that, provided the diabatic
energies (i.e., the diagonal Rabi-basis matrix elements) in
the effective Hamiltonians vary in a sufficiently wide range
and with a sufficiently low speed, each Landau-Zener process
essentially leads to the same final result, irrespective of the
specific range and speed.

It is worth noting that although we considered the mod-
ulation of the atomic transition frequency, our method can
easily be extended to the time variation of the atom-field cou-
pling strength or both. Moreover, the effective Hamiltonians
deduced here are valid for arbitrary variation of the modulation
frequency. So our results can be employed to propose protocols
that optimize, for instance, the photon production or generation
of specific entangled states, although in these cases one would
need precise knowledge of the system spectrum and to control
accurately the duration of the perturbation.
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We showed that the effective Landau-Zener transitions
could be implemented for current parameters of dissipation
provided one maintains the modulation for a time interval on
the order of microseconds with relative modulation strength
of a few percent. For consistent description of the experi-
mental results the dissipation must be necessarily included
because it alters significantly the unitary behavior due to
the additional transitions between the system eigenstates
induced by the combined action of dissipation and coher-
ent perturbation. It is remarkable that the predictions of
the phenomenological quantum optical master equation are
qualitatively similar to the predictions of the microscopic
dressed-picture master equation, and in many situations both
predictions are almost indistinguishable (this is typical in
the weak damping limit). This means that one can use the
simpler phenomenological master equation to get a crude

PHYSICAL REVIEW A 93, 052505 (2016)

estimation about the overall behavior. The effect of random
fluctuations of the modulation frequency can be incorporated
into our approach as additional pure dephasing, so one
does not expect major qualitative differences in this case.
Therefore we hope that our protocol will facilitate the hitherto
missing experimental observation of DCE due to a single
qubit.

ACKNOWLEDGMENTS

A.V.D. would like to thank the Dipartimento di Fisica
e Chimica of Universita degli Studi di Palermo for the
warm hospitality during the visit in winter of 2016. A.V.D.
also acknowledges support from Brazilian agencies Conselho
Nacional de Desenvolvimento Cientifico e Tecnolégico and
Fundac@o de Apoio a Pesquisa do Distrito Federal.

[1] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[2] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

[3] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).

[4] D. 1. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London)
445, 515 (2007).

[5] A. V. Dodonov, J. Phys.: Conf. Ser. 161, 012029 (2009).

[6] A. V. Dodonov, R. Lo Nardo, R. Migliore, A. Messina, and
V. V. Dodonov, J. Phys. B 44, 225502 (2011).

[7]1 A. V. Dodonov and V. V. Dodonov, Phys. Lett. A 375, 4261
(2011).

[8] A. V. Dodonov and V. V. Dodonov, Phys. Rev. A 85, 015805
(2012).

[9] A. V. Dodonov and V. V. Dodonov, Phys. Rev. A 85, 055805
(2012).

[10] A. V. Dodonov and V. V. Dodonov, Phys. Rev. A 85, 063804
(2012).

[11] A. V. Dodonov and V. V. Dodonov, Phys. Rev. A 86, 015801
(2012).

[12] V. V. Dodonov, in Modern Nonlinear Optics, Advances in
Chemical Physics Series, Vol. 119, part 1, edited by M. W.
Evans (Wiley, New York, 2001), pp. 309-394.

[13] V. V. Dodonov, Phys. Scr. 82, 038105 (2010).

[14] D. A.R. Dalvit, P. A. Maia Neto, and F. D. Mazzitelli, in Casimir
Physics, edited by D. Dalvit, P. Milonni, D. Roberts, and F.
da Rosa, Lecture Notes in Physics Vol. 834 (Springer, Berlin,
2011), p. 419.

[15] P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori,
Rev. Mod. Phys. 84, 1 (2012).

[16] C. K. Law, Phys. Rev. A 49, 433 (1994).

[17] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R.
Johansson, T. Duty, F. Nori, and P. Delsing, Nature (London)
479, 376 (2011).

[18] P. Lahteenmaki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen,
Proc. Natl. Acad. Sci. USA 110, 4234 (2013).

[19] S. Felicetti, C. Sabin, I. Fuentes, L. Lamata, G. Romero, and
E. Solano, Phys. Rev. B 92, 064501 (2015).

[20] G. Benenti, A. D’ Arrigo, S. Siccardi, and G. Strini, Phys. Rev.
A 90, 052313 (2014).

[21] J. R. Johansson, G. Johansson, C. M. Wilson, P. Delsing, and
F. Nori, Phys. Rev. A 87, 043804 (2013).

[22] S. Felicetti, M. Sanz, L. Lamata, G. Romero, G. Johansson,
P. Delsing, and E. Solano, Phys. Rev. Lett. 113, 093602 (2014).

[23] R. Stassi, S. De Liberato, L. Garziano, B. Spagnolo, and
S. Savasta, Phys. Rev. A 92, 013830 (2015).

[24] D. Z. Rossatto, S. Felicetti, H. Eneriz, E. Rico, M. Sanz, and
E. Solano, Phys. Rev. B 93, 094514 (2016).

[25] S. De Liberato, D. Gerace, 1. Carusotto, and C. Ciuti, Phys. Rev.
A 80, 053810 (2009).

[26] A. V. Dodonov, J. Phys. A: Math, Theor. 47, 285303 (2014).

[27] 1. M. de Sousa and A. V. Dodonov, J. Phys. A: Math. Theor. 48,
245302 (2015).

[28] D. S. Veloso and A. V. Dodonov, J. Phys. B 48, 165503 (2015).

[29] M. Devoret, S. Girvin, and R. Schoelkopf, Ann. Phys. (NY) 16,
767 (2007).

[30] B. Peropadre, P. Forn-Diaz, E. Solano, and J. J. Garcia-Ripoll,
Phys. Rev. Lett. 105, 023601 (2010).

[31] J. Casanova, G. Romero, I. Lizuain, J. J. Garcia-Ripoll, and
E. Solano, Phys. Rev. Lett. 105, 263603 (2010).

[32] R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and
S. Savasta, Phys. Rev. Lett. 110, 243601 (2013).

[33] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).

[34] C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).

[35] E. Majorana, Nuovo Cimento 9, 43 (1932).

[36] E. C. G. Stuckelberg, Helv. Phys. Acta 5, 369 (1932).

[37] N. V. Vitanov and K.-A. Suominen, Phys. Rev. A 59, 4580
(1999).

[38] T. Chasseur, L. S. Theis, Y. R. Sanders, D. J. Egger, and F. K.
Wilhelm, Phys. Rev. A 91, 043421 (2015).

[39] A. V. Shytov, Phys. Rev. A 70, 052708 (2004).

[40] C. E. Carroll and F. T. Hioe, J. Phys. A 19, 2061 (1986); 19,
1151 (1986).

[41] D. Zueco, P. Hanggi, and S. Kohler, New J. Phys. 10, 115012
(2008).

052505-8


http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1088/1742-6596/161/1/012029
http://dx.doi.org/10.1088/1742-6596/161/1/012029
http://dx.doi.org/10.1088/1742-6596/161/1/012029
http://dx.doi.org/10.1088/1742-6596/161/1/012029
http://dx.doi.org/10.1088/0953-4075/44/22/225502
http://dx.doi.org/10.1088/0953-4075/44/22/225502
http://dx.doi.org/10.1088/0953-4075/44/22/225502
http://dx.doi.org/10.1088/0953-4075/44/22/225502
http://dx.doi.org/10.1016/j.physleta.2011.10.023
http://dx.doi.org/10.1016/j.physleta.2011.10.023
http://dx.doi.org/10.1016/j.physleta.2011.10.023
http://dx.doi.org/10.1016/j.physleta.2011.10.023
http://dx.doi.org/10.1103/PhysRevA.85.015805
http://dx.doi.org/10.1103/PhysRevA.85.015805
http://dx.doi.org/10.1103/PhysRevA.85.015805
http://dx.doi.org/10.1103/PhysRevA.85.015805
http://dx.doi.org/10.1103/PhysRevA.85.055805
http://dx.doi.org/10.1103/PhysRevA.85.055805
http://dx.doi.org/10.1103/PhysRevA.85.055805
http://dx.doi.org/10.1103/PhysRevA.85.055805
http://dx.doi.org/10.1103/PhysRevA.85.063804
http://dx.doi.org/10.1103/PhysRevA.85.063804
http://dx.doi.org/10.1103/PhysRevA.85.063804
http://dx.doi.org/10.1103/PhysRevA.85.063804
http://dx.doi.org/10.1103/PhysRevA.86.015801
http://dx.doi.org/10.1103/PhysRevA.86.015801
http://dx.doi.org/10.1103/PhysRevA.86.015801
http://dx.doi.org/10.1103/PhysRevA.86.015801
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1088/0031-8949/82/03/038105
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/PhysRevA.49.433
http://dx.doi.org/10.1103/PhysRevA.49.433
http://dx.doi.org/10.1103/PhysRevA.49.433
http://dx.doi.org/10.1103/PhysRevA.49.433
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1073/pnas.1212705110
http://dx.doi.org/10.1073/pnas.1212705110
http://dx.doi.org/10.1073/pnas.1212705110
http://dx.doi.org/10.1073/pnas.1212705110
http://dx.doi.org/10.1103/PhysRevB.92.064501
http://dx.doi.org/10.1103/PhysRevB.92.064501
http://dx.doi.org/10.1103/PhysRevB.92.064501
http://dx.doi.org/10.1103/PhysRevB.92.064501
http://dx.doi.org/10.1103/PhysRevA.90.052313
http://dx.doi.org/10.1103/PhysRevA.90.052313
http://dx.doi.org/10.1103/PhysRevA.90.052313
http://dx.doi.org/10.1103/PhysRevA.90.052313
http://dx.doi.org/10.1103/PhysRevA.87.043804
http://dx.doi.org/10.1103/PhysRevA.87.043804
http://dx.doi.org/10.1103/PhysRevA.87.043804
http://dx.doi.org/10.1103/PhysRevA.87.043804
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevLett.113.093602
http://dx.doi.org/10.1103/PhysRevA.92.013830
http://dx.doi.org/10.1103/PhysRevA.92.013830
http://dx.doi.org/10.1103/PhysRevA.92.013830
http://dx.doi.org/10.1103/PhysRevA.92.013830
http://dx.doi.org/10.1103/PhysRevB.93.094514
http://dx.doi.org/10.1103/PhysRevB.93.094514
http://dx.doi.org/10.1103/PhysRevB.93.094514
http://dx.doi.org/10.1103/PhysRevB.93.094514
http://dx.doi.org/10.1103/PhysRevA.80.053810
http://dx.doi.org/10.1103/PhysRevA.80.053810
http://dx.doi.org/10.1103/PhysRevA.80.053810
http://dx.doi.org/10.1103/PhysRevA.80.053810
http://dx.doi.org/10.1088/1751-8113/47/28/285303
http://dx.doi.org/10.1088/1751-8113/47/28/285303
http://dx.doi.org/10.1088/1751-8113/47/28/285303
http://dx.doi.org/10.1088/1751-8113/47/28/285303
http://dx.doi.org/10.1088/1751-8113/48/24/245302
http://dx.doi.org/10.1088/1751-8113/48/24/245302
http://dx.doi.org/10.1088/1751-8113/48/24/245302
http://dx.doi.org/10.1088/1751-8113/48/24/245302
http://dx.doi.org/10.1088/0953-4075/48/16/165503
http://dx.doi.org/10.1088/0953-4075/48/16/165503
http://dx.doi.org/10.1088/0953-4075/48/16/165503
http://dx.doi.org/10.1088/0953-4075/48/16/165503
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1002/andp.200710261
http://dx.doi.org/10.1103/PhysRevLett.105.023601
http://dx.doi.org/10.1103/PhysRevLett.105.023601
http://dx.doi.org/10.1103/PhysRevLett.105.023601
http://dx.doi.org/10.1103/PhysRevLett.105.023601
http://dx.doi.org/10.1103/PhysRevLett.105.263603
http://dx.doi.org/10.1103/PhysRevLett.105.263603
http://dx.doi.org/10.1103/PhysRevLett.105.263603
http://dx.doi.org/10.1103/PhysRevLett.105.263603
http://dx.doi.org/10.1103/PhysRevLett.110.243601
http://dx.doi.org/10.1103/PhysRevLett.110.243601
http://dx.doi.org/10.1103/PhysRevLett.110.243601
http://dx.doi.org/10.1103/PhysRevLett.110.243601
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1103/PhysRevA.59.4580
http://dx.doi.org/10.1103/PhysRevA.59.4580
http://dx.doi.org/10.1103/PhysRevA.59.4580
http://dx.doi.org/10.1103/PhysRevA.59.4580
http://dx.doi.org/10.1103/PhysRevA.91.043421
http://dx.doi.org/10.1103/PhysRevA.91.043421
http://dx.doi.org/10.1103/PhysRevA.91.043421
http://dx.doi.org/10.1103/PhysRevA.91.043421
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/11/014
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1088/1367-2630/10/11/115012
http://dx.doi.org/10.1088/1367-2630/10/11/115012
http://dx.doi.org/10.1088/1367-2630/10/11/115012
http://dx.doi.org/10.1088/1367-2630/10/11/115012

EFFECTIVE LANDAU-ZENER TRANSITIONS IN THE ...

[42] K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P. Hanggi,
Phys. Rev. B 75, 214308 (2007).

[43] P. Ao and J. Rammer, Phys. Rev. B 43, 5397 (1991).

[44] P. Ao and J. Rammer, Phys. Rev. Lett. 62, 3004 (1989).

[45] J.-N. Zhang, C.-P. Sun, S. Yi, and F. Nori, Phys. Rev. A 83,
033614 (2011).

[46] D. M. Berns, M. S. Rudner, S. O. Valenzuela, K. K. Berggren,
W. D. Oliver, L. S. Levitov, and T. P. Orlando, Nature (London)
455, 51 (2008).

[47] Guozhu Sun, Xueda Wen, Bo Mao, Jian Chen, Yang Yu, Peiheng
Wau, and Siyuan Han, Nat. Commun. 1, 51 (2010).

[48] A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo,
Phys. Rev. A 82, 065601 (2010).

[49] S.Fishman, K. Mullen, and E. Ben-Jacob, Phys. Rev. A 42,5181
(1990).

[50] D. Bouwmeester, N. H. Dekker, F. E. v. Dorsselear, C. A.
Schrama, P. M. Visser, and J. P. Woerdman, Phys. Rev. A 51,
646 (1995).

[51] K. Saito, M. Wubs, S. Kohler, P. Hanggi, and Y. Kayanuma,
Europhys. Lett. 76, 22 (2006).

[52] L. Jun-Wang, W. Chun-Wang, and D. Hong-Yi, Chin. Phys. Lett.
28, 090302 (2011).

[53] V. V. Dodonov and A. B. Klimov, Phys. Rev. A 53, 2664 (1996).

[54] E. Beaudoin, J. M. Gambetta, and A. Blais, Phys. Rev. A 84,
043832 (2011).

[55] The Hamiltonian (6) may be used even in the ultra-strong-
coupling regime, provided g, is small with respect to A ..

[56] G. Vacanti, S. Pugnetti, N. Didier, M. Paternostro, G. M. Palma,
R. Fazio, and V. Vedral, Phys. Rev. Lett. 108, 093603 (2012).

PHYSICAL REVIEW A 93, 052505 (2016)

[57] Although the present method is more practical to deduce the
effective Hamiltonian, the approach of Ref. [26] is more suitable
to account for nonlinear effects and to estimate the intrinsic
frequency shifts. Such shifts are irrelevant when v(¢) undergoes
a linear sweep.

[58] E. B. Davies and H. Spohn, J. Stat. Phys. 19, 511
(1978).

[59] In fact, the relative error we make in evaluating the Hamil-
tonian eigenstates under such hypotheses is on the order of
€o/ max{gy,A_} or smaller (from the expressions for cos 6,
and sin 6, it is easy to find out that the relative error is on
the order of e€qgo/A2 in the dispersive regime and €q/go in
the resonant regime), and the relative error in the derivation
of the dissipator is on the same order.

[60] T. Werlang, A. V. Dodonov, E. I. Duzzioni, and C. J. Villas-Bdas,
Phys. Rev. A 78, 053805 (2008).

[61] A. V. Dodonov, Phys. Scr. 86, 025405 (2012).

[62] W. Vogel and D.-G. Welsch, Quantum Optics (Wiley, Berlin,
2006).

[63] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik,
E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, Nature (London) 495, 205 (2013).

[64] D. Riste, M. Dukalski, C. A. Watson, G. de Lange, M. J.
Tiggelman, Y. M. Blanter, K. W. Lehnert, R. N. Schouten, and
L. DiCarlo, Natur (London) 502, 350 (2013).

[65] L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair,
K. M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L.
Frunzio, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf,
Nature (London) 511, 444 (2014).

052505-9


http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevLett.62.3004
http://dx.doi.org/10.1103/PhysRevLett.62.3004
http://dx.doi.org/10.1103/PhysRevLett.62.3004
http://dx.doi.org/10.1103/PhysRevLett.62.3004
http://dx.doi.org/10.1103/PhysRevA.83.033614
http://dx.doi.org/10.1103/PhysRevA.83.033614
http://dx.doi.org/10.1103/PhysRevA.83.033614
http://dx.doi.org/10.1103/PhysRevA.83.033614
http://dx.doi.org/10.1038/nature07262
http://dx.doi.org/10.1038/nature07262
http://dx.doi.org/10.1038/nature07262
http://dx.doi.org/10.1038/nature07262
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1038/ncomms1050
http://dx.doi.org/10.1103/PhysRevA.82.065601
http://dx.doi.org/10.1103/PhysRevA.82.065601
http://dx.doi.org/10.1103/PhysRevA.82.065601
http://dx.doi.org/10.1103/PhysRevA.82.065601
http://dx.doi.org/10.1103/PhysRevA.42.5181
http://dx.doi.org/10.1103/PhysRevA.42.5181
http://dx.doi.org/10.1103/PhysRevA.42.5181
http://dx.doi.org/10.1103/PhysRevA.42.5181
http://dx.doi.org/10.1103/PhysRevA.51.646
http://dx.doi.org/10.1103/PhysRevA.51.646
http://dx.doi.org/10.1103/PhysRevA.51.646
http://dx.doi.org/10.1103/PhysRevA.51.646
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1209/epl/i2006-10232-4
http://dx.doi.org/10.1088/0256-307X/28/9/090302
http://dx.doi.org/10.1088/0256-307X/28/9/090302
http://dx.doi.org/10.1088/0256-307X/28/9/090302
http://dx.doi.org/10.1088/0256-307X/28/9/090302
http://dx.doi.org/10.1103/PhysRevA.53.2664
http://dx.doi.org/10.1103/PhysRevA.53.2664
http://dx.doi.org/10.1103/PhysRevA.53.2664
http://dx.doi.org/10.1103/PhysRevA.53.2664
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1103/PhysRevLett.108.093603
http://dx.doi.org/10.1103/PhysRevLett.108.093603
http://dx.doi.org/10.1103/PhysRevLett.108.093603
http://dx.doi.org/10.1103/PhysRevLett.108.093603
http://dx.doi.org/10.1007/BF01011696
http://dx.doi.org/10.1007/BF01011696
http://dx.doi.org/10.1007/BF01011696
http://dx.doi.org/10.1007/BF01011696
http://dx.doi.org/10.1103/PhysRevA.78.053805
http://dx.doi.org/10.1103/PhysRevA.78.053805
http://dx.doi.org/10.1103/PhysRevA.78.053805
http://dx.doi.org/10.1103/PhysRevA.78.053805
http://dx.doi.org/10.1088/0031-8949/86/02/025405
http://dx.doi.org/10.1088/0031-8949/86/02/025405
http://dx.doi.org/10.1088/0031-8949/86/02/025405
http://dx.doi.org/10.1088/0031-8949/86/02/025405
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1038/nature11902
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1038/nature13436



