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Necessity of an energy barrier for self-correction of Abelian quantum doubles
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We rigorously establish an Arrhenius law for the mixing time of quantum doubles based on any Abelian
group Zd . We have made the concept of the energy barrier therein mathematically well defined; it is related to
the minimum energy cost the environment has to provide to the system in order to produce a generalized Pauli
error, maximized for any generalized Pauli errors, not only logical operators. We evaluate this generalized energy
barrier in Abelian quantum double models and find it to be a constant independent of system size. Thus, we rule
out the possibility of entropic protection for this broad group of models.
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I. INTRODUCTION

Whether it is possible to preserve arbitrary quantum
information over a long period of time is a question of
both fundamental and practical interest. Active quantum error
correction provides a way to protect quantum information
but requires keeping track of and correcting the errors over
a short time scale. Alternatively, quantum self-correcting
systems would passively preserve quantum information in
the presence of a thermal environment without the need for
external intervention on the system. The dynamics of these
quantum “memories” would be such that the probability of an
error occurring on the encoded information is exponentially
suppressed with system size, resulting in an exponentially
long memory time. Candidates for self-correction are typically
systems governed by a local Hamiltonian whose degenerate
ground space stores quantum information.

Assessing whether a system is self-correcting requires
estimating the scaling of its memory time with system size.
This difficult problem is often reduced to evaluating the energy
barrier, loosely defined as the maximal energy of intermediate
states in a sequence of local transformations taking a ground
state to an orthogonal ground state, minimized over all such
possible sequences. This sequence of excited states mimics the
evolution of the system under thermalization and decoding.
The intuition (and implicit conjecture) is that the system
obeys the phenomenological Arrhenius law which relates the
memory time tmem to the energy barrier �E∗ and the inverse
temperature β ≡ 1/kBT :

tmem ∝ eβ�E∗
. (1)

The Arrhenius law is a useful guiding principle. For
classical models, one can intuitively understand the expo-
nentially long (classical) memory time of the ferromagnetic
two-dimensional (2D) Ising model by realizing that its energy
barrier is proportional to the linear system size. Indeed, to
go from the all-up state to the all-down state, one needs
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to flip a macroscopic droplet of spins whose energy scales
with its perimeter. For quantum models, the most widely
known example of a self-correcting quantum memory is the
four-dimensional (4D) Kitaev’s toric code [1–3] whose energy
barrier is also proportional to the linear system size.

The scaling energy barrier of a quantum model is intimately
related to the geometrical support of operators mapping a
ground state to a different orthogonal ground state, called
logical operators. For the 4D toric code, logical operators
are tensor product of single-qubit operators acting on a two-
dimensional sheetlike subset of qubits, similar to the logical
operator of the 2D Ising model which flips all spins.

While the 4D Kitaev’s toric code is self-correcting, it
requires addressable long-range interactions if embedded in
a lattice of lower dimensionality. Various attempts have been
made to decrease the dimensionality of such a self-correcting
code, while retaining a large energy barrier of the system [4–6].
A typical shortcoming of these codes includes sensitivity
to perturbations [7], while genuine topological systems are
known to be robust [8]. Finding a self-correcting system in
three dimensions (or lower) is still an open question.

Following the intuition based on the Arrhenius law, it
is believed that quantum self-correction requires a scaling
energy barrier, i.e., an energy barrier that is an increasing
function of system size. However, a formal relation between
self-correction and a scaling energy barrier has not been
established and the Arrhenius law has only been proven
for a few models while there are known counterexamples.
Moreover, it was recently suggested that there might exist
a different kind of protection [9], one that does not require a
scaling energy barrier, coined entropy protection. The intuition
is that while there exist paths in phase space mapping a ground
state to an orthogonal ground state while only introducing a
constant amount of energy, these paths might not be typical.
Typical paths, however, might require the system to go through
a scaling energy barrier. We could think of such a model
as having an effective free-energy barrier, i.e., there are
free-energy valleys in the landscape between the two ground
states and in order to get out of such a valley the system would
have to overcome an effective barrier.

In 2014, Brown et al. proposed a local 2D Hamiltonian
which seemed to realize entropy protection [10] since its
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memory time exhibits a superexponential scaling, albeit only
in a limited range of temperature. This model consists of a
toric codelike structure, where instead of qubits d-level spins
(qudits) are placed on the edges of a square lattice. This model
also corresponds to the quantum double of Zd . Its elementary
excitations are d different electric and d different magnetic
anyons. Specifically, in Ref. [10] d = 5, and due to charge-flux
duality, it is convenient to think only in terms of, e.g., electric
charges. Then, there are five different charges, grouped as
vacuum, light particle, heavy particle, heavy antiparticle, light
antiparticle. Particle-antiparticle pairs have the same mass,
furthermore, the masses are set such that mheavy > 2mlight to
ensure that thermal evolution of the system favors the decay
of a heavy particle into two light particles. The authors of
Ref. [10] further introduce defect lines to the system by
modifying local terms of the Hamiltonian. When a light
particle crosses such a line, it becomes a heavy one and
vice versa. This construction results in fractal-like splitting of
typical anyon paths, resembling the fractal geometrical support
of logical operators in Haah’s cubic code [11,12]. The authors
of Ref. [10] numerically observed a memory time for this
entropic code similar to the cubic code, that is, it grows super-
exponentially with the inverse temperature [tmem ∝ exp(cβ2)].
A striking difference between the cubic code and Brown’s
entropic code is, however, that while the former has an energy
barrier that grows logarithmically with system size, the energy
barrier of the entropic code is a constant, independent of
system size. Thus, Brown’s entropic code seems to have a
better scaling of memory time than the one predicted by
the Arrhenius law. However, it was also remarked that the
superexponential scaling did not remain valid at arbitrarily low
temperature, i.e., in the limit of very large β. Thus, Brown’s
entropic code argues for the possibility of entropy protection
but failed to settle the question as to whether entropy can
protect quantum information and lead to a better scaling of
memory time than the one predicted by Arrhenius law.

Here, we settle this question in the negative by proving that
a scaling energy barrier is necessary for self-correction for
any quantum double model of an Abelian group, a general
framework which contains Brown’s entropic code. Thus,
entropy cannot protect quantum information in the absence
of a scaling energy barrier for those models. Technically,
we establish a rigorous version of the Arrhenius law as an
upper bound for the mixing time of quantum doubles of
Abelian groups. We prove that the mixing time, defined as
the longest time an initial state takes to thermalize to the
Gibbs state, and thus the memory time are upper bounded by
poly(N ) exp(2βε) where N is the size of the system and ε is the
generalized energy barrier. We rigorously define ε by a natural
quantity arising from our analysis which straightforwardly
extends the intuitive notion of energy barrier. Finally, we
evaluate the generalized energy barrier and show that it is
independent of system size or temperature for two-dimensional
Abelian quantum double models. As our bound holds for any
temperature, this means that Abelian quantum doubles do not
allow for entropy protection, i.e., their memory time can at
most scale exponentially with inverse temperature. Our results
are based on the method presented in Ref. [13] and are a
generalization of the results therein, where the author has
derived a similar Arrhenius law bound and energy barrier for
any commuting Pauli stabilizer codes in any dimensions.

The paper is organized as follows. In Secs. II A and II B, we
introduce the framework of our analysis: the construction of
Abelian quantum doubles and the noise model used to simulate
the thermal environment. In Sec. III, we present our main
result: the upper bound on the mixing time and the formula
for the generalized energy barrier, followed by a discussion on
the physical interpretation of this result in Sec. IV. We present
the details of the derivation of the bound in Sec. V. Finally, we
conclude with possible future directions in Sec. VI.

II. FRAMEWORK

We now introduce the framework in which our result is
valid. First, we introduce the systems of interests, i.e., the
quantum double of Abelian groups. Second, we model the
thermalization of such a system by the Davies map.

A. Abelian quantum doubles

Abelian quantum doubles are a special case of the quantum
double construction introduced by Kitaev [1], where the
quantum double is based on the cyclic group Zd . This was
the model investigated in Ref. [10] with d = 5, and it is
a generalized toric code construction (the toric code is the
quantum double of Z2) acting on d-level spins or qudits.

1. Generalized Pauli operators

We will choose a basis for the Hilbert space of a qudit
to be labeled by orthonormal states {| �〉} where � ∈ Zd

∼=
{0, . . . ,d − 1}. We introduce the generalized Pauli operators
Xk and Zk , k ∈ Zd . They act on a qudit according to

Xk|�〉 = |� ⊕ k〉, (2)

Zk|�〉 = ωk�|�〉, (3)

where ⊕ is the addition modulo d and ω� = exp(i2π�/d),
� ∈ Zd are the dth roots of unity. The eigenvalues of the Z

generalized Pauli operator but also the X generalized Pauli
operator are precisely the dth roots of unity. In our convention,
the identity is a generalized Pauli operator with k = 0. One can
straightforwardly derive the following useful identities:

X† = Xd−1, Z† = Zd−1, Zk′
Xk = ωkk′

XkZk′
. (4)

2. Hamiltonian

We now define the Hamiltonian of the quantum double
of Zd on 2N d-level spins or qudits located on the edge of
a two-dimensional square lattice with N vertices. We define
a (generalized) Pauli operator to be a 2N -tensor product of
single-qudit (generalized) Pauli operator Xk or Zk , k ∈ Zd .
For convenience, we will henceforth omit the (generalized)
modifier. We note PM the set of Pauli operators acting
nontrivially on at most M � 2N qudits. The qudits on which
a Pauli operator acts nontrivially are its (geometrical) support.

The local interactions of the Hamiltonian will be Pauli
operators supported on four qudits neighboring either a vertex
v of the lattice for star operators A(v) or a plaquette p

for plaquette operators B(p) [see Fig. 1(a)]. A star (and a
plaquette) is the union of four edges or, equivalently, qudits
located on those edges. It is convenient to label the qudits
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FIG. 1. (a) Star operator A(v) in blue and plaquette operator B(p)
in red. A defect line is shown as a thick gray line traversing the
lattice, with the modified star and plaquette operators near such a
line in orange. (b) Examples of anyon paths for an Abelian quantum
double (d > 2).

around a star + or plaquette � using the cardinal points: East,
South, West, and North. The star operator A(v) for vertex v is

A(vi) = XE ⊗ XS ⊗ X
†
W ⊗ X

†
N (E,S,W,N ) = +v (5)

and the plaquette operator B(p) for plaquette p is

B(p) = ZE ⊗ Z
†
S ⊗ Z

†
W ⊗ ZN (E,S,W,N ) = �p. (6)

The eigenvalues of star and plaquette operators are the dth
roots of unity, inherited from the single-qudit Pauli operators.
The projector unto the eigenvalue ωa of the star operator at
vertex v is

P a(v)
v = 1

d

d−1∑
k=0

[ωaA(v)]k. (7)

Similarly, the projector unto the eigenvalue ωb of the plaquette
operator at plaquette p is

Qb(p)
p = 1

d

d−1∑
k=0

[ωbB(p)]k. (8)

Note that those projectors commute since every star operator
commutes with every plaquette operator.

The Hamiltonian of the Zd quantum double is [1,10]

H =
∑

v

d−1∑
a=0

J a(v)
v P a(v)

v +
∑

p

d−1∑
b=0

J b(p)
p Qb(p)

p , (9)

where J a(v)
v and J

b(p)
p are non-negative numbers. We set

∀ v,p J 0
v = J 0

p = 0 such that a ground state | �〉 is a common
+1 eigenvector of all P 0

v and Q0
p:

∀ v,p P 0
v | �〉 = Q0

p| �〉 = +|�〉. (10)

The ground space is degenerate whenever this Hamiltonian is
defined on a manifold with nonzero genus. For instance, on a
square lattice with periodic boundary condition, i.e., a torus,
the ground space is d2 degenerate and can be used to encode
quantum information. The positive numbers J a(v)

v and J
b(p)
p

for nonzero a and b can physically be interpreted as masses of
the different excitations of the model, which we now discuss.

3. Excitations and syndromes

Every spectral projector P a(v)
v and Q

b(p)
p are pairwise

commuting. Moreover, they commute with the Hamiltonian.

Thus, it is convenient to label an energy eigenvector | ψ〉 using
the quantum numbers a = {av} and b = {bp} defined by

av = 〈ψ |A(v)| ψ〉, (11)

bp = 〈ψ |B(p)| ψ〉. (12)

Using the terminology of quantum error correction, we define
the syndrome of | ψ〉 by

e(| ψ〉) = (a,b) ∈ ZN+N
d . (13)

Hence, the Hamiltonian can be diagonalized using the different
syndrome values, i.e.,

H =
∑
(a,b)

ε(a,b)
(a,b), (14)

where the explicit formula for the energies ε(a,b) and
projectors 
(a,b) can be found in Sec. V A. Let us try to
draw a physical picture which will help intuition.

The syndrome of an energy eigenvector is a bookkeeping of
the different excitations at every vertex and plaquette. The +1
eigenvectors of P a(v)

v for a(v) = 0 have a pointlike excitation
located on the vertex v which we call an electric charge (or
chargeon) of type a. Similarly, the +1 eigenvectors of Q

b(p)
p for

b(p) = 0 have a pointlike excitation located on the plaquette
p which we call a magnetic flux (or fluxon) of type b. The
ground states of the Hamiltonian have syndrome (0,0).

Physically, the pointlike excitations can (i) be created out
of the vacuum by applying a local operator on a ground state,
(ii) propagate on the lattice, and (iii) annihilate back to the
vacuum by applying a local operator. This can be understood at
the level of the syndrome. Consider on a ground state and then
apply a generalized Pauli operator Xk on a qudit located on a
horizontal edge (see Fig. 2). This will modify the eigenvalues
of the plaquette operators North and South of that horizontal
edge, denoted B(pN ) and B(pS). Indeed, the resulting state
will be a +1 eigenvector of the spectral projectors Q−k

pN
and

Qk
pS

. Physically, Xk created a magnetic flux of type k (resp.
−k) on the South (resp. North) plaquettes. In other words, Xk

created a pair of conjugate magnetic fluxes out of the vacuum.
Similarly, Zk would create a pair of conjugate electric charges
out of the vacuum. We assign to any generalized Pauli operator
ση the syndrome e(η) of the state ση| �〉:

e(η) = e(ση| �〉). (15)

In our examples,

e(Xk) = (a = 0,b = [0, . . . ,0,k,−k,0, . . . ,0]), (16)

e(Zk) = (a = [0, . . . ,0,k,−k,0, . . . ,0],b = 0). (17)

FIG. 2. (a) Anyon pair created from vacuum, (b) one of the anyons
moved, and (c) the pair fused back to vacuum, all the while applying
local operators.
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Given any energy eigenvector | ψ〉 and any generalized Pauli
operator η, the syndrome of the state ση| ψ〉 is obtained
by

e(ση| ψ〉) = e(η) ⊕ e(| ψ〉). (18)

This very simple addition rule stems for the Abelian structure
of the group Zd and is related to the fusion rules of the
excitations of this Abelian topological model.

Fluxons and chargeons turn out to be (Abelian) anyons, i.e.,
quasiparticles which are not bosonic nor fermionic. Yet, their
anyonic nature will not be essential in our work. However,
we will from now on use the term anyon to designate a
generic pointlike excitation (either a fluxon or a chargeon).
Moreover, chargeons and fluxons are related by an exact
duality which maps the lattice to the dual lattice. Thus, it
will often be convenient to focus on a single anyon type, e.g.,
chargeons in order to simplify our discussion and notations.
Also, we would like to introduce a single index s which
labels either the vertices or the plaquettes, i.e., s = v/p.
Thus, any anyon (chargeon or fluxon) is located on a site
(vertex or plaquette).

B. Thermal noise model

The model used in our work to simulate the thermalization
process of the quantum double is the Davies map [14,15], the
gold standard for simulating the thermalization of many-body
systems [3,10,12,16]. The system is coupled to a bosonic bath
and the Hamiltonian of {system+bath} reads as

Hfull = Hsystem + χ
∑

α

Sα ⊗ Bα + Hbath, (19)

where Bα is the operator acting on the bath and Sα ≡ S
j

α′ is an
operator acting on spin j of the system. We consider the weak
coupling limit, with χ � 1.

The density operator of the system, noted ρ, evolves
according to the master equation

dρ

dt
= −i[Heff,ρ] + L(ρ), (20)

where Heff is the (Lamb-shifted) system Hamiltonian Heff =
Hsystem + ∑

α,ω S†
α(ω)Sα(ω) and the Liouvillian is

L(ρ) =
∑
α,ω

γα(ω)

[
Sα(ω)ρS†

α(ω) − 1

2
{S†

α(ω)Sα(ω),ρ}+
]
.

(21)
The operators governing the evolution of the system in energy
space are the spectral jump operators Sα(ω). They take the
system from energy eigenstate ε′ to another eigenstate with
energy ε = ε′ + ω, and have the form

Sα(ω) =
∑

ε(a,b)−ε(a′,b′)=ω


(a,b)Sα
(a′,b′). (22)

They are the Fourier transforms of Sα(t) (the time-dependent
operator acting on the system due to its contact with the thermal
bath):

Sα(t) =
∑

(a,b),(a′,b′)

eiε(a,b)t
(a,b)Sα
(a′,b′)e−iε(a′,b′)t . (23)

The rate with which a state of the system is taken to another
state ω far in energy, by applying the jump operator Sα(ω) due
to its coupling to the thermal bath is the transition rate γα(ω).
These transition rates obey detailed balance

γα(ω) = eβωγα(−ω). (24)

This Liouvillian drives any state towards the Gibbs state

ρG ∝ e−βHsystem (25)

which is its unique fixed point: L(ρG) = 0.
Applying the Davies map to a Zd quantum double we need

to choose an operator basis for the jump operators Sα . For
d = 2, a possible choice is the Pauli group, while for d > 2
it is the generalized Pauli group. We should be careful, since
although the elements of the Pauli group are Hermitian, the
elements of the generalized group are not: X† = Xd−1. We
can circumvent this problem by either writing the interaction
terms in the full Hamiltonian as σj,α′ ⊗ B†

α + σ
†
j,α′ ⊗ Bα with

σj,α′=(l,m) = Zl
jX

m
j , thus Sj,α′ = Zl

jX
m
j as in theZ2 case, or by

constructing Hermitian jump operators: Sj,α′ = 1/
√

2(σj,α′ +
σ
†
j,α′ ). Independent of which choice we make, our results in

the following sections are the same.

III. GENERALIZED ENERGY BARRIER

We establish a formerly ill-defined link between the energy
barrier of a system and its mixing time for Abelian quantum
doubles. We prove a rigorous Arrhenius law upper bound for
the mixing time (Sec. III B, details of the proof in Sec. V),
and give a proper definition for the energy barrier appearing in
that bound (Sec. III A). In Sec. III C, we evaluate this energy
barrier for Abelian quantum doubles in two dimensions and
find it is a constant independent of system size or temperature.

A. Definition of the generalized energy barrier

Recall from the Introduction that the energy barrier is
intuitively related to the decomposition of operators acting
nontrivially within the ground space (logical operators) into
a sequence of local operators. Surprisingly, the generalized
energy barrier arising from our analysis is related to the energy
cost of building an arbitrary Pauli operator. This seems to go
against intuition since an arbitrary Pauli operator ση ∈ P2N can
create an extensive amount of energy. However, excitations
which appear in the final error configuration e(η) created by
the Pauli operator will not contribute towards the generalized
energy barrier: only intermediate excitations created in the
sequential construction of this final error configuration do.
Note that if ση is a logical operator, the generalized energy
barrier coincides with the intuitive energy barrier.

The idea is thus to consider sequences of Pauli operators
{σηt } which sequentially build the operator ση by applying
Pauli operators acting on a single qudit. We call such a
sequence a local errors path. Indeed, we think of η as the
index of the final error which we sequentially build through
single-qudit errors such that the error at step t is indexed
by ηt .
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Definition 1 (Local errors path). A local errors path
{σηt }t�0 is a sequence of Pauli operators such that

σηt=0 = I, (26)

locality ∀ t ∃ P ∈ P1 σηt+1 = Pσηt , (27)

convergence ∃ ση,T t > T ⇒ σηt = ση. (28)

At any intermediate step t � T , the Pauli operator σηt will
create a syndrome e(ηt ) corresponding to a pattern of anyons.
At every site, only the energy of an anyon whose charge is
different from the one in the syndrome e(η) contribute towards
the energy barrier. Formally, we define the additional energy
of the error indexed by ηt with respect to the error indexed by
η in the following way.

Definition 2 (Additional energy). Let ηt and η be indices
of two Pauli operators. The additional energy of the error σηt

with respect to the reference operator ση is

ε(ηt |η) =
∑

s

J es (ηt )
s (1 − δes (ηt ),0)(1 − δes (ηt ),es (η)). (29)

Note that in Eq. (29), summands do not contribute if
es(η

t ) = 0, i.e., if the intermediate error does not create
excitations on site s but also if es(η

t ) = es(η), i.e., if the
intermediate error creates the same excitation on site s as the
reference error ση.

We are now in position to define the generalized energy
barrier of an error ση and then of the Hamiltonian.

Definition 3 (Generalized energy barrier). Let {σηt } be an
arbitrary local errors path converging to the Pauli operator
ση ∈ P2N . The generalized energy barrier of ση is

ε(η) = min
{σηt }→ση

max
t

ε(ηt |η). (30)

The generalized energy barrier of the Hamiltonian H is

ε(H ) = max
η

ε(η). (31)

In the next section, we will now introduce the mixing
time, an upper bound on the quantum memory time, and then
introduce our bound which relates it to the generalized energy
barrier through a formula similar to the Arrhenius law given
in Eq. (1).

B. Arrhenius upper bound on the mixing time

We define the mixing time as the time scale after which the
evolution of any initial state of the system becomes ε = e−1/2,
indistinguishable from the Gibbs state defined by Eq. (25).
The ε = e−1/2 value is chosen so the relationship between
the mixing time and the gap of the Liouvillian will have a
convenient form, and the exact value will not modify either
the qualitative aspect of our calculations or the scaling of the
bound obtained on the mixing time.

Definition 4 (Mixing time). The mixing time of a Liouvil-
lian (whose fixed point is the Gibbs state ρG) is

tmix(ε) = min{t | t ′ > t ⇒ ‖eLt ′ρ0 − ρG‖1 < ε ∀ ρ0}, (32)

with ε = e−1/2,
where we used the trace norm ‖A‖1 = Tr[

√
A†A] to

measure the (in)distinguishability of two quantum states.

Loosely defining the quantum memory time as the maximal
time after which one can recover information about the initial
ground state, we immediately see it is upper bounded by the
mixing time. Indeed, the Gibbs state treats all ground state on
the same footing and thus information about the initial ground
state has disappeared. We do not provide a formal definition
of the quantum memory time in this work.

Our main result relates the generalized energy barrier to the
mixing time through a relation similar to the Arrhenius law.

Theorem 5 (Arrhenius bound on mixing time). For any
Abelian group Zd , for any inverse temperature β, the mixing
time of the Davies map Liouvillian of the quantum double of
Zd is upper bounded by

tmix � O(βNμ(N )eβ(2ε̄+�)), (33)

where 2N is the number of qudits in the system, � is the gap
of the system Hamiltonian, ε̄ is the generalized energy barrier,
and μ(N ) defined by Eq. (36) is the length of the longest
optimal local errors path.

The derivation of this result can be found in Sec. V. We
will now show that for Abelian quantum double, ε̄ is bounded
by a constant independent of system size in Sec. III C and that
μ(N ) is bounded by 8N (d − 1) in Sec. III D. The right-hand
side of Eq. (33) has a dependence on a low power of N , that
does not qualitatively modify the scaling of the mixing time
nor the behavior of the system when considered as a candidate
for a quantum memory. The important physical quality of this
bound is the Arrhenius law scaling. This scaling is set by the
gap of the system Hamiltonian but, more interestingly, by the
generalized energy barrier, which we now evaluate.

C. Generalized energy barrier is a constant for Abelian
quantum doubles

We will now evaluate the generalized energy barrier of any
2D quantum double of an Abelian group and show that it is
a constant, independent of system size, more precisely 2Jmax.
While this was known for the Z2 case [13], we extend it to any
Zd quantum double. From now on, we consider a Zd quantum
double, with arbitrary d. Furthermore, we henceforth omit
the “generalized” modifier in (generalized) energy barrier for
simplicity.

To evaluate the energy barrier of the Hamiltonian, given by
Eq. (31), we want to bound the barrier of an arbitrary Pauli
operator, given by Eq. (30). Thus, we aim to exhibit a local
errors path where the additional energy of any intermediate
error is a constant. To do so, we will use the following strategy.
We will first turn the final error syndrome into a weighted
directed graph intuitively corresponding to the world lines
of anyons. Then, we will decompose that graph into cycles
and trees. Cycles correspond to pairs of conjugate anyons
appearing out of the vacuum, propagating and then fusing back
to the vacuum. Trees represent propagation of anyons, whose
position (resp. world lines) correspond to terminal vertex (resp.
edges) of the tree. Finally, using different techniques for cycles
and trees, we show how to build the error of each type by
moving at most one anyon at a time in a way that the additional
energy of any intermediate error involve at most two local
terms of the Hamiltonian, resulting in an energy barrier of at
most 2Jmax.
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1. Graph corresponding to an error configuration

(i) Any error is the product of elementary errors whose
supports are disjoint. The energy barrier of the error is the
largest energy barrier of its elementary errors. Let us consider
an arbitrary error, i.e., a Pauli operator. Its geometrical support,
i.e., qudits on which it acts nontrivially, splits into connected
components. We can decompose the global operator into a
product of elementary operators, each of which is supported
on one connected component. No terms of the Hamiltonian has
support which intersect two connected components. Thus, we
can choose the local errors path so that elementary errors are
built sequentially. In any intermediate error, there is a unique
elementary error under construction. The other elementary
errors are either not constructed yet, or already constructed. In
either case, they do not contribute towards the energy barrier.

(ii) Any elementary error can be interpreted as anyons
decaying and fusing together, thus forming a fully connected,
directed graph with weighted edges. Due to charge conser-
vation, this graph is a flow. The error is a tensor product of
single-qudit Pauli operators which create pairs of conjugate
anyons out of the vacuum, fuse, and move anyons. Thus, to
every elementary error, we can associate a graph with weighted
edges, often referred to as string nets in the literature. Such a
graph is depicted on Fig. 3.
A terminal vertex, i.e., a vertex of valency 1, is an anyon. It is
convenient to label terminal vertices by their anyonic charge,
i.e., the value of the syndrome of the elementary error on
that site. Other vertices correspond to world lines of anyons.
Vertices are linked by an edge of weight k if the errors between
them correspond to moving an anyon of charge k along the
orientation of the edge. An edge of weight k connecting site i

to site j is equivalent to an edge of weight d − k connecting j

to i.
At this point, we have built a directed graph satisfying weight
conservation at every vertex. Indeed, weight conservation in
the graph is equivalent to charge conservation of the anyons in
this Abelian topological model. Such a graph is called a graph
flow.

2. Decomposing the graph into cycles and trees

We now use a well-known result from flow theory: any
flow can be partitioned into three sets: a rotational and an
irrotational flow and a harmonic component (Helmholtz-
Hodge decomposition) [17]. On this discrete geometry of a
graph, the rotational flow consist of loops (a.k.a cycles), the
irrotational flow consists of trees which can be thought as
union of strings and the harmonic part consist of irrotational
flows on the noncontractible cycles.

This decomposition can be physically interpreted in terms
of anyons which we now do in order to evaluate the energy
barrier. Remember the rules of the additional energy, defined
in Definition 2: an intermediate error has additional energy
if an anyon at a given site is not the anyon created by the
reference error. The goal is now to build the reference error by
introducing as little additional energy as possible.

3. Evaluating the energy barrier

Loops correspond to a particle-antiparticle pair appearing
out of the vacuum, then propagating and eventually fusing back

FIG. 3. Illustration of the steps towards constructing the optimal
canonical path for quantum double Z5: (a) the support of the error can
be partitioned into three connected components, colored in red, blue,
and green; (b) each elementary error can be interpreted as fusions,
decays, and moving of anyons; (c) an elementary error can be mapped
onto a fully connected directed graph with weighted edges (reversing
the orientation of an edge changes the weight from k to d − k); (d)
this can be interpreted as a flow of charges; (e) the flow can be
partitioned into a rotational (blue) and irrotational (red) part; and (f)
these different partitionings of the flow are all equivalent to applying
the same combination of operators in either loops or strings.

to the vacuum. Such a configuration can be created by moving
two anyons. Thus, loops have an energy barrier corresponding
to the energy of two anyons.

We now explain how to construct an error whose support
is a tree. We can consider the tree to be a superposition
of strings, each string corresponding to a pair of conjugate
anyons which has been created out of the vacuum and then
propagated. The terminal vertex of the tree corresponds to
anyons, conveniently labeled by their anyonic charge. For
convenience, choose one of these terminal vertices to be the
root of the tree. Other terminal vertices will now be called
“leaves.” The root is connected to each leaf by a path whose
weight is the anyonic charge of the leaf. Each such path is a
string operator connecting an anyon (at the leaf) to its conjugate
anyon (at the root). See Fig. 4 for a graphical example.

We construct the error corresponding to the tree by itera-
tively choosing a random leaf and then applying the sequence
of generalized Pauli operators which create the correct anyon
at the site of the leaf and then move its conjugate anyon to the
site of the root. We sequentially connect each leaf to the root.
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FIG. 4. Decomposition of a tree into strings for the quantum
double of Z5. The weight of each edge of the graph is represented by
a color coding.

During any step, there will be at most two violations, one for
the site of the conjugate anyon being moved to the site of the
root and one for the anyon at the root which might not have
the anyonic charge it should have in the error configuration.
At the end of the procedure, the charge of the anyon at the
root will be the one it should have in the reference error since
the total anyonic charge of the tree is zero. Thus, trees have an
energy barrier corresponding to the energy of two anyons,
similar to the energy barrier of loops.

We have thus proven the following result:
Theorem 6 (Energy barrier of Abelian quantum doubles).

For any d, the generalized energy barrier ε of the quantum
double of Zd is at most the energy of two anyons, i.e.,

ε(HZd
) � 2Jmax. (34)

D. Length of the local errors path

We have established in the previous subsections that the
optimal local errors path consists of partitioning the error into
a product of errors, each of which is supported either on a
loop or a union of strings. The question remains what is the
length μ(N ), i.e., the number of steps before the local errors
path {σηt } converges to the reference error ση. Formally, define
|{σηt }| to be the number of operators needed to converge to a
reference error ση. We only consider optimal local errors path,
i.e., those which realize ση with the minimal energy barrier.
We then define the optimal local length of an error to be

μ(η) = min
{σηt }→ση

maxt ε(ηt |η)=ε(η)

|{σηt }| (35)

and the quantity which enters in the bound of mixing time,
Eq. (33) is the maximal optimal local length of errors

μ(N ) = max
ση

μ(η). (36)

Note that this is constrained optimization: we choose
to first minimize the energy barrier and then look at the
length of the local errors path realizing that minimum. This
choice is dictated by the fact that the energy barrier enters
the exponential in Eq. (33) whereas the maximal optimal
local length of errors μ is only a multiplicative constant.
Nonetheless, μ is an extensive quantity since for any error,
μ(η) is lower bounded by twice the size of the support of the
error (the factor 2 comes from applying the X and Z parts of
the error independently). Thus, 4N � μ.

However, in order to minimize the energy barrier, a
given qudit could be affected multiple times by single-qudit
operators applied between two intermediate errors. In the
language of graph, a given edge of the graph could belong
to a large number of loops and trees. Indeed, one has to be
careful to avoid such a phenomenon. Here, we will show that
the loop part of the error can be constructed with a path of
length at most 4(d − 1)N while the string part with a path of
length at most 4(d − 1)N , thus, the maximal optimal length is
μ(N ) � 8(d − 1)N .

1. Loops

Given a qubit, we want to bound the number of loops
which act nontrivially on that qudit. A priori, the number of
loops could be very large. However, we can use a simple
procedure to reduce it. The idea is to look at the weight of all
edges overlapping that qudit and to identify subsets of those
weights which sum to 0 modulo d. In that case, we can fuse
the corresponding anyons to the vacuum and get new loops
which do not affect the qudit. We call this procedure merging.
An example of merging is presented on Fig. 5.

This procedure can be repeated on every qudit indepen-
dently. The question is then to bound the number of loops at
the end of merging. In Appendix, we investigate this question
using multiset theory and find that the maximal number of
loops that can remain after merging is d − 1 (see Theorem 9).
Thus, after merging, any qudit belongs to at most (d − 1)
loops of type X and (d − 1) loops of type Z. Since there are
2N qudits,

μloops � 4(d − 1)N. (37)

2. Strings

A union of strings, after removing the loops from the struc-
ture, form a tree with several “leaves,” the leaves corresponding
to the end position of anyons. It will be necessary to introduce
a procedure to “prune the tree,” i.e., decompose a tree into
a superposition of subtrees without introducing new anyons.

FIG. 5. Merging of loops at a qudit initially affected by three
loops for the quantum double of Z5. The weight of each edge of the
graph is represented by a color coding.
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This pruning procedure was not necessary to prove that the
generalized energy barrier is at most 2Jmax, but will prove
useful to bound the length of the canonical path.

The pruning procedure identifies subtrees that can be
removed from the original tree. Those subtrees should have
leaves whose anyonic charge sum to zero modulo d so that they
can be removed without affecting the root. Before identifying
those subtrees, it is convenient to first “fatten the tree” by
connecting every leaf of weight k to the root through a string
of weight k. The pruning procedure then proceeds by visiting
every vertex of the tree (for instance using a post-order depth
first search1). At every vertex of the tree, it checks whether
there exists a subset of edges with zero sum. If so, the pruning
procedure removes the subtree generated by the corresponding
leaves. After visiting every vertex, the pruning stops. The tree
is now decomposed into simple trees.

Simple trees have at most d − 1 leaves since any set of
d anyons contains a subset whose sum is zero modulo d (see
Theorem 9). Their depth is thus bounded by d − 1. Also, every
vertex of a simple tree belongs to at most d − 1 strings.

Thus, after pruning, every qudit belongs to at most (d − 1)
loops of type X and (d − 1) loops of type Z. Since there are
2N qudits,

μstrings � 4(d − 1)N. (38)

E. Effect of defect lines

For Abelian quantum double, it is possible to locally modify
the Hamiltonian in order to introduce defect lines, such as in
the work of Brown et al. [10]. Defect lines are characterized by
an invertible element M ∈ Zd and an orientation. An anyon
of type k ∈ Zd crossing a defect line of type M along the
orientation (resp. against the orientation) will be transformed
into an anyon of type M · k (resp. M−1 · k). What do we
mean by “transformed”? Consider two vertices (v−,v+) on
the lattice, one on each side of the defect line such that the
orientation points from v− to v+. There exists a local Pauli
operator which maps a +1 eigenstate of P k

vi
to a +1 eigenstate

of P M·k
vi

. In other words, an excitation will locally at energy Jk

become an excitation carrying energy JM·k .
In [10], Brown et al. proposed a local 2D Hamiltonian

which seemed to realize entropy protection [10]. This model
is the quantum double of Z5; and due to charge-flux duality,
we are allowed to think only in terms of, e.g., electric charges.
Then there are five different charges, grouped as vacuum, light
particle, heavy particle, heavy antiparticle, light antiparticle.
Particle-antiparticle pairs have the same mass, furthermore
mheavy > 2mlight to ensure that during the thermal evolution of
the system it is favorable for the heavy particles to decay into
two light particles. In order to favor the occurrence of heavy
particles, the authors of Ref. [10] introduced defect lines of
type M = 2 to the system. The star and plaquette terms of the
Hamiltonian near a defect line are slightly modified in this case,
and the modified operators are shown in Fig. 1. This changes
the dynamics so when a light particle crosses such a line, it

1This specific ordering of the vertices allows to find subtrees with
small depth but is not crucial to our argument.

becomes a heavy one and vice versa. Thus, the excitations in
the model are typically light particles which propagate freely
until they eventually cross a defect line, acquire mass, and then
decay into two light particles. It was observed numerically
in [10] that the memory time seems to behave like tmem ∝
exp(cβ2) over some range of parameters but seems to fail for
large β. Can our bound shed new light on this model? To that
end, we now analyze the effect of those defect lines on our
bounds.

1. Syndromes for the Hamiltonian with defect lines

One could wonder whether the definition of the energy bar-
rier given by Eq. (31) should be changed due to the introduction
of defect lines. It does not. However, the Hamiltonian changed
and thus the syndromes of Pauli errors will change too. Given
a Pauli error ξ ∈ P2N , its syndrome with respect to the new
Hamiltonian enew(ξ ) is related to the syndrome enodefectlines(ξ )
it had in the absence of defect lines by simply multiplying the
syndrome by the defect line string T1 ∈ Z2N

d ,

enew(ξ ) = (T1) · eno defect lines(ξ ), (39)

where multiplication is understood ditwise (equivalent of
bitwise for d-ary digits) and modulo d. The defect line string
T1 ∈ Z2N

d is defined for every site s by

(T1)s =
{
M if s near (and on the “−” side of) a defect line,
1 otherwise.

(40)
Therefore, there is a consistent way to get the syndromes

of the quantum double Zd with defect lines, and we can use
this new set of syndromes to work through the same steps
in the derivation as we did for the quantum doubles without
defect lines. These two derivations will essentially be identical,
except for the different definitions of the syndromes, and we
will arrive to the same formula for the energy barrier.

2. Globally consistent labeling of anyon types
in the presence of defect lines

The only remaining question is as follows: Knowing that
the definition of the energy barrier is the same with defect
lines, does the evaluation of the energy barrier detailed in the
previous sections go through the same way? The main issue
is how to label the excitations. Indeed, due to the presence
of defect lines, the local labeling of the anyon type is not
consistent globally.

Here, we explain how to recover a global labeling of anyon
types, under one technical condition we call consistency of
defect lines. We define the consistency of the defect lines of a
model by requiring that when we create a pair of anyons from
vacuum, then take one of them around any loop anywhere on
the lattice, they fuse back to vacuum with each other. Should
that transparency condition be violated, the intersection of
defect lines would become a sink and a source for single
anyons, which we forbid. Furthermore, we do not know how
the Hamiltonian of such a pathological model would be written
in a form similar to Eq. (9).

Thus, we consider consistent defect lines. Our goal is to take
the globally inconsistent, local anyon syndromes which are a
record of the eigenvalues of the A(v) [B(p)] star (plaquette)
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operators at each site, and translate them to a consistent, global
labeling of anyons. This translation is obtained through a
global dictionary T2 ∈ Zd using the formula

eglobal(ξ ) = (T2) · elocal(ξ ), (41)

where the center dot is multiplication ditwise and modulo d.
To define the global dictionary, the idea is to label each region
enclosed by defect lines. The anyon types will be defined in
one (arbitrary) reference region and all other regions will carry
a label to translate the local anyon type within its region to what
it would be in the reference region (global syndrome).

For instance, for Z5, with M = 2 an anyon type a in the
reference region might become a or 2a or 4a or 8a(=3a

mod 5), depending in which region we observe it. We can
name these regions, e.g., L = 1, 2, 4, and 3 in the above
example. Whenever we observe an anyon whose local type is
b in a region with a label L, we know that anyon would have
a local type b′ = L−1b in the reference region (or any trivial
L = 1 region). Thus, the T2 dictionary is defined for every site
by

(T2)s = L−1 for s ∈ region with label L. (42)

3. Evaluation of the generalized energy barrier and maximum
length of the optimal local errors path

Finally, introducing defect lines does not change the
allowed anyon fusion or decay processes either, since the
fusion rules are the same as before in every region. Whenever
a particle crosses a defect line it is essentially just renamed,
i.e., it does not leave behind a charge at the defect line. Using
the fact that the syndromes can be made consistent with the
procedure of tracing all anyons back to the L = 1 regions, any
error can still be mapped onto a graph flow of anyons, and
the plan for constructing any generalized Pauli error described
in Sec. III C still works. Thus, the value of the energy barrier
and the maximum length of the optimal canonical path is
unchanged as well: ε̄ = 2Jmax and μ(N ) � 4N2 + 4(d − 1)N .

Therefore, as neither the definition of the energy barrier
nor the structure of errors nor the optimal canonical path for
a certain error nor the length of this path is changed by defect
lines, the Arrhenius law bound itself is unchanged by the defect
lines.

IV. DISCUSSION

A. Possible improvements

We briefly review some possible improvements on our
bounds, indicate possible avenues to achieve those improve-
ments, and conjecture what the optimal bounds would be. The
polynomial dependence of the Arrhenius bound on mixing
time can probably be improved. Indeed, we expect that better
techniques would allow to get rid of the N prefactor in Eq. (33).
However, the polynomial dependence of the length of the
longest optimal local errors path μ ∼ N is tight since one
can find errors whose lengths are of the order of the number of
qudits. Thus, we expect the mixing time to scale with system
size. The extensiveness of mixing time is coherent with the
intuition that some system relax locally.

However, the quantum memory time might be much
shorter than the mixing time. A dramatic example is the

three-dimensional toric code whose quantum memory time
is constant whereas its mixing time is exponentially long.
Indeed, one of the logical operators is stringlike whereas
the other logical operator is supported on a 2D sheet of
qudits. The expectation value of the sheetlike logical operator
thermalizes in exponential time, whereas the expectation value
of the stringlike logical operator is short lived. We expect the
quantum memory time of 2D Abelian quantum double to be a
constant, independent of system size.

B. Implication for entropy protection

In [10], authors investigate the quantum memory time of
an Abelian quantum double with d = 5 with defect lines. By
tuning the masses of anyons, they obtain a thermal dynamic in
which the typical world lines of anyons have a fractal structure.
Indeed, heavy particles, rather than propagate, will (with
high probability) decay into two light particles propagating
independently, while light particles will eventually cross a
defect line, become a heavy particle (at an energy cost), which
then decays into two light particles. Brown et al. numerically
observe a superexponential scaling of the memory time which
they explain to be the result of this fractal structure of the
world lines of excitations. It is called “entropic protection” as
the world lines only have a fractal structure and thus there is a
scaling energy barrier for a typical world line of anyons. There
are, in fact, world lines taking the system to an orthogonal
ground state with only a constant energy cost, however, the
probability of such a world line is entropically suppressed.

Applying the result of this paper to this model, we can
see that its memory time is upper bounded by a strict
Arrhenius law, with an energy barrier that has no dependence
on temperature or system size, even when including the effect
of permuting type defect lines. Since our bound is valid for any
value of the inverse temperature β, we can see that the exp(cβ2)
scaling observed in Brown’s entropic code needs to break down
for sufficiently low temperatures, as the memory time cannot
exceed our bound. This breakdown at low temperature was
forecasted in [10]. Indeed, for low temperature, the thermal
process resulting in fractal-like world lines of anyons is not
typical anymore since the environment cannot provide the
energy required for a light particle to become heavy. Rather, a
light particle near a defect line will not cross, but linger there
until it meets with another particle and fuse with it either to
vacuum or to a heavy particle. If fused to a heavy particle,
that heavy particle can then cross the defect line and lower the
energy by becoming a light particle.

The low-temperature behavior of Brown’s entropic code
agrees with the fact that our bound does not allow it to have a
better than exponential memory time. The scaling observed in
Ref. [10] is most likely limited to the region discussed there,
and needs to break down for temperatures out of that region.

One question that remains open is whether the super-
exponential behavior they observe is an artifact of their
construction, e.g., of the decoder or a physical property of
the model. Indeed, one could imagine that the introduction of
defect lines does change the thermal behavior of the model over
some temperature region. The superexponential scaling could
then be understood as an entropic enhancement. While this
enhancement does not translate into a qualitatively different
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FIG. 6. Scaling of the logarithm of the quantum memory time
tmem as a function of the inverse temperature β. The quadratic
scaling (tmem ∼ ecβ2

) numerically observed in [10] (represented
schematically by the green curve) cannot extend to arbitrary low
temperature due to our upper bound (in blue). Thus, the super-
Arrhenius behavior (pink dashed line) will transition to an Arrhenius
behavior (black dotted line) for sufficiently low temperature.

scaling at low temperature, it could introduce a multiplicative
gain inside the exponential scaling. This conjectured scenario
is represented on Fig. 6.

Our bound, however, is more general than to only exclude
the possibility of entropic protection for the specific construc-
tion of Brown et al. The result presented in this paper means
that entropic protection does not exist for any Abelian quantum
doubles (with or without permuting type defect lines); in order
to have a self-correcting memory based on such models, one
needs a scaling energy barrier. However, we should remark that
a scaling energy barrier does not always ensure self-correction,
as seen in the example of the welded code [18] which is
expected to have a memory time which is independent of
system size [16].

V. DETAILS OF THE DERIVATION

The derivation of the upper bound and the generalized
energy barrier for the Zd generalized case follow the steps
outlined in Ref. [13] for the Z2 model. Although the approach
for theZd Stabilizer models is very similar to the one presented
in Ref. [13], the derivation differs in several key steps from Z2

due to the increased complexity of the model. In this section,
we present the general approach of the derivation with an
emphasis on the differences from the Z2 case.

To obtain the bound on the thermalization time presented
in Eq. (33), we need to take two steps. First, we bound the
mixing time tmix in terms of the spectral gap λ of the Davies
generator, and then we proceed to prove a lower bound on the
spectral gap λ. To obtain the bound on the mixing time in terms
of the gap, we employ an upper bound to the convergence
in trace norm distance derived in Ref. [19]. For any initial
state ρ0, that evolves according to some semigroup ρt =
exp(tL)ρ0, we can bound the distance to its fixed point ρG as

‖ρt − ρG‖tr �
√
‖ρ−1

G ‖e−λt . Since the Davies generator con-

verges to the Gibbs state ρG = Z−1 exp(−βH ) we find
‖ρ−1

G ‖ = O[exp(c0βN )], with some model-specific constant
c0. Given a lower bound 0 < μ � λ to the spectral gap, this
bound would immediately imply an upper bound to the mixing
time given by

tmix � O(βNλ−1) � O(βNμ−1). (43)

To arrive at a lower bound to the spectral gap of the
generator L, we can make use of a variational expression
for the spectral gap λ. Since the fixed point of L is the
Gibbs state, and we furthermore know that the Davies
generator is Hermitian with respect to a weighted Hilbert-
Schmidt inner product [14,15], we can express the the gap
in terms of two quadratic forms. We define the Dirich-
let form E(f,f ) = −〈f,L∗(f )〉β = −tr[ρGf †L∗(f )] and the
variance Var(f,f ) = tr[ρGf †f ] − |tr[ρGf ]|2. With these two
quadratic forms we can express the spectral gap as

λ = min
f ∈MdN

E(f,f )

Var(f,f )
. (44)

For a simple proof of this identity, the reader is referred to
[19–21]. Hence, any constant μ > 0 serves as a lower bound
to the spectral gap if for all f ∈ MdN the Poincare inequality
μ Var(f,f ) � E(f,f ) holds. Naturally, the largest possible μ

coincides with λ. We will now use this inequality to derive a
lower bound to the spectral gap. Note that this problem can be
rephrased as an inequality for positive-semidefinite matrices.
Since both E(f,f ) as well as Var(f,f ) are quadratic forms
in f , we can define two matrices Ê and V̂ that correspond to
the matrix representations of these forms. Further using the
detailed balance condition, we express E(f,f ) = tr[f †Ê(f )]
and Var(f,f ) = tr[f †V̂(f )], where we have now interpreted
MdN as a Hilbert space with the canonical inner product. In
this case, the spectral gap can be defined as τ = λ−1, where τ

is the smallest positive number so that τ Ê − V̂ � 0, here any
upper bound to τ constitutes a lower bound to the spectral gap.
We perform the following steps to find such an upper bound
to τ and in turn the lower bound μ = τ−1 to the gap. Due
to the similarity to the Z2 case, the reader is referred to [13]
for a more detailed exposition of the steps and proofs of the
lemmata we need. We discuss only the particular differences
to the binary case in detail here.

A. Diagonalizing the Hamiltonian, then deriving the jump
operators of the Liouvillian

Since the quantum double model is comprised of com-
muting projectors, it is straightforward to diagonalize the full
Hamiltonian (9). We diagonalize the pure system Hamiltonian
by labeling the projectors for every subspace in terms of
the error syndromes assigned to different error configurations
introduced in Sec. II A. In order to be able to encode quantum
information into the ground state of this Hamiltonian, a
degeneracy of ground states is required. This can be achieved
by defining the square lattice on a surface with nonzero genus
or by special boundary conditions.

The diagonalized Hamiltonian can be written as

H =
∑
(a,b)

ε(a,b)
(a,b), (45)

with projectors and energies


(a,b) =
(∏

v

P a(v)
v

)(∏
p

Qb(p)
p

)
, (46)

ε(a,b) =
∑

v

J a(v)
v +

∑
p

J b(p)
p , (47)

052337-10



NECESSITY OF AN ENERGY BARRIER FOR SELF- . . . PHYSICAL REVIEW A 93, 052337 (2016)

where P a(v)
v and Q

b(p)
p are the projectors onto different

chargeons and fluxons at vertex v and plaquette p introduced
before, J a(v)

v and J
b(p)
p are the masses corresponding to these

anyons. The eigenstates of this Hamiltonian thus correspond
to different anyon configurations on the lattice, and the
states can be labeled by syndromes of the form (a,b) =
(a1,a2, . . . ,aN ,b1,b2, . . . ,bN ) ∈ ZN+N

d .
The diagonalization of H implies that we can write the

Gibbs state of the system as

ρG =
∑
(a,b)

ρab
(a,b), where ρab = e−βε(a,b)

Z
. (48)

Note that the projectors 
(a,b) are obtained as a Zd Fourier
transform of powers of the star A(v) and plaquette B(p) terms
as defined in Fig. 1(a). We can write


(a,b) = 1

d2N

∑
(x,y)

e
2πi
d

(〈a,x〉+〈b,y〉)σx̄σ̄ȳ, (49)

where σx̄ = Ax1 (1)Ax2 (2) . . . AxN (N ) and σ̄ȳ =
By1 (1)By2 (2) . . . ByN (N ). Observe that we have introduced
new labels x̄ and ȳ, which are linear functions of x and
y, respectively, and are defined by the decomposition
of {Axi (i)} and {Byi (i)} (which act on vertices and
plaquettes) into generalized Pauli operators, i.e., the
{Xx̄j

j }’s and {Zȳj

j }, which act on edges of the model, so

that Ax1 (1)Ax2 (2) . . . AxN (N ) = X
x̄1
1 X

x̄2
2 . . . X

x̄2N

2N = σx̄ and
By1 (1)By2 (2) . . . ByN (N ) = Z

ȳ1
1 Z

ȳ2
2 . . . Z

ȳ2N

2N = σ̄ȳ.
The jump operators of the Davies generator are generated

by generalized Pauli errors acting on a single spin. The
commutation relations of single generalized Pauli’s with the
Hamiltonian projectors (46) are given by

Z
lj
j X

mj

j 
(a,b) = 
(a ⊕ e(lj ),b ⊕ e(mj ))Zlj
j X

mj

j , (50)

where e(lj ) = (0, . . . 0,lj ,−lj ,0 . . . 0) and e(mj ) =
(0, . . . 0,mj ,−mj,0 . . . 0) are length N vectors whose
only nonzero elements correspond to the vertices at the ends
of edge j = (v,v′) and the plaquettes (p,p′) which contain
edge j . Alternatively, e(lj ) [e(mj )] is the syndrome of the

excited state created by applying the error Z
lj
j (X

mj

j ) to the
vacuum state. That excited state contains two conjugate
anyons of charges ±lj (of fluxes ±mj ) located on the vertices
v and v′ [plaquettes (p,p′)] that contain the edge j .

Star and plaquette operators have one east edge E, one south
edge S, one west edge W , and one north edge N . Due to the
construction of these operators: A(v) = {XE ⊗ XS ⊗ X

†
W ⊗

X
†
N ; (E,S,W,N ) ∈ star(v)} for star operators and B(p) =

{ZE ⊗ Z
†
S ⊗ Z

†
W ⊗ ZN ; (E,S,W,N ) ⊂ plaquette(p)} for pla-

quette operators, a horizontal edge j = (v,v′) overlaps with
the X operator of the star operator A(v) west of edge j and the
X† operator of the star operator A(v′) east of j . (Similarly, a
horizontal edge j overlaps with the Z† operator of the plaquette
operator north of j , and Z operator of the plaquette operator
south j .) Therefore, one of the nonzero elements in e(lj ) is
+lj and the other is −lj [+mj and −mj in e(mj )].

Since the generalized Pauli basis is a complete matrix
basis, any one local operator at edge j can be decomposed

as Sj,(l′j ,m
′
j ) = ∑

(lj ,mj )[s]
(l′j ,m

′
j )

(lj ,mj )Z
lj
j X

mj

j . In order to obtain the
jump operators from Eq. (22), we use the commutation
relations (50) and obtain

Sj,(l′j ,m
′
j )(ω) =

∑
(a,b)

∑
(lj ,mj )

Z
lj
j X

mj

j [s]
(l′j ,m

′
j )

(lj ,mj )
(a,b)

× δ[ω − ε(a ⊕ e(lj ),b ⊕ e(mj )) + ε(a,b)],

(51)

where ε(a,b) is the energy of the system before, while
ε(a ⊕ e(lj ),b ⊕ e(mj )) is the energy configuration of the
system after applying the thermal errors. Note that for ease
of notation we have defined δ[x] = 1, whenever x = 0 and
δ[x] = 0 otherwise.

We point out a couple of significant differences from the
Z2 case. First, much like the standard Pauli operators the
generalized Z

lj
j and X

mj

j generate a complete local unitary
matrix basis, so that any local error can be expressed as a sum
of their products. However, these matrices are not Hermitian.

This means that the coefficients [s]
(l′j ,m

′
j )

(lj ,mj ) need to obey special
constraints to ensure Hermiticity of the coupling operators
Sj,(l′j ,m

′
j ). As discussed before, we make the particular choice

that Sj,(lj ,mj ) = 2−1/2(Z
lj
j X

mj

j + H.c.). As we will see, this will
eventually result in terms appearing in the Liouvillian that
are proportional to 1j
(a,b) and terms that are proportional

to Z
2lj
j X

2mj

j 
(a,b). We are familiar with the first kind of
term from the case of Z2 stabilizers. However, the cross
terms Z

2lj
j X

2mj

j 
(a,b) do not vanish automatically unless
we consider a small lift of the accidental degeneracy in the
Hamiltonian spectrum. They disappear when introducing a
small spatial perturbation in the masses of different particles
since the delta function δ[x] vanishes on the slightly perturbed
spectrum.

With these derivations for Sj,(l′j ,m
′
j )(ω), it is in principle

possible to state the Davies generator from Eq. (21) explicitly.
Since the Hamiltonian is comprised of only local commuting
terms, one can verify that after performing the sum over ω in
Eq. (21), one is left with a Lindbladian that can be written as the
sum of local terms as done, e.g., in Ref. [22]. Note, however,
that we are taking another approach, as the representation
mentioned above is not particularly helpful for our derivation
of the spectral gap as it obfuscates the underlying general
algebraic structure. This structure is best understood in terms
of the action of the generator L on a suitable matrix basis.

B. Construction of the Dirichlet matrix
and Ê and the variance matrix V̂

In order to get a good handle on the matrix pair (Ê,V̂), we
need to choose a suitable matrix basis of the space MdN . It
turns out that the canonical choice is also the most suitable.
We define the tensor product of the generalized Pauli matrices
as our basis through

σ̄kσp = Z
k1
1 Z

k2
2 . . . Z

k2N

2N X
p1
1 X

p2
2 . . . X

p2N

2N , (52)

where Z
kj

j and X
pj

j are the generalized Pauli matrices intro-
duced in Eq. (2). This matrix basis is orthogonal with respect
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to the Hilbert-Schmidt inner product, i.e., (σ̄kσp|σ̄k′σp′) ∝
δk,k′δp,p′ . Here, we denote the vectorization of σ̄kσp by |σ̄kσp).

1. Dirichlet matrix

We first turn to the derivation of the Dirichlet matrix Ê since
this matrix proves to be more challenging. Recall the definition
ofE(f,f ) = −tr[ρGf †L∗(f )]. Due to detailed balance, it turns
out to be very useful to investigate the action of the map
−ρGL(. . .) on σ̄kσp.

Before we state the action of the generator on a basis
element, we need to introduce some shorthand notation. For the
syndrome vectors (a,b) and (c,f) and for the error vector (k,p),
corresponding to applying the operator σ̄kσp to the system, we
define the functions

H
(k,p)
(a,b),(c,f) = γ [ω(k,p)(a,b)]δ[ω(k,p)(a,b) − ω(k,p)(c,f)],

H̃
(k,p)
(a,b),(c,f) = γ [ω(k,p)(a,b)] + γ [ω(−k,−p)(a,b)]

+ γ [ω(k,p)(c,f)] + γ [ω(−k,−p)(c,f)].

We have introduced the Bohr frequencies ω(k,p)(a,b) = ε(a ⊕
e(k),b ⊕ e(p)) − ε(a,b). Moreover, it proves convenient to
introduce an additional shorthand for syndromes that are
modified by an additional error as (a,b)(k,p) = (a � e(k),b �
e(p)).

With this notation at hand, we can state an explicit
representation of the action of the generator on the generalized
Pauli basis element, so that

− ρGL(σ̄kσp) =
∑
(a,b)

∑
j,(lj ,mj )

ρab
1

2

(a,b)σ̄kσp

×
(

H
(−lj ,−mj )
(a,b)(k,p),(a,b)e

2πi
d

(pj lj −kj mj )

+H
(lj ,mj )
(a,b)(k,p),(a,b)e

2πi
d

(kj mj −pj lj )

− 1

2
H̃

(lj ,mj )
(a,b)(k,p),(a,b)

)
. (53)

Recall that we can express the projector 
(a,b) in terms of
a Zd Fourier transform over a particular subset of generalized
Pauli operators. This in particular means that we can express
the action of L on any generalized Pauli again as a linear
combination of the same basis elements. Hence, we can read
off the matrix elements in this basis directly. Since the Dirichlet
matrix is essentially given by −ρGL, we can state it directly
in the basis {|σ̄kσp)} and obtain

Ê = 1

d2N

∑
j,(lj ,mj )

∑
(a,b)

∑
(k,p)

∑
(x,y)

e
2πi
d

(〈a,x〉+〈b,y〉)

× e− 2πi
d

〈k,x̄〉|ȳ ⊕ k,x̄ ⊕ p)(k,p|

× 1

2

(
1

2
H̃

(lj ,mj )
(a,b)(k,p),(a,b) − H

(lj ,mj )
(a,b)(k,p),(a,b)θ(k,p),(lj ,mj )

−H
(−lj ,−mj )
(a,b)(k,p),(a,b)θ(k,p),(−lj ,−mj )

)
ρab, (54)

where θ(k,p),(lj ,mj ) = e
2πi
d

(kj mj −pj lj ).

2. Variance matrix

If we now turn to the second matrix V̂ , note that the
variance Var(f,f ) can be interpreted as the Dirichlet form of a
completely depolarizing semigroup on MdN . That is, we can
introduce the depolarizing generator D(f ) = ρGtr[f ] − f , so
that we can write Var(f,f ) = −tr[ρGf †D(f )]. Recall that the
trace can be expressed as a twirl over generalized Pauli ma-
trices as tr[f ] = d−N

∑
kp(σ̄kσp)†f σ̄kσp. This identity proves

quite useful in the derivation of the matrix representation of
Var(f,f ). Following the same approach, as outlined in [13],
we can derive the matrix representation V̂ of the variance much
like the Dirichlet matrix and obtain

V̂ = 1

dN

1

d2N

∑
(ν,κ)

∑
(a,b)

∑
(k,p)

∑
(x,y)

e
2πi
d

(〈a,x〉+〈b,y〉)

× (ρabρ(a,b)(−ν,−κ) − ρabρ(a,b)(−ν,−κ)θ(k,p),(ν,κ))

× |ȳ ⊕ k,x̄ ⊕ p〉 〈k,p|. (55)

3. Dirichlet and variance matrices in the dual basis

Note that the Dirichlet matrix and the variance matrix are
formally very similar. A central difference, however, is that
the sum over (ν,κ) in the definition of V̂ is taken over the
full matrix basis σ̄νσκ = Z

ν1
1 Z

ν2
2 . . . Z

ν2N

2N X
κ1
1 X

κ2
2 . . . X

κ2N

2N . This
is considerably different from the sum over (j,(lj ,mj )) in
the Dirichlet matrix Ê . This sum is constrained to run only
over all local operators acting only on a single site. Hence, V̂
contains considerably more summands than Ê . It is now the
central challenge to show that despite this larger number of
summands, the span of V̂ lies well within the span of Ê and
the matrix can be supported with a small τ . The structural
similarity becomes even more evident when we perform a
convenient basis transformation. We consider the dual basis
of the commuting subgroup generated by the projectors in the
quantum double Hamiltonian

|(a,b)(k0,p0)〉 = 1

dN

∑
(x,y)

e
2πi
d

(〈a,x〉+〈b,y〉)e− 2πi
d

〈k0,x̄〉

× |ȳ ⊕ k0,x̄ ⊕ p0〉. (56)

Note that every dual vector that starts from some particular
reference state labeled by (k,p) is orthogonal to all other
dual states which is not contained within the left action of
the commuting generator group of the Hamiltonian. That is,
every dual space spanned |(a,b)(k0,p0)〉 is orthogonal to the
one spanned by |(a,b)(k′

0,p
′
0)〉 if we cannot find a σ̄ȳσx̄ so that

σ̄k′
0
σp′

0
∝ σ̄ȳσx̄σ̄k0σp0 . Hence, we have a natural decomposition

of the matrix algebra into dual basis sets. Now, we furthermore
introduce the states∣∣−(ν,κ)

ab(kp)0

〉 = 1√
2

[∣∣(a,b)(k0,p0)
〉

− θ(k0,p0),(−ν,−κ)

∣∣(a,b)(−ν,−κ)
(k0,p0)

〉]
, (57)

where θ(k0,p0),(ν,κ) = e
2πi
d

(〈k0,κ〉−〈p0,ν〉), and recall the shorthand
notation (a ⊕ e(ν),b ⊕ e(κ)) = (a,b)(−ν,−κ).

With these vectors at hand, we can write the variance
matrix as the direct sum over the orthogonal sets of the dual
basis vectors as V̂ = ⊕

(kp)0
V̂(kp)0 , where every summand is
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a positively weighted sum of projectors onto the |−(ν,κ)
ab(kp)0

〉 so
that

V̂(kp)0 = 1

dN

∑
(ν,κ)

∑
(a,b)

ρabρ(a,b)(−ν,−κ)

∣∣−(ν,κ)
ab(kp)0

〉〈−(ν,κ)
ab(kp)0

∣∣. (58)

If we transform the Dirichlet matrix into the same dual
basis, we observe the same block-diagonal structure over Ê =⊕

(kp)0
Ê(kp)0 . One central difference to the variance is that the

resulting matrices Ê(kp)0 can not always be expressed as a sum
of projectors. The resulting matrices Ê(kp)0 have more weight
on the diagonal. However, we can find other matrices that lower
bound them in a semidefinite sense so that Ê(kp)0 � Ê ′

(kp)0
,

where Ê ′
(kp)0

is a sum of projectors. Note that when employing
this bound we only worsen our estimate of τ . The lower bound
Ê ′

(kp)0
is now of the desired form so that we can write after a

similar calculation

Ê ′
(kp)0

= 1

4

∑
j,(lj ,mj )

∑
(a,b)

ρabγ (ω(lj ,mj )(a,b))

× ∣∣−(lj ,mj )
ab(kp)0

〉〈−(lj ,mj )
ab(kp)0

∣∣. (59)

C. Bounds on the gap from a comparison theorem
and canonical paths in the matrix algebra

We have constructed the pair (Ê ′,V̂) in a suitable basis.
It is our goal to find a sufficiently small constant τ so that
the positive-semidefinite matrix inequality τ Ê ′ − V̂ � 0 holds.
Since both matrices are jointly block diagonal, we can compare
them block by block, i.e., find τ(kp)0 for every (k0,p0) so that
τ(kp)0 Ê ′

(kp)0
− V̂(kp)0 � 0 and simply choose τ to be the largest

τ(kp)0 . This problem can be solved using a framework which
is called support theory [23,24]. This framework was used in
Ref. [13] to derive an upper bound on τ for a matrix pair,
which is very similar to the one presented here. The fact that
we can generalize Theorem 11 in [13] to quantum doubles is
a consequence of the following observation: We have pointed
out earlier that Ê ′

(kp)0
and V̂(kp)0 are structurally very similar in

that both matrices are positively weighted sums of rank-one
projectors |−(ν,κ)

ab(kp)0
〉〈−(ν,κ)

ab(kp)0
|. The difference, however, lies in

the fact that for Ê ′
(kp)0

we only sum over projectors that
stem from single-site Pauli operators labeled by (lj ,mj ) for
j = 1, . . . ,N , whereas in V̂(kp)0 we sum over projectors that
come from the full generalized Pauli algebra. The sum in V̂(kp)0

is therefore significantly bigger. However, the algebra that can
be constructed in both cases is the same. We can construct
every generalized Pauli σ̄νσκ from the the product of single-site
generalized Pauli so that σ̄νσκ = σ̄l1 . . . σ̄l|ν|σm1 . . . σm|κ| . A
local error path for a generalized Pauli σ̄νσκ is a sequence
of generalized Pauli operators starting from the identity
(ν0,κ0) = 0 with [(ν0,κ0),(ν1,κ1), . . . ,(νt ,κt ), . . . ,(ν,κ)] and
terminating in (ν,κ), so that any subsequent configurations
along the path (νt ,κt ) and (νt+1,κt+1) only differ by a single-
site generalized Pauli operator (see Definition 1). With such a
decomposition of generalized Pauli operators at hand, observe
that any vector |−(ν,κ)

ab(kp)0
〉 can be decomposed in single-site

vectors |−(lj ,mj )
ab(kp)0

〉 as

∣∣−(ν,κ)
ab(kp)0

〉 =
tmax−1∑
t=0

θ(k0,p0),(−νt+1,−κt+1)

∣∣−(lt+1,mt+1)

(a,b)(−νt ,−κt )
(kp)0

〉
, (60)

where the labels (νt+1,κt+1) and (νt ,κt ) differ by the single-site
labels (lt+1,mt+1). This decomposition lies at the center of the
comparison Theorem 11 in Ref. [13].

In order to state the result of this comparison theorem,
we need to define quantum canonical paths. Observe that the
decomposition in Eq. (60) not only depends on the partially
constructed Pauli, but also on the syndromes, or the excitations
the path starts from initially. To obtain a valid decomposition,
we need to keep track of the excitations as well. We therefore
define a quantum canonical path to consist of a series of labels

η̂(a,b) = [{(a,b),0},{(a,b)(−ν1,−κ1),(ν1,κ1)},
. . . {(a,b)−η,η}], (61)

where the first of the labels (a,b) correspond to syn-
dromes (excitations) and the second label η = (ν,κ) corre-
sponds to a partially constructed generalized Pauli operator.
While edges correspond to single-qudit errors present in
the Dirichlet form, the whole path corresponds to a gen-
eral error appearing in the variance. That is, at each link
ξ̂ = [{(a,b)(−νk,−κk ), (νk,κk)}, {(a,b)−(νk⊕lk+1,κk⊕mk+1), (νk ⊕
lk+1,κk ⊕ mk+1)}] two subsequent Pauli operators differ only
by a single-site operator. Assume now we choose for every
syndrome (set of excitations) (a,b) and every generalized
Pauli η a canonical path η̂(a,b). Even though the quality of
the bound strongly depends on the particular choice of this
decomposition, we acquire valid bounds for any choice of
η̂(a,b). We have now all components in place to follow the
proof of Theorem 11 in Ref. [13]. With a simple additional
bound on the maximum length of canonical paths, we obtain
the upper bound on τ as

τ � max
ξ̂

4μ(N )

dNρabγ (ω(l,m)(a,b))

∑
η̂(a′ ,b′ )�ξ̂

ρa′b′ρ(a′,b′)−η . (62)

The maximum is taken over all possible edges ξ̂ . The sum
is taken over all canonical paths η̂(a′,b′) that traverse the edge
ξ̂ . That is, we sum over syndromes (a′,b′) and errors η that
contain the edge ξ̂ in their canonical path η̂(a′,b′). Moreover,
observe that the bound also depends on the length μ(N ) of the
largest canonical path which has been analyzed in Sec. III D.
We pause to observe that this bound is very similar to the
canonical paths bound for graph Laplacians as given derived
in [20,21,25]. However, this bound has been obtained for a full
quantum mechanical semigroup and the paths are constructed
from the multiplication rules of a matrix algebra.

D. Evaluation of the bound and the generalized energy barrier

The similarity of this bound to the classical canonical
paths gives rise to a convenient way of evaluating the upper
bound in Eq. (62). We use the approach introduced in
Ref. [25]. To evaluate the bound we need to introduce a
map �ξ that maps any η̂(a,b) that makes use of the link ξ̂ =
[{(a,b)−ξ ,ξ},{(a,b)−(ξ⊕(l,m)),ξ ⊕ (l,m)}] to a corresponding
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Pauli. We define this map through

�ξ (η̂(a,b)) = η � ξ . (63)

Note that this map from the set of paths into the set of
generalized Paulis is injective. This means that given the edge
ξ̂ and the image �ξ (η̂(a,b)) we can trivially recover the path
through η = �ξ (η̂(a,b)) ⊕ ξ and the error syndrome (a,b) since
this pair uniquely identifies a path. We can now apply the
argument of Ref. [25] and try to find a constant ε so that for
all edges ξ̂ and all paths η̂(a,b), the following inequality holds:

ρa′b′ρ(a′,b′)−η

γ (ω(l,m)(a,b))ρab
� exp(2βε̄)

γ ∗ ρ(a′,b′)�ξ (η̂(a′ ,b′ ) ) . (64)

We have denoted γ ∗ to correspond to the smallest value of
γ (ω(l,m)(a,b)) over all permitted transitions. Such a constant
can be found and we define

ε = max
η̂(a′,b′ )

ε(η̂(a′,b′)), (65)

where for every error we have that

ε(η̂(a′,b′)) = max
ξ̂∈η̂(a′ ,b′)

[ε((a′,b′)−ξ ) + ε((a′,b′)ξ�η)

− ε((a′,b′)) − ε((a′,b′)−η)]. (66)

In fact, the constant ε was chosen directly so that the inequality
above is satisfied for all paths and all edges. This inequality
can be now used to estimate an upper bound to Eq. (62), and
we find that for all ξ̂

τ � 4μ(N )

γ ∗ exp(2βε̄) max
ξ̂

∑
η̂(a′b′)�ξ̂

ρ(a′,b′)−�ξ (η̂(a′b′) )

dN
. (67)

Since the map �ξ is injective for every edge ξ̂ , we can only
reach a subset of all generalized Pauli operators. Hence, we
may bound the sum over this subset by summing over every
generalized Pauli, so that we may bound

∑
η̂(a′b′)�ξ̂

1

dN
ρ(a′,b′)−�ξ (η̂(a′b′) ) �

∑
everyη

1

dN
ρ(a′,b′)−η = 1. (68)

The last equality follows from the representation of the trace,
as presented in step 2 of this section and an argument taken
from [13], Sec. IV. Since this bound is independent of the
choice of edge ξ̂ , we obtain the convenient bound on τ that
only depends on the generalized energy barrier and the length
of the longest path

τ � 4μ(N )

γ ∗ exp(2βε). (69)

On first sight, this bound looks identical to the bound that
was obtained for Z2 stabilizers. However, the generalized
energy barrier is quite different. It does reduce to the one
defined in [13], when we set d = 2, but the advance is that it
now holds for all possible Abelian quantum double models. If
we substitute the energies ε((a,b)) as defined in Eq. (47), we

obtain

ε(η̂(a′,b′)) = max
ξ̂∈η̂(a′ ,b′ )

[∑
v

(
J a′−ξel

v + J a′ξel�ηel

v − J a′
v − J a′−ηel

v

)

×
∑

p

(
J b′−ξf

p + J b′ξf �ηf

p − J b′
p − J b′−ηf

p

)]
. (70)

We can write (a′,b′) = (a,b) � e(ξ ) and similarly a′ = a �
e(ξel), b′ = b � e(ξf ), where ξel , ηel , ξf , ηf are the electric and
magnetic parts of the errors: ξ = (ξel,ξf ) and η = (ηel,ηf ).
ξel (ηel) is understood as σ̄ξel

(σ̄ηel
) error applied to a state,

while ξf (ηf ) stands for applying the σξf
(σηf

) error. This is
a direct consequence of the charge-flux duality. We observe,
that the charge and flux contributions behave identically at a
formal level and the contribution to the energy barrier can be
seen as the sum of both these contributions, i.e., ε(η̂(a′,b′)) =
εa(η̂(a′,b′)) + εb(η̂(a′,b′)). It therefore suffices to only discuss
one sector, i.e., either the chargeon of the fluxon part of the
model from now on and we write

εa(η̂(a′,b′)) = max
ξ̂∈η̂(a′ ,b′ )

∑
v

(
J a′−ξel

v + J a′ξel�ηel

v − J a′
v − J a′−ηel

v

)
.

(71)

We can evaluate this barrier as follows: We can write
J α

v = ∑
z J z

v δz,α for convenience. To this end, we can express
Eq. (71) as

εa(η̂ab) = max
ξ

d−1∑
v : z=0

J z
v (δz,av⊕ev (ξ ) − δz,av

+ δz,av⊕ev (η)�ev (ξ ) − δz,av⊕ev (η)). (72)

Even though this expression (and the following expressions)
directly only incorporates the electric sector, i.e., ξ = ξel and
η = ηel above, it is still the complete energy barrier. Due to the
charge-flux duality, we can construct the electric and magnetic
errors one after the other, therefore, at any time we need only
to look at one of the sectors.

In order to evaluate this barrier, we need to consider several
different scenarios in order to express this equation more
conveniently. The different cases correspond to different values
of ev(ξ ) and ev(η) and are summarized in Table I. The value
inside the parentheses of course depends on the relative value
of av and z. Our goal is to get a bound that holds for all possible
av starting configurations, thus, we maximize expression (72)
as a function of av . In order to achieve that maximum, we
have chosen the relative value of av and z such that it gives the
highest possible value in each case.

TABLE I. Here, p = q, p = 0, q = 0.

ev(ξ ) ev(η) Sum of δ’s z

0 0 0 Any
p p 0 Any
0 p 0 Any
p 0 1 av ⊕ ev(ξ ) or av � ev(ξ )
p q 1 av ⊕ ev(ξ ) or av � ev(ξ ) ⊕ ev(η)
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The case-to-case scenario shown in Table I can be summa-
rized in one simple formula, and we can rewrite the sum of the
Kronecker symbols as the more convenient expression

δev (ξ ),0 · δev (ξ ),ev (η)(δz,av⊕ev (ξ ) + δz,av�ev (ξ )⊕ev (η)), (73)

where δx,y = 1 − δx,y = {0 if x = y; 1 if x = y}.
Using this formula, considering that for a canonical path η̂a

we can consider the edge ξ = ηt as the partially constructed
Pauli operator at some step t . To this end, we need to consider
for every η̂a the largest contribution along the path and
therefore have to maximize this value for the largest value
t . With this substitution, the contributions εa(η̂) look like

ε(η̂) = max
t

(
max
z,v′

J z
v′
) ∑

v

δev (η̄t ),0 · δev (η̄t ),ev (η), (74)

i.e., the energy barrier is the maximum energy cost the
environment has to provide to the system during any canonical
path which constructs the error configuration η. However, since
this energy barrier upper bounds the mixing time, in order to
get a better upper bound we may choose the canonical path
wisely, i.e., so it gives a smaller energy barrier. The reader
will observe that this energy barrier corresponds exactly to
the one that was analyzed in detail in Sec. III of this paper.
We point to a notable difference to the analysis of only Z2

models. In these models, only those sites contribute where the
charge disappeared to vacuum, while for the d > 2 general
cases, a site contributes even if the anyon does not completely
disappear at the end of the canonical path, but it changes to an
anyon characterized by a different syndrome, be it the vacuum
or anything else.

This energy barrier gives a valid bound on the mixing
time for all choices of canonical paths we can make, but the
quality of the bound depends on the choice of the canonical
path. To this end, when evaluating the bound, we follow the
decomposition into single-site Paulis as it was amply discussed
in Sec. III C.

VI. CONCLUSIONS

We have established a strict Arrhenius law upper bound for
the memory time of all quantum doubles based on an Abelian
group and gave a mathematically proper definition for the
energy barrier. We have also seen that the energy barrier is a
constant for these models. We may apply our results to the
model introduced in Ref. [10] to evaluate whether entropic
protection is possible for such models.

Even though our bound on the mixing time is quite general
in the sense that it applies to any Abelian quantum double, there
are a variety of models to which our analysis does not apply.
For these models, the possibility of entropy protection is not yet
excluded. One of the possible directions one can go is to invent
different kinds of defects, other than the type referred to here as
“consistent” (defects that allow a consistent labeling of anyons
based on the region they stay at) and “permuting” type (which
only apply a permutation to any particle crossing a defect line).
We investigated Hamiltonians with consistent defect lines.
However, interesting constructions use nonconsistent defect
lines to introduce topological defects, such as the construction
of Bombin for the toric code with twists [26]. Another
possibility we cannot exclude is to assume a different thermal

environment, and thus use a different noise model for this
analysis. This might result in the simple permuting-type defect
lines introducing entropic protection to Abelian systems. Our
analysis only applies to Abelian quantum doubles, i.e., qudit
stabilizer codes, therefore, entropic protection of quantum
doubles based on non-Abelian groups (or of models that are
not quantum doubles of any group) is not ruled out, especially
since one can think of a variety of defect lines which can
arise in such models [27]. One can also consider constructions
where lower-dimensional topological systems are coupled to
an ancillary system, and this coupling modifies the dynamics
of the original model [5,28].
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APPENDIX: MAXIMUM CARDINALITY AND SUM
OF MULTISETS WITHOUT A ZERO-SUM SUBSET

In this section, we derive elementary facts about multisets of
Zd without any subset sum equal to zero. This is motivated by
the problem of fusing anyons in a Zd quantum double. Indeed,
consider a set of anyons labeled by their anyonic charge. Since
there can be several anyons of the same anyonic charge, we are
interested in setlike mathematical objects where multiplicity
is explicit. For instance, for a set of two anyons of type 1 and
one anyon of type 3, we would like to write {1,1,3}.

The formal mathematical object for this intuitive notion
is called multisets. In our simple case, they are simply a
multiplicity function

f : Zd → N, (A1)

where f (k) is the multiplicity of k in the multiset. For
instance, for d = 5, the multiset {1,1,3} is equivalent to
{(1,2),(2,0),(3,1),(4,0),(5,0)} which is the graph of the
multiplicity function.

The cardinality of a multiset |f | is the total number of
elements, taking multiplicity into account, i.e.,

|f | =
∑
k∈Zd

f (k) ∈ N. (A2)

The sum of a multiset s(f ) is the sum of all its elements, taking
multiplicity into account, i.e.,

s(f ) =
∑
k∈Zd

kf (k) ∈ Zd . (A3)

Note that |f | is an integer whereas s(f ) is defined modulo
d. Physically, the sum s(f ) is the anyon type resulting from
fusing all anyons in the multiset. Moreover, one defines the
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sum f + g of two multisets f and g as

(f + g)(k) = f (x) + g(x). (A4)

It corresponds to the intuitive idea of adding the elements of
f and g. For instance, {1,1,3} + {1,2,4} = {1,1,3,1,2,4} =
{1,1,1,2,3,4}. Finally, one defines a (multi)subset by

f ⊆ g ⇔ ∀ k ∈ Zd , f (k) � g(k). (A5)

Given a multiset of anyons, we would like to know whether
it contains subsets which fuse to the vacuum. Mathematically,
given a multiset f , we are interested in the sum of its subsets
s(f ′) where f ′ ⊆ f . More precisely, we want to know if a
subset sums to zero modulo d. We define the spectrum of a
multiset

sp(f ) =
⋃

f ′⊆f,f ′ =∅
s(f ′) (A6)

and say that a multiset is zero-sum free if 0 is not in its spectrum,
i.e., no nonempty subset sums to 0 modulo d. We aim to
determine the largest possible cardinality and sum of a zero-
sum free multiset. This is related to a well-studied problem
in complexity theory and cryptography, called the subset sum
problem [29].

First, we want to understand what happens to the spectrum
when we add a singleton to the multiset, i.e., we consider the
operation f → f + {x}. The nonempty subsets of f + {x} are
{x}, the subsets of f and the subsets of f to which we add the
element x. Thus, we have

sp(f + {x}) = {x} ∪ sp(f ) ∪ [sp(f ) + x]. (A7)

We can then prove the following lemma.

Lemma 7. The spectrum of a zero-sum free multiset strictly
increases when adding any singleton, i.e.,

f is zero-sum free ⇒ sp(f ) � sp(f + {x}). (A8)

Proof. We prove the contrapositive of Eq. (A8), i.e., we
consider a multiset f for which sp(f ) = sp(f + {x}) and we
will prove that it contains a zero-sum subset. Using Eq. (A7),
the equality of spectra implies that (i) x is an element of sp(f )
and (ii) sp(f ) ⊆ sp(f ) + {x}. Since the addition by x only
shifts the spectrum, the two sets have the same cardinality and
sp(f ) = sp(f ) + {x}. In particular, since x is an element of
sp(f ), there exists a subset f � ⊆ f for which the following
equality holds modulo d: x = sp(f �) + x. Thus, the sum of
f � is zero. �

Using Lemma 7, we can deduce the maximal cardinality of
a zero-sum free multiset. Indeed, consider a zero-sum multiset
by sequentially adding its elements to the empty set. The
spectrum will increase at each addition of a singleton by at
least 1. However, a spectrum is contained in Zd and thus has
at most d − 1 elements. Hence, we have proven the following.

Theorem 8.

f is zero-sum free ⇒ |f | � (d − 1). (A9)

In fact, we can saturate the bound. Any multiset of an integer
k coprime with d and multiplicity d − 1 is zero-sum free.
In particular, the multiset containing d − 1 with multiplicity
d − 1 maximizes the sum of any zero-sum free multiset.

Theorem 9.
max

zero-sum freef
|f | = d − 1, (A10)

max
zero-sum freef

s(f ) = (d − 1)2. (A11)
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