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We present quantum fidelity benchmarks for continuous-variable (CV) quantum devices to outperform quantum
channels which can transmit at most k-dimensional coherences for positive integers k. We determine an upper
bound of an average fidelity over Gaussian distributed coherent states for quantum channels whose Schmidt
class is k. This settles fundamental fidelity steps where the known classical limit and quantum limit correspond
to the two end points of k =1 and k = oo, respectively. It turns out that the average fidelity is useful to
verify to what extent an experimental CV gate can transmit a high-dimensional coherence. The result is further
extended to be applicable to general quantum operations or stochastic quantum channels. Although the fidelity
is often associated with heterodyne measurements in quantum optics, we can also obtain similar criteria based
on quadrature deviations determined via homodyne measurements.
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I. INTRODUCTION

It is a fundamental question how to generate and char-
acterize higher-dimensional entanglement on quantum sys-
tems [1,2]. A central tool to identify higher-dimensional
entanglement is the Schmidt number [3]. It is a convex roof
extension of the Schmidt rank for pure bipartite quantum states,
i.e., the rank of marginal density operators. A quantum state
of a Schmidt-class k implies the state can be expressed as
a mixture of pure states whose Schmidt rank is at most k
for k =1,2,3,.... On the level of quantum channels, the
Schmidt-class k implies that there exists a Kraus representation
in which the maximum rank of Kraus operators is at most
k [4-6]. A channel of Schmidt-class k is also referred
to as k-partially entanglement breaking (k-PEB) since it
represents an important class of completely positive (CP)
maps called entanglement breaking in the case of k = 1 [7,8].
The notion of the Schmidt number tells us a precise meaning
of the dimensionality in the quantum object and enables us
to demonstrate multilevel coherences of quantum gates [9]
as well as to verify higher-order entanglement in practical
conditions [10-18].

Quantum continuous-variable (CV) systems play a central
role in quantum optics and experimental quantum information
science [19-21]. They are described by a set of bosonic field
operators and capable of simulating any finite-dimensional
quantum information process in principle. However, their
versatility could be limited due to various imperfections in
experiments and is not necessarily accessible in the original
form of the theoretical model. Hence, it is natural to ask to
what extent a given CV system is capable of simulating a
higher-dimensional quantum information process in practice.
Notably, a verification scheme of higher-dimensional entan-
glement of CV quantum states has been proposed [15,17].
However, how to verify higher-dimensional gate coherences
in CV quantum gates has not been studied much.

A practical measure to show a basic performance of CV
gates [22-24] is an average fidelity over an input ensem-
ble of Gaussian distributed coherent states [25-28]. As an
ultimate limitation of gate performance, the quantum limit
fidelity was determined in Refs. [29,30]. On the other hand,
the entanglement-breaking limit fidelity, which is normally
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referred to as the classical limit fidelity, was determined
in Refs. [26,27,30-33] and established a practical quantum
benchmark for CV gates. Similar to other quantum bench-
marks [34-39], the fidelity-based benchmark enables us to
eliminate the possibility that the process is described by
entanglement-breaking maps when the experimental fidelity
is higher than the classical limit. Therefore, it can ensure
the existence of the coherence in the lowest order of k = 2
but could not provide evidence of substantially higher-order
coherences expected in CV gates.

Typically, we consider a higher fidelity implies a better gate
performance, and it is likely that a higher fidelity suggests
a higher Schmidt number and a higher-order coherence.
Therefore, an essential question is how high the fidelity need to
be in order to outperform a wider class of lower-dimensional
processes which belong to the Schmidt class of a given
Schmidt-number k. Although the known Schmidt-number
benchmarks [9,33] could be usable in general, it is crucial to
observe the gate performance using more accessible quantum
optical measurements [40]. There are other possibilities to
assess the gate coherence quantitatively by using different
measures of entanglement [40—43].

In this paper, we present Schmidt-number benchmarks
for CV quantum devices based on an average fidelity over
Gaussian distributed coherent states. We show an upper bound
of the average fidelity achieved by k-PEB channels for any
given positive integer k. It gives general fidelity steps that
reproduce the classical limit and quantum limit for £ = 1
and k = oo, respectively. Surpassing the kth limit assesses
the existence of (k + 1)-dimensional coherences on quantum
channels and operations. We also provide a simple conjectural
form of the tight kth limit. This conjectured bound is partly
achieved by a quantum channel with Schmidt-class £ and fully
achievable by a probabilistic gate with Schmidt-class k for
every k. Furthermore, the fidelity bound is utilized to provide
a different form for Schmidt-number benchmarks testable by
using homodyne measurements.

The remainder of this paper is organized as follows. In
Sec. II, we define the Schmidt-class-k limit of the average
fidelity for Gaussian distributed coherent states and show how
to find an upper bound. In Sec. III, we extend the resultant
fidelity-based benchmarks for probabilistic quantum channels.
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In Sec. IV, we show a lower bound of an average quantum
noise of canonical quadrature variables to outperform k-PEB
operations as well as k-PEB channels. In Sec. V, we conclude
this paper with remarks.

II. SCHMIDT-CLASS-k FIDELITY LIMITS
FOR QUANTUM CHANNELS

A. Ansatz

We consider transmission of coherent states

|a) ;= D(a)|0) = e~lol/2 Z;’;O a”|n)/\/m through a
quantum channel £. Let us consider a transformation task
on coherent states {|a)} — {|/na)} with n > 0 and define
the average fidelity for Gaussian distributed coherent states
as [25-27]

Fy () !=/px(a)(\/ﬁalg(lw(al)lﬁa)dza, (D

where p; (o) = %exp(—k|a|2) with A > 0. We define the

Schmidt-class-k fidelity limit of quantum channels by

FO(n,3) = max F, ,(€), @)

where Oy, is the set of k-PEB channels [4—6]. This set can be
defined in terms of Kraus operators ) _; K ; K; =1as

Or=1EI1E(p) =Y KipK[ AV i, rank(K;) < k}. 3)

1

Note that O, represents the set of entanglement-breaking chan-
nels and FD corresponds to the classical limit fidelity [26,27].
Note also that O forms the set of whole trace-preserving CP
maps and F© corresponds to the quantum limit fidelity [29].
Therefore, F* of Eq. (2) presents unified fidelity steps which
include the classical limit and quantum limit as the two end
points k = 1 and k = co. Our main goal is to find a nontrivial
upper bound of F® for every integer k € [2,00).

Note that there is a general definition of PEB channels for
CV systems [44]. How to incorporate this general definition
into our approach is beyond the scope of this paper.

B. Fidelity bounds

In order to find an upper bound of the fidelity F®, we
introduce a pair of two-mode states [29,31] as

ps = E @ I(|We) (Ve ), 4)
M= / ps(@)|a) (@] ® [ka*) (ka*|da, )

where I denotes the identity process, [|Vg) =

VI =823 " n)ln) is a two-mode squeezed state

with & €(0,1), and we assume s,k > 0. Using the

relation  (a|yz) = /1 — $2e’(1’52)|"‘| 2/2|<§ot*) we can
find a state-based representation of the fidelity in Eq. (1) as

s+ 1 —&Hk?

Finon(E) = S0 —£9)

Tr (pe M), (6)
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where the parameters (N,t) in the fidelity function are
determined by

T=s+(1 -2, N =« (7)
From Egs. (2) and (6) we have
s+ —&Hk?

F®(1/N,t/N) = maxTr (pe ). (8)

s(1—&%)
If € is a k-PEB channel, pg = £ ® I(|{)(Ye]) is a state of
Schmidt-class k. This implies that the term maxgco, Tr (pg M)
in Eq. (8) can be upper bounded as

<
grézgiTr(ng) < gleasf(¢|M|¢>’ €))

where S; denotes the set of pure states whose Schmidt rank is
k or less than k.

To proceed, we use the fact that M is invariant under
the collective rotation ¢!~ Here, #i, (fi;) stands for the
number operator of the first (second) mode. This implies that
M can be decomposed into the direct-sum form associated
with the eigenspaces of the relative photon-number operator
Ap— A, =Y, J1D as

o0 o0
M = Z 19M1Y =: EB MY, (10)

J=—00 J=—00

where the identities of the orthogonal subspaces can be written
as 1V = 3% leD)el| with |e\))) := |n)|n + J) for J >
0 and [e))) := |n — J)|n) for J < 0. As a consequence, an
explicit form for M) is given by

o0
S
MDD = = Z 7/(/)|€(J))<e(l) (11)
2 n,m|%n m |’
(] ts+k ) n,m=0
where we define
JM! J yn+m+|J|
yn(]ni — (n+m-+I[JDk’x (12)
M alm i + T Dm + [T
and
K 1
(13)

x=— < -
14+s+x2 2

From this decomposition and Theorem 2 of Ref. [15], we
can see that a Schmidt-number-k vector |¢) = a,le!/))
in support of M) solves the Schmidt-number-eigenvalue
problem of M. This implies that an upper bound is given
by comparing the maximum on each subspace,

max (¢ M|¢) = maxmax Te(M"|g) (¢ (14)

Now, concatenating Eqs. (8), (9), (11), (14) and taking the
limit s — 0 with the help of Eq. (7) we obtain

F®1/N,t/N) < &maxmax(WA”)W) (15)
’ S 1+N+T T des ’
where
o0
AV = 3 D e Nl (16)
n,m=0
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and Y is given by Eq. (12) with k = /N + 17 and x =
N +1t/(1+ N + 7). Note that, for k > 1 (¢ < 1), the opti-
mization over J > 0 (J < 0) is sufficient due to the relation
Kk y ) =k yl)) or equivalently kT AY) = kT AT,
Since A of Eq. (16) is essentially the same form as L of
Eq. (63) in Ref. [15], we can evaluate maxgcs, ($|AY)|p) by
the maximal eigenvalue of all (k x k)-principal submatrices of
AY)_ This enables us to determine an upper bound of F® as

follows. Let us write a (k x k)-principal submatrix of A by

AP = 3 [N AN NP am

n,men

where 11 = {n,ns,...,n;} is a set of non-negative integers
in increasing order, n; < ny with [ <!, and the number of
elements is denoted by |7| = k. Then, we can formally express
the fidelity bound as

& max max “AS'” “ = Ukv
I+N+t 7 j=k""
(18)

FOU/N.T/N) <
where || - || denotes the maximum eigenvalue.

The right-hand-side formula of Eq. (18) still involves
optimizations over the integer J and the choice of the k-tuple
n. Fortunately, we can find the maximum by checking a
finite set of finite-size matrices once the parameters (k,N,7)
are fixed. This is because {A} is essentially equivalent to the
density matrix for the Gaussian state M in the number basis and
the contribution involving sufficiently large photon-number
elements is negligible. A practical process to determine the
maximum is given in the appendices. Eventually, we can
find the maximum by filtering out the submatrices whose
maximal eigenvalue is smaller than that of another submatrix.
In Appendix A, the optimal set 7 is identified for a couple
of smaller k’s in the case of J = 0. Appendix B generalizes
the approach presented in Appendix A and gives a systematic
process to determine the maximum over general (J,#) for any
given integer k € [1,00).

C. Numerical results and application

Based on the method described in Appendix B, we can
numerically determine the upper bound of F® in Eq. (18).
Figure 1 shows our bound of F®(n,1) for k = {1,2,...,10}
and n € {0.5,0.75,1.0,1.5,2.0} with A = 0.01. For each pair
of the parameters {n,A}, surpassing the bound of k implies
that the channel £ outperforms k-PEB channels of Eq. (3)
and is capable of transmitting entanglement of Schmidt-rank
k + 1. It certifies the quantum coherence unachievable by any
teleportation-based quantum gate employing entanglement
of Schmidt-class k [6]. The fidelity steps agree with our
intuition that a higher fidelity means an existence of stronger
entanglement in terms of the Schmidt number and would be
widely useful to evaluate the performance of CV quantum
gates.

Lobino et al. [24] showed an experimental average fidelity
as a function of A for unit-gain n = 1. In the inset of Fig. 1
we find that the experimental fidelities are located in between
the lines k = 1 and k = 2 and not high enough to demonstrate
k = 3 or higher-dimensional coherences. This suggests that
CV experiments are rather behind demonstrating genuinely
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FIG. 1. Our upper bound of the Schmidt-class- fidelity F®(n,1)
[Ur of Eq. (18)] for x =0.01 and n € {0.5,0.75,1.0,1.5,2.0}. If
an experimental fidelity F,,(£) stays above the kth bound, the
experimental CV gate £ cannot be described by a k-PEB channel.
This certifies an existence of the (k + 1)th coherence in the CV gate
&. The classical limit fidelity of the fundamental quantum benchmark
corresponds to the bound of £ = 1. In the inset, the classical limit
fidelity (k = 1) and the fidelity bound for £ = 2 due to the right-hand
side of Eq. (20) are shown as a function of the Gaussian inverse width
A for the case of unit-gain condition n = 1. The dots represent the
average fidelity F;, given in Fig. 5 of Ref. [24]. This experimental
fidelity is not high enough to give evidence to outperform an arbitrary
qubit gate with regard to our criterion.

higher-dimensional coherences compared with experiments
for multiqubit channels [9]. It might be worth noting that the
current fidelity record 83% for an experiment of a unit-gain
teleportation protocol is a fidelity for an input of the vacuum
state [45,46]. This corresponds to the case of A = oo in our
footing and is useless for a verification of the multilevel
coherence.

D. Conjecture and attainability

From the numerical results, it has been observed that
the largest eigenvalue is given by the first k x k submatrix

0 J 0
AEO?I,...,k—l}’ namely, max; maxsj—x ||AE',.)" = ”A([O?l ..... k—}l”'
Moreover, we can reproduce the expressions of the classical
limit [27,31] and the quantum limit [29] from the subspace of

J =0fork =1 and k = o0. To be concrete, it holds that
N+t
1+N+1
N+t
1+N+7’

FO(1/N,t/N)

[4ial]
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N+t
F®1/N,t/N) < ————||A©
AN/ < 4
N D —|N -1
=( + 1+ )2| +t |' (19)

We thus make a conjecture that the general limit is given by a
significantly simple form

N+t
Fiy vared G\ AN RT] R C0)

Regarding the tightness of this conjectured bound, we
present a k-PEB channel which saturates the inequality of
Eq. (20) when T — 0. Let us define a k-PEB channel £¥(p) =

[ d*a K;k)p(K;"))T with Kraus operators of rank k or less
than £,

K® = ﬁ (;Cj)(Za(k)ln nI)DT(a) (1)

It fulfills [da(K®) K® =1 by imposing the condition
Zﬁ }) a; = 1 and gives a simple form of the fidelity,

- n—+m n+m
. k) _ anlpm \/ﬁ __8 1
iy et = 3 S (2

nlm! 1+n

FO(1/N,t/N) <

n,m=0

— (0) —. rk)
= E ay a,, =: , 22

n,m=0
where y,g% is given by Eq. (12) with x = ,/5/(1 +n).
This implies max,,; f® = (1 —n)! ||A§(())?1,...,k—1}|| and £®

achieves the con]ectured bound of Eq. (20) for t = 0. It was
shown that £ achieves the classical limit in Ref. [27]. For
k=2 and k =3, we have observed numerically that £®
could not achieve the limit when t > 0. Interestingly, we can
generally show that the conjectured fidelity bound in Eq. (20)
is achievable by a probabilistic quantum gate of Schmidt-class
k for every k (see Sec. III B).

III. EXTENSION FOR GENERAL
QUANTUM OPERATIONS

Our benchmarks can be extended for general quantum
operations, namely, the trace-non-increasing class of CP maps
(see Ref. [33] for a general framework). In Sec. III A we show
that the bound U of Eq. (18) holds for CP maps of Schmidt-
class k with a modified form of the fidelity. Notably, the
bound Uy is tight when general quantum operations are taken
into account. An interesting example of trace-decreasing CP
maps for CV states is the so-called noiseless linear amplifier
or probabilistic amplifiers [30,40,47-50]. In Sec. III B, we
prove that such a stochastic quantum channel achieves the
conjectured bound of Eq. (20).

A. Fidelity bounds for CP maps

Suppose that £ is a quantum operation, namely, a trace-
non-increasing CP map. We may modify the definition of the
fidelity in Eq. (1) as [30]

Fyo&) == P fpx(ot) (VnalE(la) @)l /na)d?a, (23)
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where p;(a) = Zexp(—Alal?) with A >0 and P, :=
Tr f pr@)E(la)a|)d?a is the probability that £ gives an
output state for the ensemble { p; (), | ){e|}. Note that Eq. (23)
reduces to Eq. (1) for the trace-preserving case, i.e., for
quantum channels. In fact, Tr[E(Ja)Xx|)] =1 for all @« € C
implies Py = 1.

Similar to Eq. (2), let us define the Schmidt-class-k fidelity
limit with the renormalized fidelity in Eq. (23) as

FO(,2) := max F, ,(€), 24

where Oy denotes the set of k-PEB maps described by £(p) =
Zi K; ,oKl.T. Here, operators {K;} have rank k or less than k
(we do not impose trace-preserving condition ) ; K, I.T K;=1).

In order to show that the same fidelity bound Uy in Eq. (18)
holds for quantum operations [33], the key is to employ the
normalized state,

_ & 1) (YD)
Tr[E @ I(1Ye) (Y D]

By using this formula instead of Eq. (4), the procedure in
Sec. I B leads to the fidelity bound for general CP maps,

(25)

FOm.2) < Ui(n,n) = _LEr max max | A5 (26)
’ = ’ 1 —+ n + A T |1 |=
where || - | denotes the maximum eigenvalue and A(ﬁj) is
defined through Egs. (12), (16), and (17) with
A/ +A) 1+ @7
I+n+21’ n o

Note that Eq. (26) is tight, namely, it holds that

F®m,0) = Ur(n,h). (28)

This can be confirmed from the fact that Uy is a solution of the
Schmidt-number-eigenvalue problem [15] together with the
property of k-PEB maps that pg of Eq. (25) can be any pure
state of Schmidt-number k.

For quantum channels (trace-preserving CP maps), it
remains open how to find a tight limit except for the classical
limit k = 1 [27] and quantum limit k = oo [29,30].

By comparing an experimentally observed fidelity and our
upper bound of the kth fidelity limit F®, one can verify
a genuine multidimensional coherence for general quantum
operations as well as for quantum channels. To be concrete,
we can eliminate the possibility that the physical process £ is
described as a k-PEB map if it holds that F; 5 (E) > Ur(n,2).
This establishes an infinite sequence of quantitative quantum
benchmarks for general single-mode physical processes with
respect to the Schmidt-number k. The fidelity steps Ui(n,))
would give distinctive milestones to assess the closeness be-
tween an experimental amplifier and an ideal quantum limited
amplification process [30,40] by simultaneously observing the
Schmidt number and the fidelity.

B. Proof of attainability of the conjectured bound

In Sec. IID, we have conjectured that the simple form in
Eq. (20) gives a tighter bound. Here, we will show that a
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probabilistic quantum channel of Schmidt-class k achieves the
conjectured bound,

1+
1+n+21

Proof. Let us consider the following filtering operator:

FOm,3) < A - (29)

k—1
Ok = VN ang"In)inl, (30)
n=0

where (\V,g) is a pair of positive constants and we assume
Zﬁ;(l) la,| 2 =1. We can readily calculate its action onto
coherent states as

Ola) = —laf? /22 an(gOl) 31)

Evidently, Qy is rank k or less than k. This implies that

the probabilistic quantum-gate £(p) = Qkp Q}: belongs to
Schmidt-class k. From these expressions we have

/ (@) (Tl E () @) /Ta)da

_ A kf: (n+m)! (/ng)"* " ana,
B nlm! (14 5+ Ayrtmtl

n,m=

N
_ _Z © a4, 32

where we use [ pi(@)e TV o) %0 = Ak!/(1 + 0 +
MKHL for calculating the integration. Moreover, the final
expression is obtained by substituting g = +/1 + A and using
the definition of y,*), in Eq. (12) where the parameter x is given
by Eq. (27). Note that from the definition of the submatrix A(ﬁj)
given through Eqgs. (12), (16), and (17), we can write

k—1
ax < Z )/,fo,z,an ) = || A(01 .....

n,m=0
where the maximum is taken over Zﬁ;(l) la,)? = 1.
On the other hand, the relation in Eq. (31) and the condition
g = +/1 + X yield the following expression:

(33)

P =Tr / pr()E(ae])d e
la,|*g
N Z (1 +k)n+l

1+)\n2;|”| 1+/\ (34)

From Egs. (23), (32), and (34) we obtain

k—1

L4
Z v aqar. (35)

Fra® = T+n+xr +

Finally, optimizing the coefficient {a,} of the filter Oy as in
Eq. (33) we can conclude that the right-hand side of Eq. (29)
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[Eq. (20)] is achievable by a probabilistic quantum gate of
Schmidt-class k. |

Note that the normalization factor ' of Q; in Eq. (30)
can be positive as long as k is finite. This fact confirms the
attainability with a finite success probability P; > 0. In the
limit of k — oo, however, N could be zero so as to fulfill the
physical condition Q}: Qi < 1 (see Refs. [30,40]).

IV. SCHMIDT-CLASS-k LIMITATION ON QUANTUM
NOISE OF CANONICAL VARIABLES

In this section, we present a Schmidt-class-k limit on an
average of Bayesian mean-square deviations for canonical
variables. We introduce a basic relation between the fidelity
and the quantum noise in Sec. IV A. Resultant Schmidt-
number benchmarks are given in Sec. IV B.

A. Canonical quantum noise and fidelity

Let X and p be canonical quadrature variables with the
canonical commutation relation [X, p] = i. The field operator
a is given as a = (X + iﬁ)/\/z and satisfies the bosonic
commutation relation [4,47] = 1. For notation convention we
write the mean quadratures for coherent states as

A a4+ of *

o —o
Xg = <C(|X|O[) = Pa =

7 (a|ple) = NI
(36)

Let £ be a quantum operation. We define the mean-square
deviations for canonical quadratures [27,39,40] as

V.= PslTr[ f i) — ﬁza)25<|a><a|>d2a], (37)

where z € {x,p}, pa(a) := %exp(—)\lodz), and
P = Trf pi(e)E(|a)er|)d*a. With the help of the property
of the displacement operator D(x)aD'(a) = @ — o and the
cyclic property of the trace, we can write

Vv, = P;lTr[ / pi(@)D(/na)z* DT (ﬁa)5(|a)(a|)d2a:|
= P 'Tr[5%0], (38)
where we defined
0= / Pr@)D(na)E (e D(Yre)d*e.  (39)
Note that we can readily confirm the following relations:

Trlo] = / pr(@)E(a)e)d e

— P, (40)
(0lo|0) = /pA(W)(ﬁa|5(|a>(a|)|ﬁa)d2a

From Eq. (38) and the well-known expression for the
harmonic oscillator £2 + p2 = 2a'a + 1, the sum of the mean-
square deviations can be expressed as

Vi+V,= %(ﬂr[aﬂaa] + Tr[o]). (41)

N

052336-5



RYO NAMIKI

On the other hand, we can show the following inequality for
any positive semidefinite operator p:

Trlatap] = Tr<Zn|n)(n|p>
n=1
> Tr(Z |n><n|p>
n=1

= Tr[p] — (0]p|0). (42)

Concatenating Eqs. (41)-(42) with p = o, we obtain the
relation between the sum quantum noise and the average
fidelity [27],

_ _ 2
Vit V, =12 F(Tr[o] —(0]a]0)) =2(1 — F,;), (43)

where F, , is defined in Eq. (23). From Eq. (43), we can see
that a smaller value of quantum noise ensures a higher fidelity.
To be concrete, Eq. (43) implies that the fidelity is bounded
from below by using the mean-square deviations,

3 VitV
F,>>_-xt"r
) 2

In particular, we can observe that F = 1if V, + V, = 1.

(44)

B. Schmidt-number benchmarks via quantum noise

Now, we can find a lower bound of the Schmidt number
by using the sum of the mean-square deviations V, and V,,.
We can show that F, ;(€) > F®(n,A) holds if the following
condition is satisfied:

Vi+V,—1<2[1—FP@nl (45)

Proof. Suppose Eq. (45) holds. From Eqs. (43) and (45), we
have

20— F ) < Ve +V, —1 <2[1 = F®Om,0)].  (46)

Comparing the left-end and right-end expressions, we obtain
F, (&) > F®(n,1). Hence, Eq. (45) is a sufficient condition
that £ outperforms any k-PEB maps. |

For a practical use, one can replace the term F® in Eq. (45)
with the upper bound Uy given in Eq. (18). We thus have the
following quantum benchmark:

Ve +V, — 1 < 2[1 — Ur(n, 1)) (A7)

This condition can be readily tested by plugging-in an
experimentally observed value of V, + V,. Hence, one can
verify that the Schmidt number of the process £ is at least
k + 1 if the inequality of Eq. (47) is fulfilled.

Note that the condition of Eq. (45) is not tight when k = 1
(see, Corollary 1 of Ref. [39]) and unlikely to be tight for other
choices of k > 2. How to find a better link between the Schmidt
class and the quadrature deviations for an improvement of our
approach should be addressed elsewhere.

V. CONCLUSION AND REMARKS

In conclusion, we have presented Schmidt-number bench-
marks for CV quantum devices using the average fidelity for
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Gaussian distributed coherent states. Our benchmarks give ev-
erlasting fidelity steps towards higher-dimensional quantum-
gate coherence and successfully generalize the known classical
and quantum limits by recasting them into the two end
points of these steps. Our result refines the meaning of
“high fidelity” for CV quantum gates, and the numerically
determined fidelity steps would be useful to demonstrate
genuinely higher-dimensional coherence for experimental im-
plementations. It is fundamentally important to show stronger
evidence that CV systems have a potential superiority in
dealing with higher-dimensional quantum signals. In this
respect, distinctive experimental progress could be regularly
quantified and recorded based on the Schmidt class determined
by the fidelity steps. We have also conjectured a simple
formula for the fidelity bound. This bound is achievable by
a probabilistic quantum gate of the corresponding Schmidt
class. Furthermore, we have presented a lower bound of an
average quantum noise to outperform k-PEB processes. This
bound is directly related to homodyne measurements and
could provide wider options for an experimental verification
of higher-dimensional coherences.

Although our results are readily available as a type of
entanglement verification tool for experiments, there are
several open possibilities to improve the fidelity bound and
the bound for the canonical quantum noise. We recall the
following three aspects for an outlook.

(i) Our fidelity bound Uy is tight for quantum operations,
yet we have not identified what operation can achieve this
bound. (In Sec. IIIB we have provided a concrete form of
a probabilistic gate that achieves the conjectured bound. If
the conjectured bound is proven equivalent to Uy, we can
immediately settle this problem.)

(ii) How to improve the fidelity bound Uy for the case
of quantum channels and how to identify the optimal k-PEB
channel which maximizes the fidelity for k € [2,00) remains
open. In this regard, it has been known [30] that there is a gap
between the quantum limit fidelities (k — oo) for probabilistic
gates and deterministic gates, whereas there is no gap for the
classical fidelity limits (k = 1). An existence of the gap is
crucial to demonstrate an advantage of probabilistic gates [40].

(iii) Aside from the fidelity-based approach, exploring a
feasible method based on the statistical moments of canonical
variables would be important. As well as improving our bound
for the sum of the mean-square deviations in Sec. IV B,
an interesting problem is to determine the trade-off relation
between the mean-square deviations under the constraint of the
Schmidt class. Hopefully, we could prove a general sequence
of uncertainty relations for V, and V,, which reproduces
the uncertainty relation over entanglement-breaking maps
for k = 1 [39] and approaches the amplification uncertainty
relation [40] in the limit k — oo.
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FIG. 2. Orders of principal submatrices.

APPENDIX A: RIGOROUS RESULT FOR THE
MAXIMIZATION IN EQ. (18) FOR J =0

As a first step to estimate the maximization in Eq. (18), we
consider the case of J = 0. In the case of / = 0 we can show
that the exact maximum for k € {1,2,3} is given by

(0) (0)
max ”A | = ”A 0,1,...k— 1}”'

.....

(AL)

In order to verify this relation, we use the following two
properties for y defined through Egs. (12) and (13):
® Vn+1 n—i+1 Vriozi ; < Oholds forn > 3(I +2)( — ).

(i) V((i)l m )/,50,21 < Oholds form < n — 1.

First, property (i) with / =0 1mplies that the diagonal
elements are in decreasing order, namely, 7/0 0 > yl(ol) > yzo) >
. This proves Eq. (Al) for k = 1. Note that property (i)
With ! =1 implies that the first off-diagonal elements are in
decreasmg order, namely, it holds that y(o) yl(oz) > y2(03) >
. Similarly, property (i) with [ =2 1mp11es that the second
off diagonal elements are in decreasing order, namely, it holds
that y55 > 73 2 ya = -+
Next, to prove Eq. (A1) for k = 2 we show

0 0) 0) ©
yrfli V,, n+1 7/n+1 n+1 Vn+1 n+2
- > Oa
(0) 0) 0) (0)

J/IH-I n 7::;)—&-1 ,n+1 V;l+2 n+1 yn(—(l)—)Z ,n+2 (AZ)
0 0
yn( :i yn n+1 Vri ii yn n+n’ > O
© © © ©) -
yn+l n 7/n-‘rl n+l1 yn+11 n+n’ yn+n n+n’

where each inequality for the matrices indicates all elements
are non-negative. The first inequality suggests the decreasing
order on shift in the diagonal direction associated with the
schematics of Fig. 2(b); the second inequality suggests the
decreasing order on spread in the vertical-and-horizontal
direction associated with the schematics of Fig. 2(a). The
first inequality in Eqgs. (A2) is proven from the decreasing
order on the diagonal elements and the first off-diagonal
elements. The second inequality in Egs. (A2) is proven by
using the decreasing order on the diagonal elements and
property (ii). From the inequalities in Eqs. (A2) we have
1Ayl = ALY o)l and IAG) 1> 1AL, | since
llal| < ||b]| holds for non-negative matrices a and b with
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0 < a < b (see Corollary 8.1.19. of Ref. [51]). Using these
two relations recursively we can conclude Eq. (A1) for k = 2.
Note that, from the order of the diagonal elements and property
(ii), we can generally obtain such a matrix inequality when
the position of the final row and column is shifted as in
Fig. 2(c).

Finally, similar to this proof, we proceed to the proof of
k=3 by comparing the corresponding submatrix elements

associated with ||A iyl = ||A{nJr1 nt2.n43) | for the di-

agonal direction shift and ||A(n)n+l nryll = ||A(2)n+n —
for the spreading shift. For the diagonal shift of the 3 x 3
matrix, the matrix inequality can be confirmed by the de-
creasing order on the diagonal elements, the first off-diagonal
elements, and the second off-diagonal elements, coming from
property (i) with [ € {0,1,2}. For the spreading of the 3 x 3
matrix, we have three possibilities to divide the elements (2:1),
(2:1), and (1:1:1) as in Fig. 2(d). For the case of (2:1), the
inequality can be proven by property (ii) and the decreasing
order on the diagonal elements. For the case of (1:2), the
inequality can be proven by property (ii) and the decreasing
order on the diagonal shift of the 2 x 2 matrix. Then, the first
inequality of Eq. (A2) on the 2 x 2 matrix and the decreasing
order on the diagonal elements again enable us to show the
decreasing order on the spreading shift from (1:2) to (1:1:1).
Therefore, we can conclude that the relation Eq. (A1) holds for
k e {1,2.3}.

For k = 4, we can show the inequality for the spreading shift
||A((7)1)n+1 n+2,n+3} ” ||A%2),n+n’,n+n”,n+n”’} ” by HSing property
(ii) and the results of the 2 x 2 and 3 x 3 matrices above.
Similarly, from property (i) and the results of k < 3 above we
have ||A(2)n+1 nr2n3)ll 2 ||A(2)+1 ni2nt3nrall When n > 2.
However, the matrix 1nequa11ty for the diagonal shift cannot
hold for the first two submatrices Aigillﬁ} and Ai??2,3.4}'
Therefore, the maximum is obtained by comparing the first
three cases of the matrices, i.e., max,eo,1,2) ||A (mntLnt2,n43) Il
In this manner, we can eventually determine the maximum
by comparing the maximum eigenvalues of a relatively small
number of submatrices for a couple of small k’s. We present
a general systematic approach to determine the maximum of

Eq. (18) in the following section.

APPENDIX B: GENERAL RECIPE TO DETERMINE THE
MAXIMUM IN EQ. (18)

In the previous section, we use the following two properties
to make (matrix) inequalities on submatrices of A© defined
through Eqgs. (12) and (13)

(i) y,f‘fl i1 = Va0, < Oholds forn > 1(1 +2)( —1).

i) 2, — 1% < O0holds form < n — 1.

In this section, we develop this method and present a
systematic approach to determine the maximum in Eq. (18). An
essential fact to generate matrix inequalities is that ||a|| < ||D]]
holds for non-negative matrices a and » with 0 < a < b (see
Corollary 8.1.19. of Ref. [51]).

Let us note general properties of AY). (a) AY) is a non-
negative matrix and symmetric, i.e., for any n,m, y?) >0,

(J,)l (b) If n> 2(|J| —2)(]J] + 1), we have
<0. (c) The sequence of the diagonal elements

and y!) =

n,m
(€©)) J
ynJrl n+1 yrfn)
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{y\2)}a is at most single peaked, and the largest element is
located around n ~ %(|J |> — |J| — 2). From these properties
and the fact that eigenvalues of a positive semidefinite

J

PHYSICAL REVIEW A 93, 052336 (2016)

matrix are upper bounded by its trace, we can neglect the
contribution from sufficiently large » when we determine the
maximum in Eq. (18), numerically.

1. Derivation of properties (i) and (ii)

From Egs. (12) and (13) we have

(BI)

) J J
et = v < v

Suppose that m =n —1 < n. If we set J =0, we obtain
property (i). In our approach, a key observation is that any /th
off-diagonal element gradually gives a decreasing sequence.
We define an integer 7, to utilize this fact. The integer f
that fulfills 7, . — %) < 0 is summarized in Table I for
[ < 10. The row of [ =0 shows all diagonal elements are
in decreasing order for |J| < 2. The row of [ = 1 shows all
first off-diagonal elements are in decreasing order for |J| < 1.
Note that the values in Table I are determined by taking the

worst case of x = 1 (better bounds would be obtained when a

2
specific value of x < % is given).

Suppose that m < n — 1. From Eqs. (12) and (13) we have

[€)) J J
yn+l,m - rf,n)z < yrf,rr)t(

n+m+1|J|+1 1 1)
o+ D+ J+1)2

2
gy;{;( nt 17l —1). (B2)
T\ D+ I+ 1)
This implies .7, ,, — ¥) <0 for |J| <4. For |J| >

4,y = v < 0is fulfilled when

n>(—4—41J1+J%/8 = u). (B3)
As a consequence, the case of J =0 gives property (ii).
Notably, the expressions derived here suggest that we can
use modified versions of properties (i) and (ii) for J # 0. Our
main residual task is to make matrix inequalities systematically
based on the general properties of {y\/)}.

TABLE 1. The integer 7" in which Ith off-diagonal elements
become decreasing order for |J| < 4. The superscript index “(J)” of

t,(” is omitted through the text.

l J=0 [/ =1 [J| =2 [J| =3 |J| =4
0 0 0 0 2 5
1 1 1 2 4 7
2 2 3 4 6 9
3 5 6 7 9 12
4 9 10 11 13 16
5 14 15 16 18 21
6 20 21 22 24 27
7 27 28 29 31 34
8 35 36 37 39 42
9 44 45 46 48 51
10 54 55 56 58 61

(m+m+[J[+2)n+m+]J]+1) 1_1)
Vin+Dlm + D+ [J[+ Dm + [J[+ 1D 4

(
2. Inequalities for the diagonal shift

From Table I, we can determine the index n of the diagonal
elements of AY) so that the (k x k)-principal submatrices
starting from [A],, become decreasing order associated
with the diagonal shift of Fig. 3(a). From the rows of [ =0
in Table I, we can confirm that the diagonal elements are in
decreasing order for |J| < 2. The diagonal elements of A®
and A® are in decreasing order whenever n > 2 and n > 5,
respectively. From the rows of / = 0 and / = 1 in Table I, we
can confirm that the relation on the 2 x 2 submatrices,

Vn,n Vn,n—H yn+l,n+1 Vn+1,n+2
Vn+ln  Vndln+l Vn42n+1  Vad2n+42
' ' Lol
M, 'y My, y
S 2
i !
14 a
,,,,,,,,,,,,,,, # tyl a'
(@) (b)

v

(m1+m2+m3) : i |

(e) (m1:m2+m3) (m1m2m3)

FIG. 3. To determine the order of the maximum eigenvalues of the
different submatrices (a) a primitive step is to compare submatrices
which can be chosen by shifts on the diagonal direction. (b) Another
primitive step is to compare submatrices which have the same
elements but some of the last block have higher number indices (row
and columns). (c) The case with the last element is shifted. (d) The
case where the last two elements are shifted. (¢) When we compare
the submatrices which have many blocks we consider spreading of
the largest sub-block, such as m2 + m3, first. Then, this submatrix,
say (m1;m2 4 m3), can be connected with another submatrix, say
(m1;m2;m3) by considering further spreading of the second largest
sub-block, such as m3.
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holds forn > t; — 1 = O in the case of |J| € {0,1}. Moreover,
this matrix inequality holds for n > #; — 1 = 1 in the case of
|J| =2 and for n > t; — 1 = 3 in the case of |J| = 4. Note
again that the inequality for matrices indicates all elements are
non-negative.

Similarly, from the rows of [ € {0,1,2} in Table I, we can
confirm that the relation on the 3 x 3 submatrices,

Yn,n+2
Yn+1,n+2
Vn+2,n+2

Va.n Vnn+1
VYn41,n Vn+1,n+1
VYn+2,n Yn+2,n+1

Vn+1,n43
Vn+2,n+3 2 0 (B4)
Vn+3,n+3

VYn+1,n+2
Vn+2,n+2
Yn+3,n42

Vn+1,n+1
yn+2,n+l
Yn+3.n+1

holds for n > t, —2 = 0 in the case of J =0 and for n >
t, — 2 = 1 in the case of |J| = 1. Furthermore, the relation of
Eq. (B4) holds forn > linthecaseof |J|=2,n >4 —2 =
2 in the case of |J| =3 and n > 7 —2 =35 in the case of
|J| = 4. In this manner, we can show that the inequality for
the k x k submatrices,

Vn,n T Vn,n+k—1
Vntk—1,n Vntk—1,n4+k—1
Vn+1n+1 VYn+1n+k
— : : >0 (BS)
Vntk,n+1 Vntk,ntk
holds forn > #j—,_1 — k + 1.

3. Inequalities for the spreading shift

Let us consider the following inequality for the spreading
shift depicted in Fig. 3(b):

i
B—B = (M,O y) (M,? y,) >0, (B6)
y a y a

where My, a, and a’ are square matrices. Suppose that the
matrices in Eq. (B6) are submatrices of A of Eq. (17) and
that J = 0 so that properties (i) and (ii) are fulfilled. From
the decreasing order on the diagonal elements and property
(ii), we can show that the relation of Eq. (B6) holds when the
final row and column are shifted as in Fig. 3(c) in which a
and @’ are diagonal elements and y and y’ are single column
vectors. From the decreasing order on the diagonal and first
off-diagonal elements together with property (ii), we can show
that the relation of Eq. (B6) holds when the final two rows and
two columns are shifted as in Fig. 3(d) (here, @ and a’ are 2 x 2
matrices). Similarly, we can generate the matrix inequalities
in the form of Eq. (B6) by using properties (i) and (ii) for any
size of a whenever the diagonal shift (¢ — a’) is in decreasing
order.

By further spreading the last lows and columns associated
with the position of the square matrix a, we can generate
inequalities with more separations as in Fig. 3(e). To make the
three-separation (m1:m2:m3), we consider the diagonal shift
of the column-length m2 4+ m3 square matrix first, and then
we spread the last square matrix of the column-length m3. We
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can reach any given separation by repeating these processes
recursively.

From properties (i) and (ii), we can see that, for sufficiently
larger n, the inequalities for the diagonal shift and spreading
shift always hold. This is also the case for general J # 0
since similar properties hold with a bit of complicated
conditions, such as Eq. (B3) and Table I (see the discussion
in Appendix B 1). Hence, the set of submatrices we need
to compare the maximum eigenvalues is a finite set of
smaller-n-index submatrices that cannot be connected by the
matrix inequalities obtained by these properties. On this basis,
the search for the submatrices that have larger maximum
eigenvalues can be carried out by a relatively small number
of calculation steps. We will present a systematical procedure
to identify relevant submatrices in the following.

4. Relevant set of submatrices
a. For J =0and k € {1,2,3,4,5}

Let us suppose that J = 0. For k € {1,2,3}, the matrix
inequalities both in the diagonal shift and in the spreading
shift of Figs. 3(a) and 3(b) hold for any n > 0. This leads
to | A}l > I|AQ) Il for k = 1, [|AQ) Il = (1Al for k =2,

0 0)
and A, 5 > ||A(n |l for k = 3.
Fork = 4, wecan show the inequality for the spreading shift
0) ) .
1A w1 nr2na3 ]l Z 1AL an nns wanm | DY using property

(ii) and the inequalities in the dlagonal shift of the 2 x 2 and
3 x 3 matrices above. From the row of [ = 3 in Table I, the
inequalities for the diagonal shift are fulfilled whenever n >
t; — 1 = 2. Hence, the only submatrices that cannot be con-
nected by the inequalities are A') 0 123} A?l)?z,& 4)>and Ag) 3.4.5)
Therefore, the maximum in Eq. (18) is obtained by comparing
the first three matrices, i.e., max,c(0,1,2) ||A (ot 2,43} Il

For k =5, we can show the inequality for the spread-
lng shift ”A(n n+1,n4+2,n+3,n+4} ” = ”A(n n+n',n+n" ,n+n" ,n+n""} ”
by using property (ii) and the results above except for the
case of n =0. For n =0, we could not have the matrix
inequality for A 0 1234 and A(g 2345 because the 4 x4
matrix mequahty cannot hold for the first two cases of the
diagonal shift (n > 3 — 3 = 2). From property (i) and the
results of k < 4 above, we also have the inequality for the di-
agonal shift ”A(n n+1,n+2,n+3,n+4)} ” ”A(OJrl n+2,n+3,n+4,n+5} ”
when n >t, —4=>5. In this case, the matrix 1nequahty
for the diagonal shift cannot hold for the first five 5 x
5 submatrices || A nt+1.n4+2,043.0+41ll With n € {0,1,2,3,4}.
Therefore, the optimization can be performed by taking the
largest one of ||A{0,2,3,4,5}|| and ||A{n,n+l,n+2,n+3,n+4}” with
n € {0,1,2,3,4,5}.

b. For general J and k

For temporary simplicity, let us suppose |J| < 4 [it corre-
sponds to u) = 0 in Eq. (B3)]. The set of submatrices which
cannot be connected by the inequalities for given k can be
specified from #;_1,%—2,...,% in Table I as follows: First,
we generate the numberof 41 —(k— D)+ 1=t_1 —k+2
sets of 72 in which the submatrix corresponding to A; cannot be
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connected by the inequalities with respect to the diagonal shift,

0,1, ... k—1},
(1,2, ...k —1,k},

(B7)
e N
{temr —k+1, ... 60}
Second, we generate the sets by repeating the diagonal shift

of the last k — 1 elements of each set of Eq. (B7) until the last
index of n fulfills n; > f;_; as

0,1,...,k—11,{0,2,3, ... .k},{0,3.4, ... .k+1},...
——— ——— — ——

— Shifted

K— 1k, 3,4, ..k —

— Shifted

—>Shifted
1k},

k—1 elements
1,2, ...

k—1 elements

(1,45, .. kk+1),...
— ——

— Shifted

{tiet —k, oo timr = Wtk — ki — k2,000 i)

(i —k+ 1, ) temr —k+ Ly —k+3, ..,

o1+ 13, .00 (B8)
Third and finally, we generate the sets by re-

peating the diagonal shift of the last k—2 el-
ements of each set of Eq. (B8) until the last

PHYSICAL REVIEW A 93, 052336 (2016)

index of # fulfills n; > t;_3. For example, from the elements
in the first line of Eq. (B8) we have

{0,1,2, ...,k —11,{0,1,3,4, ... .k},{0,1,4,5, ... .k+ 1}, ...
———— ——
k—2 elements — Shifted —> Shifted
{0,2,3,4,...,k},{0,2,4,5, ... .k + 1},
—— ~—
k—2 elements —> Shifted
{0,2,5.6,....k+2},...
—
— Shifted
{0,3,4,5, ... .k+1},{0,3,5,6,--- .k +2},...
— ——— ——— ———
k—2 elements — Shifted
(B9)

In this manner, we can obtain the total number of, at most,

1ot — 1 — 1) sets of indices 7.

For the case of |J| > 4, we modify the generation process
by using u'”) of Eq. (B3) so that the diagonal shift of the
last / elements is repeated until the last index of 7 fulfills
ng > max{t;_,u +1—1}.

5. Outline for numerical calculation

Suppose that k, k, and x are given. We first search the
set of {A“)}; which includes (k x k)-principal submatrices
whose trace is greater than the conjectured maximum value
| Aig?l ..... «—1y|I- This process can be executed by only using the
diagonal elements of {A} ;.

Next, we determine the relevant submatrices according to
the process described in Appendix B 4 b for relevant J.

Lastly, the maximum eigenvalues are directly compared to
determine the maximum.
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