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Energy cost of creating quantum coherence
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We consider physical situations where the resource theories of coherence and thermodynamics play competing
roles. In particular, we study the creation of quantum coherence using unitary operations with limited
thermodynamic resources. We find the maximal coherence that can be created under unitary operations starting
from a thermal state and find explicitly the unitary transformation that creates the maximal coherence. Since
coherence is created by unitary operations starting from a thermal state, it requires some amount of energy. This
motivates us to explore the trade-off between the amount of coherence that can be created and the energy cost of
the unitary process. We also find the maximal achievable coherence under the constraint on the available energy.
Additionally, we compare the maximal coherence and the maximal total correlation that can be created under
unitary transformations with the same available energy at our disposal. We find that when maximal coherence
is created with limited energy, the total correlation created in the process is upper bounded by the maximal
coherence, and vice versa. For two-qubit systems we show that no unitary transformation exists that creates the
maximal coherence and maximal total correlation simultaneously with a limited energy cost.
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I. INTRODUCTION

The superposition principle in quantum physics gives
rise to classically counterintuitive traits like coherence and
entanglement [1]. Over the past few years, several works
have been done, from quantifying quantum superposition [2]
to establishing full-fledged resource theories of coherence
[3–5]. The restrictions underlying a quantum resource theory
(QRT) are manifestations of the physical restrictions that
govern the physical processes. For example, in the QRT
of entanglement, the consideration of local operations and
classical communication as the allowed operations stems from
the natural limitation to implementation of global operations
in a multipartite quantum system with the parties separated.
Considering the technological advancements towards pro-
cessing of small-scale quantum systems and proposals of
nanoscale heat engines, it is of utmost importance to investigate
the thermodynamic perspectives of quantum features like
coherence and entanglement, and this has attracted a great
deal of interest (see, for example, Refs. [6–22]). Since
energy conservation restricts the thermodynamic processing
of coherence, a quantum state having coherence can be viewed
as a resource in thermodynamics, as it allows transformations
that are otherwise impossible [23,24]. These explorations
have received renewed interest recently due to their possible
implications in various areas such as information theory
[25–29] and quantum biology [30–34]. In particular, it is
also shown that quantum coherence allows for better transient
cooling in absorption refrigerators and this phenomenon is
dubbed coherence-assisted single-shot cooling [35].

In this work, with the aforesaid motivation, we explore
the intimate connections between the resource theory of
quantum coherence and thermodynamic limitations on the
processing of quantum coherence. In particular, we study the

*avijit@hri.res.in
†uttamsingh@hri.res.in
‡samyadebbhattacharya@hri.res.in
§akpati@hri.res.in

creation of quantum coherence by unitary transformations with
limited energy. We go even further, to present a comparative
investigation of the creation of quantum coherence and mutual
information within the imposed thermodynamic constraints.
Considering a thermally isolated quantum system initially in
a thermal state, we perform an arbitrary unitary operation
on the system to create coherence. First, we find the upper
bound on the coherence that can be created using arbitrary
unitary operations starting from a fixed thermal state and then
we show explicitly that, irrespective of the temperature of
the initial thermal state, the upper bound on coherence can
always be saturated. Such a physical process will cost us
some amount of energy and hence it is natural to ask, if we
have a limited supply of energy to invest, then what is the
maximal achievable coherence in such situations? Further, we
investigate whether both coherence and mutual information
can be created maximally by applying a single unitary
operation on a two-qubit quantum system. We find that it is not
possible to achieve maximal quantum coherence and maximal
mutual information simultaneously. Our results are relevant
for the quantum information processing in physical systems
where thermodynamic considerations cannot be ignored, as
discussed in the preceding paragraph.

The organization of the paper is as follows. In Sec. II we
introduce the concepts that are necessary for further exposition
of our work and present the form of the unitary operation that
saturates the upper bound on the amount of coherence that can
be created by applying unitary transformations starting from
an incoherent state. In Sec. III we provide various results on
the creation of coherence when there is a limited availability
of energy. In Sec. IV we compare the processes of creating
maximal coherence and maximal mutual information, again
with limited thermodynamic resources. Finally, we conclude
with some possible implications in Sec. V.

II. MAXIMUM ACHIEVABLE COHERENCE UNDER
ARBITRARY UNITARY OPERATIONS

In this section, we first discuss the QRT of coherence and
then find a protocol for achieving maximal quantum coherence
under unitary operations.
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A. Quantum coherence

Any QRT is formed by identifying the relevant physical
restrictions on the set of quantum operations and preparation
of quantum states. For example, in the QRT of thermodynamics
the set of allowed operations is identified as the thermal
operations and the only free state is the thermal state for a
given fixed Hamiltonian [27,28]. The QRT of thermodynamics
is well accepted and has seen enormous progress in recent
years [23,24,29,36]. However, there is still ongoing debate
about the possible choices of restricted operations that will
define the resource theory of coherence for finite-dimensional
quantum systems [3,4,37,38]. The field of QRT of coherence
has advanced significantly over the past few years [37,39–65].
Measures of coherence are inherently basis dependent and
the relevant reference basis is provided by the experimental
situation at hand. Here we are concerned with the measures
of coherence that are obtained using QRT of coherence based
on incoherent operations as introduced in Ref. [3]. However,
very recently a refinement over Ref. [3] of the properties
that a coherence measure should satisfy was proposed in
Ref. [65]. This refinement imposes an extra condition on
the measures of coherence such that the set of states having
the maximal coherence value with respect to the coherence
measure and the set of maximally coherent states, as defined
in Ref. [3], should be identical. Moreover, the unitary freedom
in Kraus decomposition of a quantum channel implies that
an incoherent channel with respect to a particular physical
realization (Karus decomposition) may not be incoherent with
respect to other realizations of the same channel. This has
led to the introduction of genuinely incoherent operations
[37]. Genuinely incoherent operations are those that preserve
incoherent states. It is proved that the set of genuinely
incoherent operations is a strict subset of the incoherent
operations, therefore, every coherence monotone based on
the set of incoherent operations is also a genuine coherence
monotone [37].

In this work, we consider the relative entropy of coherence
as a measure of coherence, which enjoys various operational
interpretations [52,66]. The relative entropy of coherence
of any state ρ is defined as Cr (ρ) = S(ρD) − S(ρ), where
S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy and ρD =∑

i〈i|ρ|i〉|i〉〈i| is the diagonal part of ρ in the reference basis
{|i〉}. It is to be noted that the relative entropy of coherence is
also a genuine coherence monotone. Moreover, it also satisfies
the additional requirement as proposed in Ref. [65].

B. Maximum achievable coherence

Let us now consider the creation of maximal coherence,
which we define shortly, starting from a thermal state by
unitary operations. The prime motivation for starting with
a thermal initial state is that the surroundings may be
considered a thermal bath, and as the system interacts with
the surroundings, it eventually gets thermalized. However, our
protocol for creating maximal coherence is applicable to any
incoherent state. Let us now consider an arbitrary quantum
system in contact with a heat bath at temperature T = 1/β (we
set the Boltzmann constant to unity and follow this convention
throughout the paper). The thermal state of a system with the

Hamiltonian H = ∑d
j=1 Ej |j 〉 〈j | is given by

ρT = 1

Z
e−βH , (1)

where d is the dimension of the Hilbert space and Z =
Tr[e−βH ] is the partition function. The maximum amount of
coherence Cr,max(ρf ) that can be created starting from ρT by
unitary operations is given by

Cr,max(ρf ) = max
{ρf |S(ρf )=S(ρT )}

{
S
(
ρD

f

) − S(ρT )
}
. (2)

As the maximum entropy of a quantum state in d dimensions
is log2 d, the amount of coherence that can be created starting
from ρT , by a unitary transformation, always follows the
inequality

Cr (ρf ) � log2 d − S(ρT ). (3)

Now the question is whether or not the bound is tight, i.e.,
Is there any unitary operation that can lead to the creation
of log2 d − S(ρT ) amount of coherence starting from ρT ?
But before we answer this question, let us digress regarding
its importance. Coherence in an energy eigenbasis plays
a crucial role in quantum thermodynamic protocols and
several quantum information processing tasks. For example in
Ref. [35], it has been demonstrated that if the initial qubits
of a three-qubit refrigerator possess even a small amount
of coherence in an energy eigenbasis, then the cooling will
be significantly better. In small-scale refrigerators, the three
constituent qubits initially remain in corresponding thermal
states associated with the three thermal baths. Therefore, one
needs to create coherence by external means. Hence, creation
of coherence from thermal states may be fruitful and far-
reaching for better functioning of various nanoscale thermal
machines and diverse thermodynamic protocols. These are the
main motivations for studying the creation of coherence from
a thermodynamic perspective. We consider closed quantum
systems and hence allow only unitary operations for creating
coherence. Of course, after creating coherence via the unitary
transformation we have to isolate or take the system away
from the heat bath so that it does not get thermalized again.
Now, we show that the bound in Eq. (3) is achievable by
finding the unitary operation U such that ρf = UρiU

† has
the maximal amount of coherence. Since the relative entropy
of coherence of ρf is given by S(ρD

f ) − S(ρf ), one has to
maximize the entropy of the diagonal density matrix ρD

f . The
quantum state that is the diagonal of a quantum state ρ is
denoted ρD throughout the paper.

First, we construct a unitary transformation that results in
rotating the energy eigenbasis to the maximally coherent basis
as follows. The maximally coherent basis {|φj 〉}j is defined as
|φj 〉 = Zj |φ〉, where

Z =
d−1∑
m=0

e
2πim

d |m〉 〈m| (4)

and |φ〉 = 1√
d

∑d−1
i=0 |i〉. It can be verified easily that 〈φj |φk〉 =

δjk . Also, note that all the states in {|φj 〉}j and |φ〉 are
maximally coherent states [3] and have equal amounts of the
relative entropy of coherence, which is equal to log2 d. Now
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consider the unitary operation

U =
∑

j

|φj 〉 〈j | , (5)

which changes energy eigenstate |j 〉 to the maximally coherent
state |φj 〉. Starting from the thermal state ρT , the final state ρf

after the application of U is given by

ρf =
∑

j

e−βEj

Z
|φj 〉 〈φj | . (6)

Since ρf is a mixture of pure states that all have maximally
mixed diagonals, the bound in Eq. (3) is achieved. We note that
U in Eq. (5) is only one possible choice among the possible
unitaries achieving the bound in Eq. (3). For example, any
permutation of the indices j of |φj 〉 in Eq. (5) is also a valid
choice to achieve the bound. It is worth mentioning that even
though we consider the thermal density matrix to start with to
create maximal coherence in an energy eigenbasis, following
the same protocol maximal coherence can be created from any
arbitrary incoherent state in any arbitrary reference basis.

To create coherence by unitary operations starting from
a thermal state, some amount of energy is required. Now,
let us ask how much energy is needed on average to create
the maximal amount of coherence. Let ρT → VρT V †; then
the energy cost of any arbitrary unitary operation V acting on
the thermal state is given by

W = Tr[H (VρT V † − ρT )]. (7)

Since we are dealing with an energy eigenbasis, we have
E(ρD) = E(ρ). Here E(ρ) = Tr(Hρ) is the average energy
of the system in state ρ. The energy cost to create maximum
coherence starting from the thermal state ρT is given by

Wmax = Tr[H (UρT U † − ρT )] = 1

d
Tr[H ] − 1

Z
Tr[He−βH ].

(8)

Here U is given by Eq. (5). Note that maximal coherence can
always be created by unitary operations starting from a finite-
dimensional thermal state at an arbitrary finite temperature,
with a finite energy cost. However, it is not possible to create
coherence by unitary operations starting from a thermal state
at an infinite temperature, i.e., the maximally mixed state.

III. CREATING COHERENCE WITH LIMITED ENERGY

Since energy is an independent resource, it is natural to
consider a scenario where creation of coherence is limited by
a constraint on the available energy. In this section we consider
the creation of the optimal amount of coherence at a limited
energy cost �E starting from ρT . To maximize the coherence,
one needs to find a final state ρf whose diagonal part ρD

f has
maximum entropy with fixed average energy ET + �E, where
ET is the average energy of the initial thermal state ρT . Note
that E(ρD

f ) = E(ρf ). From the maximum entropy principle
[67,68], we know that the thermal state has maximum entropy
among all states with a fixed average energy. Therefore, the
maximum coherence C�E

r,max that can be created with �E

amount of available energy is upper bounded by

C�E
r,max � S(ρT ′) − S(ρT ). (9)

Here ρT ′ is a thermal state at a higher temperature T ′ such
that �E = Tr[H (ρT ′ − ρT )]. Thus, in order to create maximal
coherence at a limited energy cost, one should look for a
protocol such that the diagonal part of ρf is a thermal state at
a higher temperature T ′ (depending on the energy spent �E),
i.e., ρD

f = ρT ′ . Now it is obvious to inquire whether there
always exists an optimal unitary U ∗ that serves the purpose.
Theorem 1 answers this question in the affirmative.

Theorem 1. There always exists a real orthogonal transfor-
mation R that creates maximum coherence S(ρT ′ ) − S(ρT ),
starting from the thermal state ρT and spending only �E =
Tr[H (ρT ′ − ρT )] amount of energy.

Proof. To prove the theorem, we first show that the unitary
transformations on a quantum state induce doubly stochastic
[69] maps in the diagonal part of the quantum state. Note that
we start from the thermal state ρT = ∑d−1

j=0
e
−βEj

Z
|j 〉 〈j |. The

diagonal part of ρT transforms under the action of a unitary U

as

diag{UρT U †} =
d−1∑
i=0

qi |i〉 〈i| , (10)

where qi = 1
Z

∑d−1
j=0 Mije

−βEj and M , with entries Mij =
〈i| U |j 〉 〈j | U † |i〉, is a doubly stochastic matrix. Therefore,
the diagonal part is transformed by the doubly stochastic
matrix M such that

�Q = M �PT , (11)

where �PT = 1
Z
{e−βE0 ,e−βE1 , . . . ,e−βEd−1}T is the diagonal

vector corresponding to the initial thermal state ρT and �Q
is the diagonal vector corresponding to the diagonal part of the
final state. For two thermal states, ρT ′ and ρT , corresponding
to the same Hamiltonian, we have �PT ′ ≺ �PT if T ′ > T [70].
From the results of the theory of majorization [71], it can
be concluded that there always exists an orthostochastic [72]
matrix B such that �PT ′ = B �PT . Hence, the real orthogonal
operator R, corresponding to the orthostochastic matrix B,
transforms the initial thermal state ρT to a final state ρf such
that ρD

f = ρT ′ . Therefore, there always exists a real orthogonal
transformation R that creates S(ρT ′) − S(ρT ) amount of co-
herence, starting from the thermal state ρT and spending only
�E = Tr[H (ρT ′ − ρT )] amount of energy. This completes the
proof.

A. Qubit system

In the following, we determine explicitly the real unitary
transformation that allows the creation of maximal coherence
with limited energy at our disposal for the case of a qubit
system with the Hamiltonian H = E|1〉〈1|. The initial thermal
state is given by ρT = p |0〉 〈0| + (1 − p) |1〉 〈1| with p =

1
1+ e−βE . Now our goal is to create maximal coherence by
applying an optimal unitary U ∗, investing only �E amount
of energy. The average energy of the initial thermal state
ρT is given by (1 − p)E. As discussed earlier, for maximal
coherence creation with �E energy cost, the diagonal part
of the final state must be a thermal state, ρT ′ = q |0〉 〈0| +
(1 − q) |1〉 〈1|, at some higher temperature T ′, with average
energy (1 − p)E + �E. Here, q, and hence T ′, are determined
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from the energy constraint as q = p − �E
E

= 1
1+ e−β′E . From

Theorem 1, it is evident that there always exists a rotation
operator R which creates the maximal coherence. Consider a
rotation operator of the form

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
(12)

that transforms ρT as follows:

ρf = R(θ )ρT RT (θ )

=
(
p cos2 θ + (1 − p) sin2 θ (2p − 1) sin θ cos θ

(2p − 1) sin θ cos θ p sin2 θ + (1 − p) cos2 θ

)
.

We need the diagonal part of the final state to be the thermal
state ρT ′ at a higher temperature T ′. Therefore,

q = p cos2 θ + (1 − p) sin2 θ. (13)

As the right-hand side of Eq. (13) is a convex combination
of p and (1 − p) and p � q � 1/2 � (1 − p), by suitably
choosing θ one can reach the desired final state ρf such that
ρD

f = ρT ′ . The angle of rotation θ is given by

θ = cos−1

(√
p + q − 1

2p − 1

)
. (14)

Thus, the maximal coherence at constrained energy cost �E

can be created from a qubit thermal state by a two-dimensional
rotation operator as given by Eq. (12).

B. Qutrit system

For qubit systems, a two-dimensional rotation with the
suitably chosen θ is required to create maximum coherence
starting from a thermal state at a finite temperature with
limited available energy. For higher dimensional systems, it
follows from Theorem 1 that there always exists a rotation
which serves the purpose of maximal coherence creation.
However, finding the exact rotation operator for a given initial
thermal density matrix and energy constraint is not an easy
task. Even for a qutrit system, finding the optimal rotation is
nontrivial. In what follows, we demonstrate the protocol for
creating maximal coherence with energy constraint starting
from a thermal state for qutrit systems. Note that by applying
a unitary operation on a thermal qubit, one has to invest some
energy, and thus the excited-state population corresponding
to the diagonal part of the final qubit is always increased.
Therefore, for the case of qubit systems, one only has to give
a rotation by an angle θ , depending on the available energy,
to create the maximal coherence starting from a given thermal
state. For a thermal state in higher dimensions, we know that
with an increment in the temperature (energy), the occupation
probability of the ground state will always decrease and the
occupation probability will increase for the highest excited
state. But what will happen for the intermediate energy levels?
Let us first answer this particular question considering an initial
thermal state of the form

ρT =
d∑

j=1

pj |j 〉〈j |, (15)

where pj = e
−Ej /T∑

j e
−Ej /T is the occupation probability of the

j th energy level. Differentiating pj with respect to the
temperature, we get

∂pj

∂T
= − (〈E〉T − Ej )

T 2
pj . (16)

Therefore, for energy levels lying below the average energy
of the thermal state, the occupation probabilities will decrease
with an increase in temperature and the occupation probabil-
ities will increase for energy levels lying above the average
energy. Making use of this change in occupation probabilities,
we now provide a protocol for maximum coherence creation
in thermal qutrit systems with a constraint on the available
energy. We consider a qutrit system with the system Hamil-
tonian H = E|1〉〈1| + 2E|2〉〈2|. The initial thermal qutrit
state is given by ρT = p|0〉〈0| + (1 − p − q)|1〉〈1| + q|2〉〈2|
with average energy 〈E〉T = (1 − p − q)E + 2qE. Here p =
1/Z and q = e−2βE/Z, where Z = 1 + e−βE + e−2βE is the
partition function. The diagonal density matrix of the final
state is a thermal qutrit state at temperature T ′ with average
energy 〈E〉′T = (1 − p − q)E + 2qE + �E, when we create
coherence with �E energy constraint.

We show that just two successive rotations in two dimen-
sions suffice the purpose of creating the maximum amount of
coherence. For equal energy spacing of {0,E,2E}, the average
energy at infinite temperature is given by 〈E〉∞ = E. So,
for an arbitrary finite temperature, the condition E > 〈E〉T
holds true. Thus for the aforementioned qutrit thermal system,
with an increase in temperature, the occupation probabilities
of the first and second excited states will always increase
at the expense of a decrease in the occupation probability
for the ground state. The diagonal elements of the final state
should be the occupation probabilities of the thermal state at a
higher temperature T ′, given by p′, 1 − p′ − q ′, and q ′ for the
ground, first excited, and second excited states, respectively.
From the conservation of probabilities, it follows that

−�p = p − p′ = (q ′ − q) + (1 − p′ − q ′) − (1 − p − q)

= �q + �(1 − p − q). (17)

Note that we always have −�p > �q > 0.
Now, let us first apply a rotation about |1〉. Physically, this

rotation creates coherence between basis states |0〉 and |2〉.
The rotation can be expressed by the unitary R1(α) = e−iαJ1 ,
where

J1 =
⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ (18)

is the generator of the rotation. Then another rotation is applied
about |2〉, which is given by R2(δ) = e−iδJ2 , where

J2 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (19)

After the action of two successive rotations, given by
R2(δ)R1(α), we have

q ′ = q cos2 α + p sin2 α (20)
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and

p′ = (q sin2 α + p cos2 α) cos2 δ + (1 − p − q) sin2 δ

= (p − �q) cos2 δ + (1 − p − q) sin2 δ. (21)

From Eq. (20), it is clear that q ′ is a convex combination
of p and q, and since q < q ′ < p, there always exists an
angle of rotation α, depending on the available energy, so that
the protocol can be realized. The angle of rotation is given

by α = cos−1
√

p−q ′
p−q

, where α ∈ [0,π/2]. Similarly, Eq. (21)

suggests that p′ is a convex combination of (p − �q) and
(1 − p − q), and since 1 − p − q < p′ < p − �q [Eq. (17)],
one can always achieve any desired value of p′ by suitably

choosing δ ∈ [0,π/2], with δ = cos−1
√

p′−(1−p−q)
(p−�q)−(1−p−q) . Thus,

maximal coherence at a finite energy cost can be created
by two successive two-dimensional rotations starting from a
thermal state of a qutrit system. Note that we have considered
equal energy spacing {0,E,2E}, however, the above protocol
will hold for any energy spacing for which the condition
E1 > 〈E〉T holds, where E1 is the energy of the energy
eigenstate |1〉.

IV. COHERENCE VERSUS CORRELATION

In this section we carry out a comparative study between
maximal coherence creation and maximal total correlation
creation (also see Ref. [16]) with limited available energy. We
consider an arbitrary N -party system acting on a Hilbert space
Hd1 ⊗ Hd2 ⊗ · · · ⊗ HdN . The Hamiltonian of the composite
system is noninteracting and given by Htot = H1 + H2 +
· · · + HN . For the sake of simplicity, we consider H1 =
H2 = · · · = HN = H . However, our results hold in general.
Suppose there exists an optimal unitary operator U ∗ which
creates the maximal total correlation from initial thermal state
ρT with �E energy cost. It is shown in Ref. [16] that the
maximal correlation (multipartite mutual information) that can
be created by a unitary transformation with energy cost �E is
given by

I�E
max =

∑
i

[
S
(
ρi

T ′
) − S

(
ρi

T

)]
. (22)

In the protocol to achieve the maximal correlation, the sub-
systems of the composite system ρN

T transform to the thermal
states ρi

T ′ of the corresponding individual systems at some
higher temperature T ′ [16]. It is interesting to inquire how
much coherence is created during this process, as in several
quantum information processing tasks it may be necessary to
create both the coherence and the correlation simultaneously.
The amount of coherence created, Cr |I�E

max
, when the unitary

transformation creates the maximal correlation is given by

Cr |I�E
max

= S
(
ρD

f

) −
∑

i

S
(
ρi

T

)
. (23)

As the Hamiltonian is noninteracting, ρD
f and the product

of the marginals (
∏⊗i

ρi
T ′) have the same average energy.

Since the product of the marginals is the thermal state
of the composite system at temperature T ′, the maximum
entropy principle implies that

∑
i S(ρi

T ′) � S(ρD
f ). Hence,

Cr |I�E
max

� I�E
max. Therefore, when one aims for maximal cor-

relation creation the coherence created is always bounded by
the amount of correlation created. Now, we ask the converse,
i.e., How much correlation can be created when one creates
maximal coherence by a unitary operation with the same
energy constraint �E? The maximal coherence that can be
created in this scenario by unitary transformation with energy
constraint is given by

C�E
r,max =

∑
i

[
S
(
ρi

T ′
) − S

(
ρi

T

)]
. (24)

Note that the maximal achievable coherence is equal to the
maximal achievable correlation [cf. Eq. (22)], but the protocols
to achieve them are completely different. When the maximal
coherence is created, the diagonal of the final density matrix is
a thermal state at some higher temperature, while the maximal
correlation is created when the product of the marginals of
the final state is a thermal state at some higher temperature.
Therefore, when the maximum amount of coherence C�E

r,max is
created, the correlation I |C�E

r,max
that is created simultaneously

always satisfies

I |C�E
r,max

� C�E
r,max. (25)

The above equation again follows from the maximum entropy
principle and the fact that the diagonal part and the product
of the marginals have the same average energy. Therefore,
when one aims for maximal coherence creation, the amount
of correlation that can be created at the same time is always
bounded by the maximal coherence created, and vice versa.

It is also interesting to inquire whether one can create the
maximal coherence and the maximal correlation simultane-
ously. In the following, we partially answer this question.
For two-qubit systems we show no unitary transformation
exists which maximizes both the coherence and the correlation
simultaneously. Let the Hamiltonian of the two-qubit system
be given by HAB = HA + HB , with HA = HB , in general.
Later, we also consider HA = HB . The initial state is the
thermal state at temperature T and is given by

ρAB,T = diag{pq,p(1 − q),(1 − p)q,(1 − p)(1 − q)}, (26)

where p=1/(1+e−βEA ), q=1/(1+e−βEB ), HA=EA|1〉〈1|, and
HB = EB |1〉〈1|. Consider the protocol in Ref. [16] for creating
the maximum correlation. In that scenario, the marginals are
the thermal states at a higher temperature T ′. Let the final state
of the two-qubit system after the unitary transformation be
given by

ρ
f

AB =
∑
ijkl

aijkl|i〉〈j | ⊗ |k〉〈l|. (27)

As the marginals are thermal, aiikl = 0 if k = l and aijkk = 0
if i = j . Thus, the maximally correlated state that is created by
investing a limited amount of energy is an X state [73], while
for maximal coherence creation, the diagonal part of the final
state is a thermal state at a higher temperature T ′. Therefore,
the diagonal part of the final state must be of the form

ρ
f D

AB,T ′ = diag{p′q ′,p′(1 − q ′),(1 − p′)q ′,(1 − p′)(1 − q ′)},
where p′ = 1/(1 + e−β ′EA ), q ′ = 1/(1 + e−β ′EB ), and p′ < p

and q ′ < q as β ′ < β. We show in the Appendix, separately
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for EA = EB (Sec. 1) and EA = EB (Sec. 2), that there is no
such unitary transformation which serves the purpose. It will
be interesting to explore what happens for higher dimensional
systems.

V. CONCLUSION

In this article, we have studied the creation of quantum
coherence by unitary transformations starting from a thermal
state. This is important from a practical viewpoint, as most
systems interact with the environment and get thermalized
eventually. We find the maximal amount of coherence that
can be created from a thermal state at a given temperature
and find a protocol to achieve this. Moreover, we find
the amount of coherence that can be created with limited
available energy. Thus, our study establishes a link between co-
herence and thermodynamic resource theories and reveals the
limitations imposed by thermodynamics on the processing of
the coherence. Additionally, we have performed a comparative
study between coherence creation and total correlation creation
with the same amount of energy at our disposal. We show
that when one creates the maximum coherence with limited
energy, the total correlation created in the process is always
upper bounded by the amount of coherence created, and vice
versa. As correlation and coherence both are useful resources,
processing them simultaneously is fruitful. However, our result
shows that, at least in two-qubit systems, there is no way to
create the maximal coherence and the maximal correlation
simultaneously via unitary transformations. Recently, the
importance of coherence for improving the performance of
thermal machines has been explicitly established and the
implications of coherence for the thermodynamic behavior
of quantum systems have been studied. Therefore, it is
justified to believe that the study of the thermodynamic cost
and limitations of thermodynamic laws in the processing of
quantum coherence can be far reaching. The results in this
paper are a step in this direction.
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APPENDIX: COHERENCE VS CORRELATION
IN TWO-QUBIT SYSTEMS

Here, for two-qubit states with the Hamiltonian H =
HA + HB , we show that maximum correlation and maximum
coherence cannot be created simultaneously via a unitary
transformation, starting from a thermal state with limited
available energy. We consider the two cases where EA = EB

and EA = EB .

1. EA = EB

This is the case where the initial state is ρ⊗2
T with ρT =

ρA
T = ρB

T = diag{p,1 − p} and the final state is in the X-state

form, given by

ρf =

⎛
⎜⎝

q2 0 0 Y

0 q(1 − q) X 0
0 X∗ q(1 − q) 0
Y ∗ 0 0 (1 − q)2

⎞
⎟⎠. (A1)

Note that p � q � 1/2 � (1 − q) � (1 − p). Here, |Y | �
q(1 − q) and |X| � q(1 − q), so that ρf is positive semidef-
inite. Let p = 1

2 + ε and q = 1
2 + ε′, where 1

2 > ε > ε′ > 0.
The eigenvalues of this final density matrix are given by

λ1,4 = 1
2 (q2 + (1 − q)2 ±

√
(q2 − (1 − q)2)2 + 4|Y |2),

(A2)

λ2,3 = q(1 − q) ± |X|. (A3)

As the unitary transformation preserves the eigenvalues, two
of the eigenvalues of the final density matrix must be equal to
p(1 − p) and the other two must be equal to p2 and (1 − p)2,
respectively.

a. Case 1

Let us first assume that λ2 = λ3 = p(1 − p). Then we find
that |X| = 0 and q = p or q = 1 − p. Since we know that
p � 1/2, then q � 1/2 for q = 1 − p. Hence, q = 1 − p.
q = p can only happen under identity operation. Therefore,
λ2 = λ3.

b. Case 2

Assume that λ1 = λ4 = p(1 − p); then we have

p(1 − p) = q2 + (1 − q)2

2
+ q2 − (1 − q)2

2
M

= q2 + (1 − q)2

2
− q2 − (1 − q)2

2
M, (A4)

where M =
√

1 + 4|Y |2
(2q−1)2 . From Eq. (A4), we have M = 0,

which is a contradiction since M � 1. Therefore, Eq. (A4)
cannot be satisfied.

c. Case 3

As p2 � p(1 − p) � (1 − p)2, two other possibilities are
λ1 = λ3 = p(1 − p) and λ4 = λ2 = p(1 − p). Note that we
always have λ1 > λ3. Therefore, the only possibility we have
to check is λ4 = λ2 = p(1 − p). For this we have

λ2 = p(1 − p) ⇒ |X| = p(1 − p) − q(1 − q)

⇒ |X| = −(ε2 − ε
′2), (A5)

which is a contradiction, as the right-hand side is negative
since ε > ε′. Therefore, it is also not possible.

2. EA �= EB

Let us relabel the diagonal entries of the initial density
matrix as

ρAB
T = a1|00〉〈00| + a2|01〉〈01| + a3|10〉〈10| + a4|11〉〈11|.

Here, {ai} is an arbitrary probability distribution that depends
on the energy levels EA and EB and the initial temperature T .
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We argue that the unitary transformations that map the initial
state into an X state, starting from a two-qubit thermal state
at arbitrary finite temperature T , are only allowed to create
correlation among the subspaces spanned by {|00〉,|11〉} and
{|01〉,|10〉}, separately; i.e., no correlation can be created
between these two subspaces. Thus, the unitary transformation

that maximizes the total correlation acts on the blocks spanned
by {|00〉,|11〉} and {|01〉,|10〉}, separately. Given this, again
from comparing eigenvalues, it can be argued that the total
correlation and the coherence cannot be maximized simulta-
neously by unitary transformations in two-qubit systems when
the Hamiltonians of the systems are not the same.
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