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Quantum algorithm for obtaining the eigenstates of a physical system
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We propose a quantum algorithm for solving the following problem: given the Hamiltonian of a physical
system and one of its eigenvalues, how do we obtain the corresponding eigenstate? The algorithm is based on the
resonance phenomenon. For a probe qubit coupled to a quantum system, the system exhibits resonance dynamics
when the frequency of the probe qubit matches a transition frequency in the system. Therefore the system can
be guided to evolve to the eigenstate with a known eigenvalue by inducing the resonance between the probe
qubit and a designed transition in the system. This algorithm can also be used to obtain the energy spectrum of a
physical system and can achieve even quadratic speedup over the phase estimation algorithm.
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I. INTRODUCTION

Obtaining the eigenstates and energy spectrum of a physical
system is of fundamental importance in quantum physics and
quantum chemistry. In principle, the task can be achieved by
solving the Schrödinger equation of the system. In most cases,
however, the Schrödinger equations cannot be solved exactly,
and numerical approaches such as full diagonalization or
Monte Carlo methods are not efficient in terms of the size of the
system on a classical computer. The quantum phase estimation
algorithm (PEA) [1] was proposed for solving the following
problem efficiently: given an unitary operator U and one of its
eigenstates |�〉, how do we estimate the phase factor θ of the
corresponding eigenvalue eiθ of U? Later, the PEA was applied
for solving the Schrödinger equation of a system on a quantum
computer to obtain the energy eigenvalues and eigenstates of
a system [2,3]. Adiabatic quantum evolution (AQE) is another
quantum algorithm for preparing an eigenstate of a system [4].
In AQE, however, one can only prepare the ground state of the
system, and scaling the run time of the algorithm remains an
open question in the case where the ground state is degenerate.
In Ref. [5], a quantum algorithm was proposed for preparing
ground states of quantum systems in time

√
N , where N is

the size of the system. The algorithm can also be applied for
preparing arbitrary eigenstates of a quantum system.

In this paper, we propose a different quantum algorithm
for obtaining an arbitrary eigenstate of a physical system by
asking the following question: given the Hamiltonian of a
system and one of its eigenvalues, how do we obtain the
corresponding eigenstate of the system? This algorithm is
based on the resonance phenomenon that for a probe qubit
coupled to a physical system, the probe exhibits a dynamical
response when it resonates with a transition in the system.
Therefore the system can be guided to evolve to the eigenstate
with a known eigenvalue by inducing a resonance between the
probe qubit and a transition in the system. The algorithm can
also be used to obtain the energy spectrum of a system. It can
achieve a quadratic speedup over the PEA in obtaining the
eigenstates and the corresponding eigenvalues of a physical
system, even for degenerate eigenstates. Compared with the
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algorithm in Ref. [5], our algorithm requires fewer resources,
and the implementation of our algorithm is easier. In the
algorithm in Ref. [5], one has to know the absolute value of the
eigenenergy of a desired eigenstate to prepare the momentum
state on the auxiliary qubits. While our algorithm works even
when one does not know the exact eigenvalue of the desired
eigenstate. A detailed comparison of our algorithm with the
algorithm in Ref. [5] is presented in Sec. IV.

II. THE ALGORITHM

Without loss of generality, we illustrate the algorithm by
showing how to obtain the ground state of a physical system
provided the ground-state energy is already known. Details of
the algorithm are as follows.

We construct a quantum register R of (n + 1) qubits, which
contains one ancilla qubit and an n-qubit quantum register
that represents a physical system of dimension N = 2n. A
probe qubit is coupled to R, and the Hamiltonian of the entire
(n + 2)-qubit system is in the form

H = − 1
2ωσz ⊗ I

⊗(n+1)
2 + I2 ⊗ HR + cσx ⊗ B, (1)

where I2 is the two-dimensional identity operator and σx and
σz are the Pauli matrices. The first term in the above equation
is the Hamiltonian of the probe qubit, the second term is the
Hamiltonian of the register R, and the third term describes
the interaction between the probe qubit and R. Here, ω is the
frequency of the probe qubit (� = 1), c is the coupling strength
between the probe qubit and R, and c � ω. The Hamiltonian
of R is in the form

HR = |0〉〈0| ⊗ [ε0(|0〉〈0|)⊗n] + |1〉〈1| ⊗ HS, (2)

where HS is the Hamiltonian of the system and ε0 is a
parameter that is set as a reference point to the ground-state
energy E1 of HS . B is an operator that acts on the register
R, which can be varied for different systems. The operator
B = σx ⊗ A, and A acts on the state space of the system.

To run the algorithm, first, we prepare the probe qubit in its
excited state |1〉 and the register R in a reference state |�〉 =
|0〉⊗(n+1), which is an eigenstate of HR with eigenvalue ε0; the
(n + 2) qubits are in state |�0〉 = |1〉|�〉 = |1〉|0〉|0〉⊗n. Then
we evolve the entire (n + 2)-qubit system with the Hamiltonian
H for time t . After that, we perform a measurement on the
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FIG. 1. Quantum circuit for obtaining the eigenstates of a physi-
cal system. U (τ ) is a time evolution operator driven by a Hamiltonian
given in Eq. (1). The first line represents a probe qubit, the second
line is an ancilla qubit, and the last n qubits represent the quantum
system.

probe qubit in the basis of |0〉. When the probe qubit decays to
its ground state |0〉, the last n qubits of the register R evolve
to the ground state of the system with large probability. The
circuit for the algorithm is shown in Fig. 1.

In the basis of {|�0〉 = |1〉|0〉|0〉⊗n,|�i〉 = |0〉|1〉|ϕi〉,i =
1, . . . ,N}, where |ϕi〉 are the eigenstates of HS with the
corresponding eigenvalues Ei , the Hamiltonian H in Eq. (1)
is in the form H00 = 1

2ω + ε0; Hi0 = H ∗
0i = c〈ϕi |A|0〉⊗n and

Hii = − 1
2ω + Ei for i � 1, and Hij = 0 for i,j � 1 and

i �= j . The ground state |ϕ1〉 of HS is encoded in the basis
state |�1〉 = |0〉|1〉|ϕ1〉. With the initial state being set as
|�0〉, the Schrödinger equation i d

dt
|�〉 = H |�〉 describes the

evolution of the entire (n + 2)-qubit system from |�0〉 to states
|�i〉 = |0〉|1〉|ϕi〉 through N independent channels.

When the parameter ε0 satisfies the condition E1 − ε0 = ω,
which means the transition frequency between the reference
state and the state |�1〉 matches the frequency of the probe
qubit, we have H00 = H11 = 1

2ω + ε0, and the system evolves
from the initial state |�0〉 to the state |�1〉 = |0〉|1〉|ϕ1〉 and
reaches maximal probability at time t ∼ 1/(c|〈ϕ1|A|0〉⊗n|),
provided that the energy gap between the ground state and the
first excited state of the system E2 − E1 
 c. Then the last n

qubits of the register R evolve to the ground state |ϕ1〉 of the
system with high probability.

III. EFFICIENCY OF THE ALGORITHM

The efficiency of the algorithm depends on the run time t

and the probability of the system being evolved to state |�1〉,
which encodes the ground state of the physical system, P =
|〈�1|U (t)|�0〉|2. In general, we cannot solve the Schrödinger
equation exactly to obtain P (t) of the algorithm, but we can
estimate the run time t by considering some special cases.

In the algorithm, when the frequency of the probe qubit
matches the transition frequency between the reference state
|�〉 and the eigenstate |1〉|ϕ1〉 of HR , the probability of the
(n + 2)-qubit system being transferred from the initial state
|�0〉 to the state |�1〉 reaches maximum at a certain time t .
There is also a probability for the system being transferred
to other states |�j 〉, j = 2, . . . ,N . By applying the first-order
perturbation theory, this probability can be formulated as [6]

sin2

(

0j τ

2

)
Q2

0j

Q2
0j + (Ej − ε0 − ω)2

, j = 2, . . . ,N, (3)

where Q0j = 2c|〈ϕj |A|0〉⊗n| and 
0j =√
Q2

0j + (Ej − ε0 − ω)2. From the above equation one

can see that as the transition frequency between the reference
state and the state |1〉|ϕj 〉 gets closer to the frequency of
the probe qubit, the probability of the system being evolved
to the state |ϕj 〉 is higher. Based on this analysis, the run time
of the algorithm must be in between the two assumed special
cases of the system: all the excited states |ϕj 〉 (j = 2, . . . ,N )
are degenerate at the lowest or the highest possible energy
levels of the system. By assuming that the ground state
of the system is nondegenerate and the excited states are
(N − 1)-fold degenerate, we can calculate P (t) by exactly
solving the Schrödinger equation.

In the algorithm, the state A|0〉⊗n can be expanded by
the complete set of the eigenstates of the system {|ϕi〉,i =
1,2, . . . ,N} as A|0〉⊗n = ∑N

i=1 di |ϕi〉, where di = 〈ϕi |A|0〉⊗n

and
∑N

i=1 |di |2 = 1. Suppose the excited states of the system
are (N − 1)-fold degenerate with eigenvalue E′ + 1

2 , and

let |�2〉 = |0〉|1〉 1√
N−1

∑N
i=2 |ϕi〉 and d1 = d; the Hamilto-

nian matrix of H in the basis {|�0〉 = |1〉|0〉|0〉⊗n,|�1〉 =
|0〉|1〉|ϕ1〉,|�2〉 = |0〉|1〉 1√

N−1

∑N
i=2 |ϕi〉} can be written as

H =

⎛
⎜⎝

1
2ω + ε0 cd∗ c

√
1 − |d|2

cd 1
2ω + ε0 0

c
√

1 − |d|2 0 E′

⎞
⎟⎠. (4)

Let |�(t)〉 = c0(t)|�0〉 + c1(t)|�1〉 + c2(t)|�2〉, and suppose
the ground-state energy of the system E1 = 1. By setting
ω = 1 and ε0 = 0, the Schrödinger equation with the above
Hamiltonian can be solved exactly, and

c1(t) = 4cd
∑

x

(E′ − x)e−ixt

−12x2 + 8(E′ + 1)x + 4c2 − 4E′ − 1
, (5)

where x are the eigenvalues of the Hamiltonian matrix in
Eq. (4) with ω = 1 and ε0 = 0.

The probability of the system being evolved from the initial
state |�0〉 to the state |�1〉 is P (t) = |c1(t)|2. It depends on
the evolution time t , the coupling coefficient c, the overlap
of the state A|0〉⊗n with the ground state of the system,
d = 〈ϕ1|A|0〉⊗n, and the eigenvalue E′ + 1

2 of the state |�2〉
and therefore can be expressed as P (c,d,E′,t). It reaches its
maximal value as the run time t ∼ 1

cd
. The run time of the

algorithm can be reduced if one can construct an operator A

such that A|0〉⊗n is close to the ground state |ϕ1〉 of the system.
The construction of operator A can be achieved using some
state preparation techniques [7–10].

The coupling coefficient c is related to the parameter d;
here, we set c = dα . In the following, with E1 = 1, ω = 1,
and ε0 = 0, we study the variation of the success probability
of the algorithm P (E′,d,α,t) with respect to the parameters
E′, d, α, and t .

We set d = 0.01 and plot the variation of P with respect
to t and E′ by setting α = 1 and α = 0 in Figs. 2 and 3,
respectively. From Figs. 2 and 3 we can see that as E′ increases,
P becomes a periodic function with respect to the evolution
time t . P reaches unity quickly at small E′ in the case with
α = 1 and at large E′ in the case with α = 0.

In Fig. 4, by setting d = 0.01, we show the variation of P

versus E′ at t = π
2

1
cd

= π
2

1
d (1+α) for α = 0, 0.5, and 1. From

Fig. 4 we can see that as the exponent α increases, P reaches
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FIG. 2. The probability of the entire (n + 2)-qubit system being
evolved from the state |�0〉 to the state |�1〉 vs the evolution time t

and E′. The parameter α = 1. Atomic units are used.

unity quickly, and only at large E′ can the success probability
P be close to unity for a small exponent α.

In Fig. 5, by setting d = 0.01 and E′ = 5, we show the
variation of P versus the evolution time t for α = 0, 0.5, and
1. We can see that P increases as α increases, P is a periodic
function of t , and the period decreases as α increases. Also, P
can be finitely large even in the case α = 0.

The run time of the algorithm scales as t ∼
1/(c|〈ϕ1|A|0〉⊗n|), and we can make a guess on t to run
the algorithm. From Fig. 5, we can see that there is a large
probability for the success probability of the algorithm P to
be finitely large with a guessed run time t .

It is important to study the scaling of the exponent α with
respect to d since the run time of the algorithm is determined by
1/d (1+α). In Table I, we show the results for the variation of the
exponent α vs d while keeping P = 0.99 when E′ = 20. From

FIG. 3. The same as in Fig. 2, except α = 0. Atomic units are
used.

FIG. 4. The variation of P vs E′ at t = π

2
1

d1+α for α = 0,0.5,1
while setting d = 0.01. The black solid line shows the results for
α = 0; the red dashed line shows the results for α = 0.5, and the blue
dotted line shows the results for α = 1. Atomic units are used.

Table I we can see that as d increases, the exponent α decreases
even to zero at d = 0.4. This means that the run time of the
algorithm scales as 1/d, while in PEA, the success probability
of the algorithm scales as d2, which means the algorithm has
to be executed 1/d2 times to obtain the eigenstates. There is
a quadratic speedup of our algorithm over the PEA in this
case. If we lower the success probability to P = 0.94, α can
decrease to zero even at d = 0.1, and the evolution time is
reduced to 15.

Figure 6 shows the variation of the exponent α vs d for
E′ = 2,5,10,20 while keeping P = 0.9. We can see that as E′
increases, α decreases quickly and even reaches zero at large
d. This indicates that the run time of the algorithm can scale as
1/d while keeping a very high success probability P = 0.9.

FIG. 5. The variation of P vs the evolution time t for α = 0,0.5,1
while setting d = 0.1 and E′ = 5. The black solid line shows the
results for α = 0; the red dashed line shows the results for α = 0.5,
and the blue dotted line shows the results for α = 1. Atomic units are
used.
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TABLE I. Results for variation of the exponent α vs d while
keeping P = 0.99 when E′ = 20. The run time t of the algorithm is
shown and compared with 1/d2, the efficiency of the phase estimation
algorithm.

d

0.01 0.02 0.05 0.1 0.2 0.4

α 0.7 0.6 0.5 0.35 0.2 0
t 3925 815 140 35 11 4
1/d2 10000 2500 400 100 25 7

The time evolution operator U (t) = exp (−iH t) of the
algorithm can be implemented efficiently through the Trotter
formula [11] on a quantum computer.

When the transition frequency between the reference state
and an eigenstate of the system matches the frequency of the
probe qubit, it contributes the most to the decay of the probe
qubit. By performing measurements on the probe qubit in the
basis of |0〉 to obtain its decay probability, a peak in the decay
rate of the probe qubit will be observed. Therefore by varying
the frequency of the probe qubit or the eigenvalue of reference
state ε0 and running the algorithm, we can locate the transition
frequencies between the reference state and the eigenstates of
the system. Therefore this algorithm can also be used to obtain
the energy spectrum of the system. The procedures are the
same as in Ref. [12].

IV. DISCUSSION

For the Schrödinger equation HS |ψ〉 = E|ψ〉 of the system,
an eigenvalue of HS can be obtained if its corresponding
eigenstate is known and vice versa. Various methods based
on a guess state of the system have been developed to obtain
the eigenstates of the system. Here, we proposed a quantum
algorithm for obtaining the eigenstates of a system when the
corresponding eigenvalue is known.

FIG. 6. The variation of the exponent α vs d for E′ = 2,5,10,20
(atomic units are used) while keeping P = 0.9. The black squares
show the results for E′ = 2, the red circles show the results for E′ = 5,
the blue triangles show the results for E′ = 10, and the cyan stars
show the results for E′ = 20.

In the following we compare our algorithm with the PEA,
the algorithm we proposed in Ref. [12], and the algorithm in
Ref. [5].

In the PEA, the success probability for obtaining the kth
eigenstate |ϕk〉 of the system is d2

k , where dk = |〈ϕk|ψs〉| is
the overlap of the eigenstate |ϕk〉 with the guess state |ψs〉
of the system. Therefore, the run time of the PEA for obtaining
the eigenstate |ϕk〉 and its corresponding eigenenergy is τ0

1
d2

k

,

where τ0 is the run time of the PEA each time. For the algorithm
in Ref. [12], the run time of the algorithm for obtaining the
eigenstate |ϕk〉 and its corresponding eigenenergy scales as
1/(|〈ϕk|A|ϕi〉|2d2

k ).
To the algorithm in Ref. [12], we add one ancilla qubit

in the present algorithm, and then we can prepare the initial
input state of the register R as |�〉 = |0〉⊗(n+1), which is set
as a reference state to the physical system. With this, one can
vary the eigenvalue ε0 of the reference state while keeping
the frequency of the probe qubit fixed; it is more convenient
for experimental implementation. The reference state |�〉 is
an eigenstate of HR; therefore the overlap of the initial state
with the eigenstate of HR is 1. The state A|0〉⊗n = |ψs〉 can be
considered a guess state of the kth eigenstate of the system. The
run time of the algorithm for obtaining the eigenstate |ϕk〉 and
its corresponding eigenvalue of the system is 1/(cdk). In this
algorithm, we have shown that the run time of the algorithm
scales as 1/dk � t � 1/d2

k , which means our algorithm can
achieve even quadratic speedup over the phase estimation
algorithm and the algorithm in Ref. [12].

We now compare our algorithm with the algorithm in
Ref. [5]. In this algorithm, a procedure contains the inverse
phase estimation algorithm, and Grover’s algorithm is pro-
posed and acts as a filter to suppress the amplitude of the
eigenstates outside of the bandwidth and amplify the amplitude
of the desired eigenstates. Compared with this algorithm, our
algorithm has following advantages: our algorithm requires
fewer resources than the algorithm in Ref. [5]. In Ref. [5] one
has to prepare on the auxiliary qubits a momentum state which
is associated with the eigenvalue of an eigenstate of the system.
One has to prepare the absolute value of the phase factor
and therefore requires more qubits than our algorithm, which
requires (n + 2) qubits in total. The implementation of our
algorithm is simpler and easier than the algorithm in Ref. [5].
The algorithm in Ref. [5] contains procedures of PEA and
Grover’s algorithm; the PEA contains a number of controlled
unitary operations and has to be implemented a number of
times, and Grover’s algorithm has to be run the square root
of N times. However, in our algorithm, one only has to
implement the unitary operator by applying Trotter’s formula
and performing single-qubit measurements on the probe qubit.
In the algorithm in Ref. [5], one has to know the absolute
value of the eigenenergy of a desired eigenstate to prepare
the momentum state on the auxiliary qubits. In our algorithm,
the algorithm works even when one does not know the exact
eigenenergy of the desired eigenstate. One can make a guess
about the range of the eigenenergy of the system, then locate
the eigenenergy and find out the corresponding eigenstate.
This approach is described in the last paragraph of Sec. III.

Preparing a guess state as input to an algorithm is equivalent
to measuring the guess state with the eigenstates of the
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system and then taking the measurement result as input to
the algorithm. The success probability of the input state being
in the kth eigenstate of the system is |〈ϕk|ψs〉|2. In our present
algorithm, by introducing a reference state, the overlap is
always 1. Therefore in our algorithm we can obtain quadratic
speedup over the phase estimation algorithm and the algorithm
in Ref. [12]. The unitary evolution of the algorithm can provide
quantum speedup.

In this algorithm, all eigenstates of the system are “labeled”
by their eigenenergies, and an eigenstate of interest is obtained
by searching its label by inducing resonance with the probe
qubit. The probability of the system being evolved to the target
state is amplified by introducing a resonance between the
probe qubit and a designed transition between the reference
state and the target state of the system. In general, it can be
viewed as an amplitude amplification technique [5,13]. This is
equivalent to applying a quantum transformation to the system
to achieve a quantum speedup in searching the target state.
This explains why the lower bound of the run time of the
algorithm is 1/dk , which is the efficiency of Grover’s search

algorithm [13,14]. Because of this property of the algorithm,
for a given eigenvalue of the system, all the corresponding
eigenstates can be obtained, even for degenerate eigenstates, in
which case the adiabatic quantum evolution algorithm cannot
prepare all the eigenstates. Grover’s algorithm cannot be used
directly to find the eigenstates of a physical system since
the eigenstates are unknown and the Hamiltonian matrix of
the system in general is not diagonal. In our algorithm, by
designing the algorithm based on the resonance phenomena,
the system can be evolved to the desired eigenstate and
can achieve quadratic speedup over the phase estimation
algorithm.
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