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Phase-context decomposition of diagonal unitaries for higher-dimensional systems
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We generalize the efficient decomposition method for phase-sparse diagonal operators of J. Welch et al.
[Quantum Info. Comput. 16, 87 (2016)] to qudit systems. The phase-context-aware method focuses on cascaded
entanglers, whose decomposition into multicontrolled INC gates can be optimized by the choice of a proper signed
base-d representation for the natural numbers. While the gate count of the best-known decomposition method for
general diagonal operators on qubit systems scales with O(2n), the circuits synthesized by the Welch algorithm
for diagonal operators with k distinct phases are upper-bounded by O(n2k), which is generalized to O(dn2k) for
the qudit case in this paper.
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I. INTRODUCTION

Diagonal unitary operators form a very restricted class
among all unitary quantum gates. Despite this it has been
proven that an efficient quantum circuit consisting of diagonal
gates in the conjugate input basis cannot be efficiently classi-
cally simulated unless the polynomial hierarchy collapses at
the third level [1]. Hence the complexity class IQP formed
by these quantum circuits has attracted attention during recent
years [2–5].

Indeed diagonal operators play a central role in many
quantum algorithms, for example, in

(i) the oracle query in Grover’s algorithm [[6], 6.1.2],
(ii) quantum optimization [7],
(iii) simulation of quantum dynamics [8,9], and
(iv) decoupling–the important primitive of quantum Shan-

non theory can be achieved by random diagonal unitaries
[10,11].

Implementation of quantum algorithms motivates the study
of decomposition methods for diagonal unitaries. Moreover,
this decomposition raises interest as a subroutine within the
compilation of an arbitrary quantum operation V based on the
following.

(i) Spectral decomposition [12,13].
(ii) Givens’ QR method [14]: V = QR, with Q Givens

rotations and R the diagonal.
(iii) Real quantum computation [15]: V = O1DO2, with

O1 and O2 orthogonals and D the diagonal.
(iv) Cosine-sine decomposition [16,17]: V = (U1 ⊕

U2)W (U3 ⊕ U4), with D := (SH ⊗ I)W (HS† ⊗ I) the diag-
onal.

(v) Conditioned computation, where the circuits for the
conditional operations are already known up to a relative phase.

While circuits decomposing arbitrary unitaries scale with
O(n222n) [[6], 4.5.1–4.5.2], the best-known compiling algo-
rithm for diagonal unitaries provides circuits of size O(2n)
[17]. The exponential growth is avoided in the setting of
phase-sparse unitaries with k distinct phases. This setting
is studied by the decomposition method in [18], which we
generalize in this paper from qubit to qudit systems, resulting
in a circuit scaling of O(dn2k).
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Qudit systems and their advantages have been studied
in [19–21], while extensive work on the synthesis of qudit
operations has been done in [12,13,19,22,23]. Extending
compiling methods to qudit systems is significant since many
implementation architectures exhibit a natural qudit form.

Most of the previously mentioned algorithms containing
diagonal unitary operators can be easily adapted for qudit
systems. For example, higher-dimensional generalizations
of Grover’s algorithm have been studied in [24–27]. The
aim of quantum optimization–finding the ground state of
the Hamiltonian H = −∑

x g(x) |x〉 〈x| to determine the
maximum of the function g(x)–requires the implementation of
e−iH t = ∑

x eitg(x) |x〉 〈x|, which does not favor any specific
underlying dimension structure. Using a binary encoding
of the discrete grid for the originally continuous wave
function in the simulation of quantum dynamics [8,9] is
not physically motivated but rather arbitrary as well. There
is no obstacle in considering a qudit encoding of the grid.
Only the above-mentioned decoupling method is proven
specifically for diagonal unitaries on qubits. But since the
underlying realization of decoupling by approximate unitary
2-designs has been proven for arbitrary-dimensional systems
[28] it would actually be interesting to study whether a
sufficiently approximate 2-design can also be realized by
diagonal unitaries in higher-dimensional systems.

All these examples motivate us to consider diagonal uni-
taries on general qudit structures and study suitable compiling
algorithms for them.

II. OVERVIEW OF THE ALGORITHM

Throughout this paper we use the variable d for the
dimension of a single qudit and the variable n for the
number of qudits the diagonal operator acts on. The presented
algorithm considers the phase context of a diagonal operator
by splitting it into gate blocks for each of its distinct phases.
Each block is built from a single-qudit phase gate and two
so-called cascaded entanglers, which can be decomposed into
single-qudit multiplication and addition operations and ∧1

and ∧2 gates. The latter are defined as singly and doubly
controlled INC operations, where INC is a single-qudit gate
with INC |t〉 = |t + 1〉 (operations on the labels of basis states
are considered modd throughout this paper).
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It is known that already ∧1, together with all single-qudit
gates, forms a universal gate set for higher-dimensional
quantum computation [29]. Thus one could apply a method like
[13] to decompose the ∧2 operations even further, which can
be regarded as higher-dimensional generalization of the Toffoli
gate. But consideration of ∧2 gates as elementary allows us to
end the decomposition of the cascaded entanglers at a point
that reveals their basic structure and that is exact even if the
single-qudit operations should be restricted to some finite gate
set. Experimental realizations of ∧2 have been proposed [19].

The decomposition of the cascaded entanglers into con-
trolled INC gates is based on a number-theoretical approach. At
this point the authors of [18] focus on the binary representation
of integers and mention a signed binary expansion as an
alternative method. In this paper the central theorem is directly
formulated for any signed base-d expansion. In many cases this
allows further reduction of the number of required ∧1 and ∧2

gates.

III. PHASE-CONTEXT DECOMPOSITION
OF DIAGONAL UNITARIES

We generalize the method in [18] for the decomposition
of diagonal unitary operators to qudit systems. This method
takes into consideration the phase context of an operator, i.e.,
a diagonal unitary,

U = diag(φ1, . . . φ1,︸ ︷︷ ︸
l1

φ2, . . . ,φ2,︸ ︷︷ ︸
l2

. . . , φk, . . . ,φk︸ ︷︷ ︸
lk

),

on n qudits with k distinct phases is initially decomposed into
a product of a global phase and k − 1 similar operator blocks:

U = φ1

k−1∏
i=1

diag(1, . . . 1, φi+1/φi, . . . φi+1/φi︸ ︷︷ ︸∑k
j=i+1 lj

).

For the implementation of each block a phase gate,

P (φ) := |0〉 〈0| + φ |1〉 〈1| +
d−1∑
i=2

αi |i〉 〈i|

(with arbitrary higher phases αi), assigns the desired phase φ =
φi+1/φi to an ancillary target qudit if and only if its initial state
|0〉 was changed to |1〉 beforehand by the so-called cascaded
entangler CINC(l), which checks whether the original n-qudit
register is in a computational basis state |j 〉 with j � dn − l:

CINC(l) |j 〉 |t〉 :=
{|j 〉 |t + 1〉 if j � dn − l,

|j 〉 |t〉 if j < dn − l.

The operator diag(1, . . . ,1,φ, . . . φ), with the last l diagonal
entries having value φ, can hence be realized on an n + 1–qudit
system by

V (φ,l) = CINC(l)†(In ⊗ P (φ)) CINC(l).

In the case of qubits a cascaded entangler CINC(l) is
its own inverse. For d > 2 one can realize the inverse by
CINC(l)† = (In ⊗ M) CINC(l)(In ⊗ M) with the single-qudit
multiplication gate M |t〉 = |−t〉.

The following circuit shows the decomposition of V (φ,l)
for d = 2, n = 6, and l = 2:

In this paper the most significant dit always occurs at the left
of a written string and at the top of a drawn quantum circuit.

In the special case above, the cascaded entangler corre-
sponds to a single multicontrolled INC gate (NOT gate). This is
due to the special choice of l and is not, in general, true. In the
next section we show how to decompose a general cascaded
entangler into several multicontrolled INC gates.

IV. DECOMPOSITION OF CASCADED ENTANGLERS

A. Multicontrolled INC operations

The aim here is to decompose a cascaded entangler CINC(l)
into elementary single-qudit gates and cotrolled INC operations
with maximally two control levels. In the first step the cascaded
entangler is decomposed into multicontrolled INC±1 operations
that increase or decrease the ancillary target qudit iff the
computational basis state |j 〉 = |j1 . . . jn〉 in the original n-
qudit register corresponds in the first m qudits to a specific state
|b〉 = |b1 . . . bm〉, bi ∈ {0,1, . . . ,d − 1}. These operations are
denoted

∧n[b]
m (INC±1) |j 〉 |t〉 :=

{|j 〉 |t ± 1〉 if b = j1 . . . jm,

|j 〉 |t〉 otherwise.

Note that it is easy to change a ∧n[b]
m (INC−1) into a ∧n[b]

m (INC)
operation by padding it by multiplication gates M on the target
qubit. By padding suitable addition gates INCk |t〉 = |t + k〉 on
each control level it is, furthermore, possible to replace any
∧n[b]

m (INC) operator by a ∧n[11...1]
m (INC) operator. Afterwards

the operator with m > 2 control levels can be decomposed
into linearly many doubly controlled INC gates denoted ∧2.
The concrete parameters of the linear scaling depend on the
chosen method. Here we exemplify the decomposition of
a multicontrolled INC operation with m = 4 control levels
according to a generalization of the method of [30] using
m − 2 ancilla qudits initialized to |0〉:

This specific decomposition method needs 2m − 3 ∧2

gates. The task of the last m − 2 gates is to set the ancilla
qudits back to |0〉. We could do without them, but most of
them would cancel anyway with the ∧2 gates belonging to
the next ∧m[b]

n (INC) operation, and additionally, they allow us
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to reuse the ancilla qudits and hence to keep the number of
overall ancilla qudits small.

Since it is clear how to decompose ∧n[b]
m (INC±1) operations

into ∧2 gates, it only remains to study the decomposition of a
cascaded entangler CINC(l) into ∧n[b]

m (INC±1) operations.

B. Results from classical logic synthesis

In the qubit case the remaining decomposition task has a
classical analog in the {∧, ∨ ,¬} synthesis of the Boolean
function φ : {0,1}n → {0,1} corresponding to the CINC(l)
operation with the ancilla qubit interpretated as output.
Let {si}1�i�l = {x ∈ {0,1}n|φ(x) = 1} be the set of inputs
satisfying φ. A standard procedure in classical logic synthesis
is to realize the circuit by the disjunctive normal form or
sum-of-product form [[31], 4.3]:

φ =
l∨

i=1

n∧
j=1

¬si,j ⊕1xj .

This general method obviously scales with O(n2n), since
l ∈ O(2n) in the worst case. Many heuristic optimization
methods are known making use of Karnaugh maps, BDDs,
prime implicants, and more [[31], II], resulting in practical
algorithms such as ESPRESSO. However, none of these
methods is actually capable of avoiding the exponential scaling
in the general case. This is not surprising since synthesizing the
optimal circuit for an arbitrary Boolean formula is NP-hard.

Of course Boolean functions corresponding to CINC(l)
operations have a particular structure. They fall, for example,
into the class of threshold functions obeying φ(x1 . . . xn) = 1
iff

∑n
i=1 wixi greater than some threshold. For these functions

[32] demonstrated a polynomially sized synthesis method and
a scaling of O(n2) in particular examples.

This coincides with the scaling of O(dn2) obeyed by the
decomposition method for cascaded entanglers presented in
the next section. The method is an expansion of [18] to qudit
systems but is also directly formulated with another number-
theoretical degree of freedom: the choice of a signed base-d
expansion for the natural numbers.

C. Decomposition of a cascaded entangler into multicontrolled
INC operations

With the generalization

CINC(p,q) |j 〉 |t〉 :=
⎧⎨
⎩

|j 〉 |t + 1〉 if p � j < q,

|j 〉 |t − 1〉 if q � j < p,

|j 〉 |t〉 otherwise,

one can easily find the trivial decomposition of a cascaded
entangler corresponding to the classical disjunctive normal
form, namely,

CINC(l) =
dn−1∏

i=dn−l

CINC(i,i + 1),

where each CINC(i,i + 1) already equals a desired multicon-
trolled INC operation, ∧n[i]

n (INC). However, the number of l

multicontrolled INC gates, each with n control levels, can
be significantly reduced in many cases; e.g., consider the
operation CINC(2n−1) on a qubit system. In this example the
cascaded entangler corresponds already to a single controlled

INC gate with the first qubit as the only control level. This
feature, based on the structure of the binary representation of
the number l, is exploited in the decomposition method by
[18], which we generalize in this section to qudit systems.
We start with two helpful lemmata concerning the operator
CINC(p,q):

Lemma 1. CINC(p,q) = CINC(p,r) · CINC(r,q) for any
p,q,r ∈ {0,1, . . . ,dn}.

Proof. The different cases depending on the order re-
lation of p, q, and r can all be directly verified from
the definition. Note that CINC(p,p) = In+1 and CINC(p,q) =
CINC(q,p)−1. �

Lemma 2. Suppose p = bdm, b ∈ N0, q = p + dm, and
p,q ∈ [0,dn]. Then CINC(p,q) = ∧n[b]

n−m(INC).
Proof. Since q = (b + 1)dm � dn, it holds that b < dn−m.

Let b1b2 . . . bn−m be the d-ary representation of b. Then the
d-ary representations of p and q − 1 turn out to be

p = bdm = b1b2 . . . bn−m 0 . . . 0︸ ︷︷ ︸
m times

,

q − 1 = p + dm − 1 = b1b2 . . . bn−m (d − 1) . . . (d − 1)︸ ︷︷ ︸
m times

.

CINC(p,q) increases the ancillary target qubit iff the original
n-qudit register is found in a computational state |j 〉 with
p � j � q − 1. According to the above d-ary representations
this is exactly the case when the first n − m qudits are in the
state |b〉. Hence CINC(p,q) corresponds to a multicontrolled
INC gate conditioned on the first n − m qudits being in state
|b〉. This is directly the definition of ∧n[b]

n−m(INC). �
Corollary 3. Suppose p = bdm, b ∈ N0, q = p − dm, and

p,q ∈ [0,dn]. Then CINC(p,q) = ∧n[b−1]
n−m (INC−1).

Proof. It holds that q = b′dm with b′ = b − 1 ∈ N0. Ex-
changing the roles of p and q in Lemma 2 leads to CINC(p,q) =
CINC(q,p)−1 = ∧n[b−1]

n−m (INC−1). �
The authors of [18] originally formulated their decomposi-

tion method for a cascaded entangler CINC(l) in a qubit system
based on the binary representation of the parameter l. Later
they adapted the method for a signed bit binary expansion of
l. Here we formulate the method not just for qudit systems
but also directly for any signed base-d expansion of l. Such
an expansion has the form l = ∑h

i=1 sid
mi with 0 � m1 �

m2 � . . . mh ∈ N0, si = ±1, and dn �
∑h

i=r sid
mi > 0 for all

1 � r � h. We require the bounds for the partial sums because
they guarantee proper parameters for the CINC(p,q) gates used
in the decomposition method.

Theorem 4. Let
∑h

i=1 sid
mi be a signed base-d expansion

of l. Then CINC(l) = ∏h
i=1 ∧n[bi ]

n−mi
(INCsi ).

Proof. Define pi := dn − ∑h
r=i srd

mr for all i ∈
{1,2, . . . ,h} and ph+1 := dn. It obviously holds that p1 =
dn − l and pi ∈ [0,dn] for all i ∈ {1,2, . . . ,h + 1}. According
to Lemma 1 we can decompose

CINC(l) = CINC(p1,ph+1) =
h∏

i=1

CINC(pi,pi+1).

Because pi is divisible by dmi for all 1 � i � h, we can
write pi = b′

id
mi with b′

i ∈ N0 and pi+1 = pi + sid
mi . Since
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the requirements of Lemma 2 and Corollary 3 are fulfilled it
follows that

CINC(pi,pi+1) = ∧n[bi ]
n−mi

(INCsi ),

with bi = b′
i in the case si = 1 and bi = b′

i − 1 in the case
si = −1. This completes the proof. �

With the previous theorem we completed the decomposition
of an arbitrary diagonal operator into ∧1, ∧2, and basic
single-qudit gates. If we assume the setting of few distinct
phases k ∈ O(poly(n)) and apply the previous theorem based
on the standard d-ary expansion, the decomposition is even
efficient. However, for many cascaded entanglers CINC(l) there
exists an alternative signed base-d expansion of l leading
to a decomposition into multicontrolled INC gates with a
significantly smaller number of overall control levels and
hence of required ∧1 and ∧2 gates due to the linear dependence.
We close the section by demonstrating this in two examples.

Example 5. d = 2, n = 3, l = 7.

Example 6. d = 5, n = 4, l = 14.

V. CONCLUSION

A. Summary

We have generalized an efficient decomposition algo-
rithm for diagonal phase-sparse unitaries presented in [18]
to qudit systems. While this generalization is interesting
from a number-theoretical point of view, it might also be
advantageous for practical implementations since it allows de-
compositions into multicontrolled INC gates with fewer control
levels compared to the qubit case (though higher-dimensional).

An advantage of the presented algorithm over other decom-
position methods is its consideration of the phase context of

the unitary, which leads to the small number k of required
single-qudit phase gates. Hence the decomposition of an
n-qubit operator with k = 2 distinct phases only requires two
single-qubit gates, while previous methods decompose into
�(2n) phase gates, as pointed out in [18]. The number of
required phase gates is of particular interest since they form
the accuracy-dependent part in this decomposition (in contrast
to the exactly decomposable cascaded entanglers) in the case
where the single-qudit operations are further decomposed into
some approximating, eventually finite set.

In the worst case–e.g. a signed base-d expansion∑n−1
j=0(d − 1)dj –a cascaded entangler is decomposed into

multicontrolled INC±1 with a total number of (d − 1)∑n
j=1 j = O(dn2) control levels. This results in a total number

of O(dn2k) ∧1 and ∧2 gates in the decomposition as well as
O(dn2k) many single-qubit operations.

One accomplishment of this paper is the formulation of
the decomposition algorithm based on arbitrary signed base-d
extensions of natural numbers which may allow a significant
reduction in the number of required gates over the standard
d-ary extension as shown in Examples 5 and 6.

B. Outlook and open questions

It was verified by brute force that the signed base-d
expansions in Examples 5 and 6 are indeed those that lead to the
minimum of overall control levels as well as the simultaneous
minimum of required ∧1 and ∧2 gates according to the
presented further ∧2 decomposition scheme. Unfortunately
there is no efficient algorithm known for the computation of
an optimal signed base-d expansion. This is an open question
even for the qubit case [18]. In the higher-dimensional case the
trade-off between the summands (multicontrolled INC gates)
and their exponents (control levels) depends, moreover, on
the qudit dimension d and hence turns into an even more
complicated multiparameter optimization problem.

Of course one can at least improve the performance over the
standard d-ary representation by considering other efficiently
computable signed base-d expansion schemes in comparison.
In this spirit, Ref. [18] proposes a specific recursive algorithm
and numerically confirms that it outperforms the standard
binary expansion for most natural numbers. This algorithm
is easy to adapt for the qudit case.

It seems plausible that the way over multicontrolled INC

operations leads to the minimal number of ∧1 and ∧2 gates
required for the decomposition of a cascaded entangler (taking
canceling effects into consideration). Thinking about the opti-
mal decomposition of cascaded entanglers into multicontrolled
INC operations, it seems, moreover, intuitively reasonable to
consider only those schemes which directly correspond to a
signed base-d expansion of the represented number. If this
intuition should be confirmed, the question in [18] about the
complexity of cascaded entanglers is equivalent to the question
of the optimal signed base-d expansion of natural numbers.

Beyond the reduction of the problem to cascaded entanglers
it remains to study other decomposition methods for diagonal
unitaries under the aspect of phase spareness in order to
improve the scaling of O(dn2k). A compelling but nontrivial
candidate for this is the best-known qubit algorithm [17] with
a scaling of O(2n) without phase-context consideration.
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