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Adiabatic pulses are used extensively to enable robust control of quantum operations. We introduce an
approach to adiabatic control that uses the superadiabatic quality factor as a performance metric to design robust,
high-fidelity pulses. This approach permits the systematic design of quantum control schemes to maximize the
adiabaticity of a unitary operation in a particular time interval given the available control resources. The interplay
between adiabaticity, fidelity, and robustness of the resulting pulses is examined for the case of single-qubit
inversion, and superadiabatic pulses are demonstrated to have improved robustness to control errors. A numerical
search strategy is developed to find a broader class of adiabatic operations, including multiqubit adiabatic unitaries.
We illustrate the utility of this search strategy by designing control waveforms that adiabatically implement a
two-qubit entangling gate for a model NMR system.
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I. INTRODUCTION

Speed and robustness are two essential characteristics of
quantum control schemes that can often seem to be at odds
with one another. On the one hand, fast diabatic gates designed
using optimal control techniques can approach the quantum
speed limit (QSL) and minimize errors due to decoherence
[1]. However, these pulses are often sensitive to variations
in the experimental control parameters and to uncertainties
in the system Hamiltonian. Additionally, the pulse shapes
produced by these techniques are typically not smooth and
frequently push the hardware limits of the system, requiring
careful tuning and calibration to ensure high fidelity [2,3]. On
the other hand, smoothly varying gates can be made robust
to control errors and are usually easier to implement due to
the simpler hardware requirements. In particular, the utility of
adiabatic gates that rely on the well-known adiabatic theorem
[4] has been demonstrated for a variety of control tasks for
quantum information processing [5–8]. The transition-free
driving of a quantum system enabled by adiabatic gates is
particularly important if some excited states of the system
are more susceptible to decoherence. Hybrid approaches that
combine both diabatic and adiabatic controls have also been
explored [9–11].

Amplitude- and frequency-modulated “adiabatic pulses”
have long been used in nuclear magnetic resonance (NMR)
to efficiently invert nuclear spin states [12–14] and provide
robustness against inhomogeneities in both the static and
radio-frequency (rf) magnetic fields, finding applications in
both high-resolution NMR spectroscopy and in vivo magnetic
resonance imaging [15]. Similar schemes have been used to
optically control population transfers in atomic and molecular
gases [16,17].

Finite-time operations can only approximately satisfy the
adiabatic condition, an issue that becomes critical in the
context of adiabatic quantum computation [18]. Long control
pulses are also susceptible to decoherence introduced by
interactions with unwanted environmental degrees of freedom.
This raises an important question: what is the minimal time
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required to perform a high-fidelity adiabatic transition? Coun-
terdiabatic driving strategies, called shortcuts to adiabaticity
(STA), enable transitionless driving on much shorter time
scales [19], even approaching the QSL [20]. These techniques
have found applications in quantum state engineering [21,22],
quantum computing [23,24], many-body physics [25], and
quantum simulations [26,27] and have been shown to have
robustness against control parameter variations [28]. The
DRAG (derivative removal by adiabatic gate) pulses used in
superconducting qubit implementations share many of these
features as well [29–31]. One challenge to implementing
counterdiabatic driving strategies, particularly for systems of
more than one qubit, is that it may be difficult to generate the
necessary counterdiabatic driving terms to ensure transition-
free evolution using the available experimental controls.

Here, we introduce an approach to adiabatic control, based
on Berry’s “superadiabatic” formalism [32], that enables the
systematic design of quantum control schemes to maximize
the adiabaticity of a unitary operation in a particular time
interval, given the available controls. We explicitly use the
superadiabatic quality factor, or Q factor, as a performance
metric to optimize the available quantum control parameters.
The idea of a superadiabatic Q factor was introduced by
Deschamps et al. to explain the unexpectedly high fidelity
of certain adiabatic pulses used in NMR [33]. We show that
maximizing superadiabatic Q factors improves the perfor-
mance of standard one-qubit inversion pulses used in NMR and
introduce a numerical search strategy to find a broader class of
adiabatic unitaries when analytical solutions are not available.
We numerically examine the interplay between adiabaticity,
fidelity, and robustness of the resulting pulses and show
that superadiabatic pulses also improve robustness. Finally,
we show how the search technique can be used to create
control waveforms that adiabatically implement a two-qubit
entangling gate. While we explore these ideas in the context
of NMR experiments, the ideas are broadly applicable to other
modalities.

II. SUPERADIABATIC Q FACTORS

Consider a time-dependent Hamiltonian H0(t) with in-
stantaneous eigenbasis {|λ0(t)〉} at time t . Transforming
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to an interaction frame under the unitary operator V1 =∑
λ |λ0(t)〉 〈λ0(0)| that instantaneously diagonalizes the

Hamiltonian yields an interaction frame Hamiltonian of the
form H1 = D1 + C1, where D1 = V

†
1 H0V1 is diagonal and

C1 = −i�V
†

1 V̇1 is a nondiagonal correction term (called an
inertial term) arising from the time dependence of the Hamil-
tonian. A transition has typically been considered adiabatic
if ||D1(t)|| � ||C1(t)|| or Q1(t) � 1 for the duration of the
transition, where

Q1(t) = ||D1(t)||
||C1(t)|| . (1)

The adiabatic Q factor Q1 is then defined as

Q1 = min
t∈[−∞,∞]

Q1(t). (2)

For finite-time processes, C1(t) is nonzero, and the transformed
Hamiltonian H1(t) is nondiagonal. In many STA approaches, a
counterdiabatic driving term is introduced to explicitly cancel
this nondiagonal inertial term [19]. Note that this is only
possible if such an effective Hamiltonian can be generated
with the available controls.

The above procedure for diagonalizing the instantaneous
Hamiltonian can be applied to the transformed Hamiltonian
H1, yielding a new Hamiltonian H2. Repeated indefinitely, this
iterative procedure yields a countably infinite family of trans-
formed Hamiltonians. Consider, for example, the Hamiltonian
Hn−1. If the set {|λn−1(t)〉} forms the instantaneous eigenbasis
of Hn−1, the unitary operator Vn = ∑

n |λn−1(t)〉 〈λn−1(0)|
diagonalizes Hn−1. In the interaction picture in which Hn−1

is instantaneously diagonalized, the Hamiltonian takes the
form Hn = Dn + Cn, where Dn = V

†
n Hn−1(t)Vn and Cn =

−i�V
†
n V̇n. By direct analogy with Eqs. (1) and (2), the

adiabatic Q factor in frame n takes the form

Qn = min
t∈[−∞,∞]

||Dn(t)||
||Cn(t)|| . (3)

Counterdiabatic driving STA strategies can also be derived for
superadiabatic interaction frames [34].

Deschamps et al. suggested that in a superadiabatic trans-
formation, if the system starts out in one of the eigenstates of
Hn(0), it will evolve adiabatically to the target state in one of
the superadiabatic frames as long as

Qs ≡ max
n∈{1,2,... }

Qn � 1, (4)

where Qs is defined as the superadiabatic Q factor [33].

Scaling of Q1

The Q1 metric shows two important features:
(1) If H (t) is a time-dependent Hamiltonian and H ′(t) =

αH (t), then Q′
1(t) = αQ1(t) for α ∈ R+.

Proof. Let {|n(t)〉} be the eigenvectors of H (t). Then {|n(t)〉}
are eigenvectors of αH (t), and hence

V ′(t) =
∑

n

|n(t)〉 〈n(0)| = V (t),

from which we have that

D′(t) = V ′(t)H ′(t)V ′†(t) = αD(t)

and

C ′(t) = −i�V ′†(t)V̇ ′(t) = −i�V †(t)V̇ (t) = C(t).

Therefore

Q′
1(t) = ||D′(t)||

||C ′(t)|| = α||D(t)||
||C(t)|| = αQ1(t).

(2) If H ′(t) = H (αt), where t ∈ [0,τ ], then

Q′
1(t) = Q1(αt)/α

for α ∈ R+.
Proof. Let u = αt . Then V (u) is the unitary that diagonal-

izes H ′(t) = H (u), D′(t) = D(u), and

C ′(t) = −i�V ′†(t)V̇ ′(t) = −i�V †(u)

(
d

dt
V (u)

)

= −i�αV †(u)
d

du
V (u) = αC(u).

Therefore

Q′
1(t) = ||D′(t)||

||C ′(t)|| = ||D(u)||
α||C(u)|| = Q1(αt)/α.

III. ANALYTICAL NMR INVERSION PULSES

To demonstrate the utility of the superadiabatic formalism,
we examine the well-known tanh/tan adiabatic inversion
pulse, one of a family of single spin-1/2 adiabatic inversion
pulses used in NMR [15,35]. For this system, the Hamiltonian
during the pulse in a reference frame rotating with the resonant
component of the rf field takes the form

H (t) = ω1(t)

2
σx + �ω(t)

2
σz, (5)

where �ω = φ̇(t) − ωL is the resonance offset, φ(t) encodes
the frequency and phase of the pulse, ω1(t) = γB1(t), γ is
the nuclear gyromagnetic ratio, B1(t) is the amplitude of the
applied rf field, and σx and σz are Pauli spin operators. Here
and throughout this paper, � has been set to 1. The goal of the
pulse is to invert the state from |↑〉 ≡ |0〉 to |↓〉 ≡ |1〉.

For a tanh/tan pulse of length τ , the first half of the pulse
(t � τ/2) can be described by [35]

ω1(t) = ωmax
1 tanh [2ξ t/τ ] (6)

and

�ω(t) = A
tan [κ(1 − 2t/τ )]

tan κ
, (7)

where ωmax
1 corresponds to the maximum rf field strength and

ξ , κ , and A are parameters that can be optimized for a particular
system. For the second half of the pulse (t > τ/2), ω1(t) =
ω1(τ − t) and �ω(t) = −�ω(τ − t).

In the simulations here, the maximum rf amplitude was set
at ωmax

1 = 80 krad/s (12.7 kHz), a typical value for a liquid-
state NMR spectrometer. This corresponds to a minimum
gate time of 39.27 μs for a rectangular inversion pulse.
The remaining three parameters (ξ , κ , A) were numerically
optimized using brute-force search to generate pulses that
either (a) maximized the traditional adiabatic Q factor Q1

or (b) maximized the superadiabatic Q factor Qs . Since
s < 10 for the pulse lengths examined, Qs was calculated by
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TABLE I. Optimal pulse parameters for the tanh/tan pulse.

Pulse A (rad/s) κ ξ

Q1 4.1 × 105 6.9 16.1
Qs (120 μs) 50.5 × 105 65.8 49.2
Qs (50 μs) 26.8 × 105 36.3 41.6

computing the maximum value of the first ten Q factors, using
the analytical forms derived for these pulses by Deschamps
et al. [33]. The optimal pulse parameters are shown in Table I.

The optimization was first performed for pulse length
τ = 120 μs, about 3 times longer than the hard-pulse time.
Figure 1(a) compares the values of the natural log of Qn [where
Qn is defined by Eq. (3)] for the two pulses at this pulse length.
For both optimized pulses, Qn initially increases with n until
it reaches a peak value, which is the superadiabatic Q factor
Qs ; in this case, for the Q1-optimized pulse, s = 2, while for
the Qs-optimized pulse, s = 5. As Fig. 1(a) shows, for n > s,
Qn begins to decrease, or “diverge,” a phenomenon that has
been attributed to the finite time of the transition [32,33].

The overall fidelity of the pulse was characterized by the
overlap F = | 〈ψ(τ )|1〉 |. Figure 1(b) compares the perfor-
mance, using the infidelity (1 − F 2), of the two optimized
tanh/tan pulse shapes as their duration is changed from 0 to
250 μs, demonstrating the improvement in fidelity provided
by the superadiabatic pulse for pulse lengths τ > 56 μs. Note
the oscillations in the Q1-optimized pulse that occasionally
give very high fidelity at certain times.

As a visual representation of the adiabatic dynamics,
Figs. 1(c) and 1(d) show how the Bloch vector �v(t) corre-
sponding to the state tracks the Hamiltonian of the optimized

pulses on the Bloch sphere for the Q1- and the Qs-optimized
pulses with τ = 120 μs, respectively. The time-dependent
Hamiltonian can also be represented as a vector on the Bloch
sphere �H (t) = ω1(t)î + �ω(t)k̂. Since ω1(t),�ω(t) � 1 for
most values of t ∈ [0,τ ], we plot the projection of �H (t) onto
the Bloch sphere instead of �H (t) itself. The instantaneous
deviation between �v(t) and �H (t) can be quantified in any
superadiabatic frame by calculating the angle αn(t) between
�Hn(t) and �vn(t) in that frame:

αn(t) = arccos

( �Hn(t) · �vn(t)

|| �Hn(t)|| ||�vn(t)||

)
. (8)

Figures 1(e) and 1(f) show α1(t) (dashed line) and αs(t) (solid
line) for the Q1-optimized pulse (s = 2) and the Qs-optimized
pulse (s = 5), respectively. For the Q1-optimized pulse, α1

and αs are on the same order of magnitude, accounting for the
quantum state’s failure to reach the target state at this pulse
length. For the Qs-optimized pulse, on the other hand, αs(t)
is negligible compared to α1(t), suggesting that the state is
locked to the superadiabatic Hamiltonian Hs but not to H1.
For τ = 120 μs, the infidelity of the Q1 pulse is seen to be
quite large, which is reflected in both Figs. 1(b) and 1(c).

We next examine the more general problem of engineering
an optimally adiabatic pulse for a given pulse length τ . As
shown earlier, Q1 scales linearly with the length of the pulse
if the pulse shape is held fixed, so a pulse shape that is Q1

optimal for a particular pulse length τ will remain optimal for
all pulse lengths. Importantly, this property does not hold for
higher-order Q factors, and hence a Qs-optimal pulse at one
pulse length τ may not be optimal at a different pulse length,
suggesting that a separate optimization needs to be performed
for each pulse length of interest.

FIG. 1. A tanh/tan pulse of length τ = 120 μs was optimized by varying A, κ , and ξ in Eqs. (6) and (7) and setting ωmax
1 to 80 krad/s.

The resulting Qs-optimized pulse is compared to the Q1-optimal tanh/tan pulse. In (a), the first ten adiabatic Q factors, defined in Eq. (3),
are plotted for both pulses on a natural log scale. We compare the performance of these two pulses by systematically reducing the pulse length
τ . The infidelity of the inversion for each pulse length τ is plotted in (b). The quantum state’s trajectory for the Q1-optimized pulse is plotted
in (c), and the trajectory of the Qs-optimized pulse is plotted in (d). The angles α1(t) and αs(t) are plotted as a function of time for the Q1

(s = 2) and the Qs (s = 5) pulses in (e) and (f), respectively.
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FIG. 2. (a) The infidelity of two Qs-optimized pulses are com-
pared with the Q1-optimized pulse as a function of pulse length.
The length of a hard π pulse at ω1 = 80 krad/s is indicated by the
vertical dotted line. The dashed black line plots the infidelity of the
hard pulse as the pulse length is reduced to zero. The inset shows a
magnified version of the plot in the range from 80 to 150 μs to show
the improved performance of the pulse optimized for 120 μs at longer
times. (b) Qs as a function of pulse length for each of the optimized
pulses plotted in (a). The inset shows the behavior of Q as the pulse
length approaches zero.

Figures 2(a) and 2(b) compare the performance of two Qs-
optimized tanh/tan inversion pulses that were optimized for
inversion times of 50 and 120 μs to the original Q1-optimized
pulse. The pulse designed for 50 μs is seen to perform better at
shorter pulse lengths near 50 μs (in terms of both fidelity and
superadiabatic Q factor), while the pulse optimized for 120 μs
performs better at longer times, with the behavior appearing
to switch around 77 μs. The dotted vertical line in Fig. 2(a)
indicates the duration of a “hard” rectangular π pulse using the
maximum available rf field of 80 krad/s, and the dashed line
shows the fidelity achieved with this pulse. The fidelities of the
three adiabatic pulses approach that of the ideal hard pulse at
short times but never exceed it. However, the adiabaticity of the
pulses is seen to rapidly fall as the pulse durations are reduced.
For these single-qubit inversion pulses, we found that Qs � 10
preserved the desired robustness properties for the adiabatic
pulses.

IV. GENERALIZED NUMERICAL SEARCH SCHEME

In the discussion above we considered the optimization
of Qn for single-spin pulses of a specific analytical form. In
order to consider other unitaries and to provide an optimization
scheme that can be readily extended to higher-dimensional
spaces where closed-form expressions for Qn are generally
not available, we have designed an evolutionary search strategy
that iterates on an initial guess pulse to produce numerically
optimized pulse shapes that maximize Qn for any frame of

interest n. It should be noted that numerical optimization
techniques have previously been used both to find the optimal
pulse parameters of standard adiabatic NMR pulse shapes
and to optimize arbitrary pulse shapes that maximize Q1

[12–14]. The algorithm described below is similar to other
derivative-free pulse-shaping methods that have been used in
the past [36].

We assume our Hamiltonian has the form H (t) = H0 +∑
k uk(t)Hk , where H0 is the time-independent part of the

Hamiltonian and uk(t) are the control parameters correspond-
ing to the Hermitian control operators Hk . Let N be the number
of time steps used to define the pulse. An initial guess pulse
[set of uk(t)] is chosen that satisfies the necessary boundary
conditions at t = 0 and t = τ to ensure that the initial and
final states are eigenstates of H (0) and H (τ ), respectively. The
key steps in our method are outlined here (see the Appendix
for additional details). (i) The parameters of the guess pulse
are perturbed in a time interval [t0 − �,t0 + �], and Qn is
recalculated by diagonalizing H (t) to find all Dn and Cn as
outlined above. Perturbations that improve Qn are preserved
and used to update the guess pulse. (ii) The center of the
perturbation (t0), the size of the perturbed region (2�), and
the amplitude of the perturbation are all cycled systematically
during the search as Qn is maximized.

It is important to note that the evolutionary search does not
guarantee convergence to a globally optimal pulse shape. As
with many numerical search strategies, it is possible for the
algorithm to get trapped in a local optimum. This may present
a particular challenge as the size and complexity of the search
space increases.

In Fig. 3, this search technique has been applied to the
case of one-spin inversion. The chosen guess pulse consists
of a linear ramp with arbitrarily chosen slope for the rf
frequency offset �ω(t) and a parabola for the rf amplitude
ω1(t) with zeros at the end points and a maximum value
of ωmax

1 at t = τ/2. The evolutionary algorithm was first
applied to the guess pulse to maximize Q1. The fidelity
profile of the resulting pulse is plotted as a dash-dotted
line in Fig. 3, showing considerable improvement over the
guess-pulse fidelity. This Q1-optimized pulse was then used
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FIG. 3. The evolutionary strategy is applied to a guess pulse to
optimize Q1 and Q2 sequentially. The infidelity of the resulting
pulse, plotted as a solid line, shows improvement over the Qs-optimal
tanh/tan pulse of Fig. 2.
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as the starting point for a second round of optimization, this
time maximizing Q2 at a pulse length of 50 μs. The fidelity of
the resulting pulse is also plotted in Fig. 3 as a solid line. For
comparison, the 50-μs Qs-optimized tanh/tan pulse shown
in Fig. 2 is reproduced here as a dashed line. For pulse lengths
around 50 μs, the numerically optimized pulse outperforms
the Qs-optimal tanh/tan pulse, demonstrating the potential
benefits of numerical pulse finding.

Optimal control techniques have also been used to maxi-
mize adiabaticity [37,38]. Previous work using optimal control
techniques to find adiabatic pulses used the integral of Q1

as a global metric to search for pulses [37]. It should be
possible to adapt such a technique to maximize the integral
of the superadiabatic Q curve Qs(t) as well, which may
enable the use of gradient-based methods. However, it is
uncertain whether maximizing the integral of Q(t) will
preserve transition-free steering of the system at all times.

V. ROBUSTNESS AGAINST INHOMOGENEITY

One of the principal benefits of adiabatic pulses is robust-
ness against inhomogeneity in both the �ω and ω1 terms of the
Hamiltonian described by Eq. (4). Such robustness is desirable
for ensemble experiments in which there is a distribution of
Hamiltonians (of both the system and control Hamiltonians
either in space or in time) or if there is uncertainty in the
Hamiltonian parameters. We consider here the performance of
the Q1- and Qs-optimized pulses discussed above when they
are subjected to variations in both the frequency offset �ω and
the amplitude ω1. Consider a one-spin pulse described by the
vector �φ(t) = [�ω(t),ω1(t)]. We examine two distinct cases:
(i) The rf amplitude ω1(t) is held fixed, and a frequency offset
term δ is added to �ω(t), yielding the modified pulse

�φ′(t) = [�ω(t) + δ,ω1(t)].

(ii) The original frequency offset �ω(t) is preserved, but the
rf amplitude ω1(t) is multiplied by a scale factor σ , yielding
the modified pulse

�φ′(t) = [�ω(t),σω1(t)].

In Fig. 4, the robustness of several of the pulses discussed
above is examined for offsets |δ| < 140 krad/s and scalings
0 � σ � 3. The dotted line corresponds to a hard π pulse
with an 80 krad/s rf field and is the least robust of the pulses
shown. The robustness of the Q1-optimal tanh/tan pulse is
examined at a pulse length of 46 μs, which is the shortest pulse
length at which the pulse achieves nearly perfect fidelity [see
Figs. 1(b) and 2(b)]. The fidelity curves coincide for |δ| < 50
krad/s and σ < 1.1, suggesting that, for this pulse length, the
Q1-optimized pulse behaves like a hard pulse and confers
little advantage in terms of robustness. Figure 4 also shows
the performance of the 46 μs Q2-optimized numerical pulse.
Although the numerical pulse performs worse under ideal
conditions, it achieves a higher fidelity than both the hard pulse
and the Q1-optimal pulse for |δ| > 36 krad/s and σ > 1.07.
The advantages of the adiabatic pulses are more pronounced
for longer pulse lengths. The fidelities of the Q1-optimized
and 120-μs Qs-optimized pulses at a pulse length of 120 μs
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FIG. 4. Robustness of four optimized pulses to B0 and B1

inhomogeneity. Pulse performance is examined at two pulse lengths,
46 and 120 μs. The hard π -pulse fidelity is plotted as a dotted line.
In (a), δω(t) was subjected to a constant additive offset ranging from
−140 to 140 krad/s. In (b), ω1(t) was subjected to a multiplicative
offset ranging from 0 to 3. The pulses are more robust at the longer
pulse length of 120 μs. The superadiabatic pulses offer improved
robustness with respect to both types of offsets.

are plotted as dashed lines. While both exhibit robustness for
a wide range of offsets, the superadiabatic tanh/tan pulse
outperforms the Q1-optimized pulse for all δ and all σ > 0.8.
Furthermore, the superadiabatic pulse achieves nearly perfect
fidelity for σ > 0.9. This suggests that superadiabatic pulses
offer an advantage not only in fidelity as a function of pulse
length, as shown in Figs. 1–3, but also in robustness against
variations in the Hamiltonian parameters.

VI. MULTIPLE QUBITS

Our approach can be extended, in principle, to a larger num-
ber of qubits. However, since it requires the diagonalization
of the instantaneous Hamiltonian to optimize the trajectory,
it is not a scalable approach, a property it shares with most
optimal control schemes. We consider a two-qubit system
whose Hamiltonian is given by

H (t) = ωA
1 (t)

2
σx ⊗ 1 + �ωA(t)

2
σz ⊗ 1 + ωB

1 (t)

2
1 ⊗ σx

+�ωB(t)

2
1 ⊗ σz + πJ

2
σz ⊗ σz, (9)

where 1 is the 2-by-2 identity operator, ω
A,B
1 and �ωA,B

are the qubit controls for qubits A and B, respectively,
and J is a fixed coupling constant in units of hertz. This
Hamiltonian arises in liquid-state NMR experiments and has
also been implemented with superconducting qubits [39].
Here, we demonstrate the use of our numerical strategy to
adiabatically evolve a nonentangled pure state |ψi〉 = |00〉 to
the maximally entangled Bell state |ψt 〉 = 1√

2
(|00〉 + |11〉)

without controlling J . In some systems J (t) can also be
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a time-dependent control when it can be experimentally
varied [8].

To design an adiabatic transition between |ψi〉 and |ψt 〉,
we must first identify an initial Hamiltonian H (0) with
eigenstate |ψi〉 and a final Hamiltonian H (τ ) with eigenstate

|ψt 〉. Importantly, for the adiabatic theorem to hold, the two
eigenstates must be nondegenerate, and the order of the
eigenstates must be preserved. Setting ωA

1 (0) = ωB
1 (0) = 0 and

requiring that �ωA(0) = 2α > 0 and �ωB(0) = −2β < 0,
H (0) can be written in matrix form as

⎛
⎜⎝

α − β + πJ/2 0 0 0
0 α + β − πJ/2 0 0
0 0 −α − β − πJ/2 0
0 0 0 −α + β + πJ/2

⎞
⎟⎠.

If α > β and α,β > πJ/2, the initial state |00〉 is the eigen-
vector of H (0) corresponding to the second-largest eigenvalue
α − β + πJ/2.

The condition on H (τ ) can be satisfied by setting
�ωA(τ ) = �ωB(τ ) = 0 and further requiring that ωA

1 (τ ) =
−2A < 0 and ωB

1 (τ ) = 2A > 0. Again, A is chosen so that
A > πJ/2. In matrix form, with these conditions applied,
H (τ ) becomes

H (τ ) =

⎛
⎜⎝

πJ/2 A −A 0
A πJ/2 0 −A

−A 0 πJ/2 A

0 −A A πJ/2

⎞
⎟⎠,

and the normalized eigenvector of H (τ ) with the second-
largest eigenvalue is the Bell state |ψt 〉 = 1√

2
(|00〉 + |11〉).

Simulating a liquid-state NMR experiment, we used a
fixed value of 209.4 Hz for the J coupling, corresponding to
the measured proton-carbon coupling in a carbon-13-labeled
chloroform sample. For the initial guess pulse the rf amplitudes
ωA

1 (t) (carbon) and ωB
1 (t) (proton) were chosen to vary linearly

from 0 krad/s at time t = 0 to 2A = 78.5 krad/s (12.5 kHz)
at time t = τ . The resonance offsets �ωA(t) and �ωB(t)
were also chosen to be linear, with �ωA(τ ) = �ωB(τ ) = 0.
The values 2α = �ωA(0) = 64 krad/s and 2β = −�ωB(0) =
57 krad/s were chosen to maximize Q1 (see the Appendix for
details). The search algorithm was then used to iterate on this
initial guess to find a control sequence that maximizes Q1. The
algorithm was carried out at an arbitrary pulse length since Q1

scales linearly with the length of the pulse.
The shape, performance, and fidelity of the resulting pulse

depend on how long the algorithm is allowed to iterate on the
initial guess pulse. Here, a round of optimization is taken to
be the number of times that each point in the pulse serves
as a center of perturbation. Figure 5 shows the infidelity of
the guess pulse and two Q1-optimized pulses (following one
and three rounds of optimization) as the length of the pulse is
varied, while the inset plots Q1(t) = ||D1(t)||/||C1(t)|| of both
the guess pulse and optimized pulses, showing improvement in
Q1 = min Q1(t). This improvement in adiabaticity is matched
by an improvement in fidelity, with the optimized pulse
outperforming the guess pulse for many of the depicted
pulse lengths. It is interesting to note that the QSL for a
nonadiabatic gate in this two-qubit system is on the order
of 1 ms with the same control resources (indicated by the
dotted vertical line), which is significantly shorter than the

high-fidelity adiabatic pulses obtained here. The nonadiabatic
entangling gate consists of π/2 pulses on both spins, followed
by a delay 1/2J , which is then followed by a π/2 pulse on
the protons. The dashed line shows the drop in the fidelity
of the nonadiabatic gate as the delay is reduced below 1/2J .
It is the small size of the J coupling that necessitates long
adiabatic gates in this case.

Figure 6 shows how the instantaneous eigenvalues of
the system change during the evolution of the final pulses
(optimized three times) with the values of α,β, and A above.
The second largest eigenvalue, corresponding to the transition
under consideration, is plotted as a solid line. Figure 6 confirms
that the eigenvalues remain nondegenerate during the entire
gate, with the size of the minimum energy gap set by the
strength of the J coupling. We plan to explore superadiabatic
control of multiqubit systems in more detail in future work.
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FIG. 5. Fidelity profiles of the two-qubit entangling pulse that
takes the state |ψi〉 = |00〉 to the state |ψt 〉 = 1√

2
(|00〉 + |11〉). The

evolutionary algorithm was applied to a linear guess pulse (dotted
line) for one round of optimization (dash-dotted line) and three rounds
(solid line), where a round of optimization consists of each point in
the pulse serving as the center of perturbation. A comparison is made
to a diabatic gate that creates the same target state (dashed line).
The minimum time of the diabatic gate given J = 209 Hz is plotted
as a vertical dotted line. Inset: Q1(t) is plotted for the three pulses,
showing the algorithm’s improvement in the first adiabatic Q factor.
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FIG. 6. Eigenvalues of the optimized two-qubit entangling
Hamiltonian versus time. The adiabatic theorem requires that energy
levels not cross, which is satisfied here. The eigenvalues correspond-
ing to the trajectory between |00〉 at t = 0 and the Bell state at t = τ

are plotted as a solid line. The eigenvalues are plotted in units of �/s,
using 2α = 64 krad/s, 2β = 57 krad/s, and A = 78.5 krad/s.

VII. CONCLUSIONS

We have introduced an approach to transition-free driving
of quantum systems. This approach uses the superadiabatic Q

factor as a performance metric to design robust, high-fidelity
pulses that maximize the adiabaticity of the quantum operation
in a particular interval, given the available experimental con-
trols. These smoothly varying superadiabatic pulses are also
easier to implement due to their typically simpler hardware
requirements.

For the case of single-qubit inversion pulses, we found
that optimizing Qs instead of Q1 improved both fidelity and
robustness over a wide range of pulse lengths. At shorter
pulse lengths a trade-off was observed between fidelity and
robustness, in which pulses that perform at high fidelity near
the quantum speed limit tended to be less robust against
inhomogeneity in the control parameters. We also introduced
a simple numerical search strategy to implement a broader
class of adiabatic operations, including multiqubit adiabatic
unitaries, and designed an adiabatic control sequence to
implement a two-qubit entangling gate. Our investigation
highlights the generality of the Q-factor formalism, which
can readily be extended to even larger Hilbert spaces or to
systems characterized by entirely different Hamiltonians.

The proposed method promises to offer another option
in the toolbox of quantum control techniques. Ultimately, it
would be useful to systematically characterize the landscape
of control in terms of potential trade-offs between desirable
features such as speed, robustness against control errors, and
adiabaticity (or transition-free driving). This would allow
experimentalists to tailor their control strategy to the specific
experimental constraints in their setups.

FIG. 7. The evolutionary strategy used to search for optimally
adiabatic rf pulses, consisting of a four-step iterative procedure.
(a) The center of perturbation is chosen. (b) The radius is chosen,
defining an interval of perturbation. (c) The curve is perturbed, and
(d) the best perturbation is kept.
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APPENDIX A: SEARCH ALGORITHM DETAILS

Figure 7 outlines the steps of the algorithm. Assume that the
control pulses of length τ are divided into N equal intervals �t

such that τ = N�t . The control waveform is parameterized
by uk(t) = uk(m�t), 0 � m � N .

(a) Choose the center of the perturbation (m = �) of the
initial curve uk(m�t).
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FIG. 8. Q1 of the guess pulse for different choices of �ωC(0)
(carbon, system A) and �ωH (0) (hydrogen, system B). Lighter colors
correspond to more adiabatic pulses. The black arrow indicates the
guess pulse that was chosen. The color bar indicates the value of Q1

for a pulse length of 10 ms.
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FIG. 9. The linear guess pulse (black dotted line) and two Q1-
optimized pulses, obtained by applying the evolutionary algorithm
with each point as the center of perturbation once (blue dash-dotted
line) or three times (red solid line).

(b) Choose the radius of perturbation r . For each center of
perturbation �, the radii were allowed to vary from r = N/2
(alters the entire curve) to r = 2 (smallest local perturbation).

(c) Introduce a parabolic perturbation centered at � with
radius r: For every point m ∈ [� − r,� + r], uk(m�t) is
changed to ũk(m�t) such that

ũk(m�t) = uk(m�t) − ε[m − (� − r)][m − (� + r)]

r2
,

where ε is a constant that controls the size of the perturbation.
For any given combination of � and r , we perturb the curve
ten times (chosen arbitrarily), in each case choosing ε to be
a random value in the interval [−εmax,εmax]. Figure 7 shows
four such perturbations.

(d) The perturbation that maximizes the chosen adiabatic
Q factor is preserved. If, for any given radius of perturbation,
none of the ten perturbations improved the adiabaticity, we
return to step (b), this time choosing a smaller perturbation
radius.

When a perturbation that improves adiabaticity is found,
the four-step procedure is repeated for a new center �′ = � + 1
(mod N ). If the algorithm does not find an improvement for any
of the radii between r = N/2 and r = 2, the center is changed.
Finally, since a pulse consists of two functions, �ω(t) and
ω1(t), the algorithm was toggled between the two: �ω(t) was
perturbed at center �, and before perturbing �ω(t) again with
�′ = � + 1, ω1(t) was perturbed at center �.

APPENDIX B: INITIAL GUESS PULSES FOR
TWO-QUBIT CONTROL

Figure 8 motivates the choice of �ωC(0) (carbon, system
A) and �ωH (0) (hydrogen, system B) mentioned in the
text. Each point in the two-dimensional grid represents a
different linear guess pulse. The color bar indicates the value
of Q1: the lighter the color of the grid point is, the higher
Q1 is for the corresponding pulse. The highest values of
Q1 occur when �ωC(0) = �ωH (0), which is forbidden by
the adiabatic theorem since it leads to degeneracy in the
eigenvalues. Instead, the point indicated by the black arrow
was chosen, with �ωC(0) ≈ 64 krad/s and �ωH (0) ≈ −57
krad/s. Figure 9 plots the shape of this linear guess pulse as
well as the Q1-optimized numerical pulse.
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