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Passive interferometric symmetries of multimode Gaussian pure states
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As large-scale multimode Gaussian states begin to become accessible in the laboratory, their representation
and analysis become a useful topic of research in their own right. The graphical calculus for Gaussian pure
states provides powerful tools for their representation, while this work presents a useful tool for their analysis:
passive interferometric (i.e., number-conserving) symmetries. Here we show that these symmetries of multimode
Gaussian states simplify calculations in measurement-based quantum computing and provide constructive tools
for engineering large-scale harmonic systems with specific physical properties, and we provide a general
mathematical framework for deriving them. Such symmetries are generated by linear combinations of operators
expressed in the Schwinger representation of U(2), called nullifiers because the Gaussian state in question
is a zero eigenstate of them. This general framework is shown to have applications in the noise analysis of
continuous-various cluster states and is expected to have additional applications in future work with large-scale
multimode Gaussian states.
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I. INTRODUCTION

Optical quantum information science promises new and
revolutionary technology [1,2]. Optical Gaussian states are
states of light whose Wigner functions are Gaussian distribu-
tions over the real (q̂) and imaginary (p̂) parts of the complex
quantized-mode (qumode) amplitude, where [q̂,p̂] = i� [3].
In the context of quantum information, such states have
the desirable feature of being produced, manipulated, and
measured with experimental ease using squeezing, linear
optics, and homodyne detection [4].

Many important aspects of quantum-information technolo-
gies have already been realized in Gaussian systems, includ-
ing quantum teleportation [5], entanglement swapping [6],
quantum dense coding [7,8], entanglement purification [9],
measurement-based quantum computation [10], cluster state
preparation [11], quantum error correction [12], and quantum
algorithms [13]. These capabilities, combined with the relative
experimental ease with which Gaussian states are processed
and measured, encourages a serious consideration of Gaussian
states for quantum information tasks. Indeed, Gaussian, or
continuous-variable (CV) [14], cluster states can be generated
efficiently in a highly scalable fashion and serve as resources
for measurement-based quantum computation [10,11,15–19].

A well-known mapping known as the Schwinger repre-
sentation [20] maps the state space of a pair of harmonic
oscillators to the representation space of SU(2) [21] and thus
to a single quantum spin. In this context, pairs of qumodes
within an n-qumode system are known as Schwinger spins.
The Schwinger mapping has been a beneficial tool when
applied to many areas in quantum optics, including the
SU(2) symmetry of a beam splitter [22,23], demonstrating
violations of Bell inequalities in macroscopic systems [24–28],
the formulation of angular momentum coherent states [29],
polarization squeezing and entanglement [30], and detecting
entanglement of non-Gaussian states [31]. These setups have
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applied the Schwinger representation to systems of a few
qumodes, generally constructing a single Schwinger spin or a
pair of them. Considering the fruitful applications of applying
the Schwinger representation to systems of a few qumodes,
it is of interest to investigate many-qumode optical Gaussian
states within the Schwinger picture. Such a mapping could also
be of use regarding CV simulation of entangled spin systems.
Recent work in this direction has posed similar motivation,
proposing the need for a straightforward map between CV and
Schwinger spin systems [32]. A stepping stone to achieving
such a map was suggested in [32], whereby the nullifiers for
various multipartite Schwinger spin systems were derived and
interpreted.

In this work, we present necessary and sufficient conditions
that must be satisfied by a Schwinger spin operator if it
is to nullify a particular Gaussian pure state. Each nullifier
generates an interferometric symmetry satisfied by the corre-
sponding state. We present two applications of these results.
First, we use these symmetries to identify a class of CV
quantum gates whose members are all guaranteed to have
the same noise properties when implemented in a particular
(and useful) CV measurement-based setting. Second, we
construct a class of quadratic parent Hamiltonians for any
given Gaussian pure state and prove that, in this context, the
interferometric symmetries of the ground state get promoted to
conserved quantities for the full dynamics of this system. These
results therefore are likely to have applications in quantum
information, condensed matter, and quantum optics.

II. MOTIVATION AND BACKGROUND

A. The Schwinger representation of U(2)

The Schwinger representation of SU(2) [20] maps a pair
of harmonic oscillators to a single spin whose spin quantum
numbers are determined by the sum and difference of quanta
in each of the oscillators. It is a bosonic realization of
a Lie algebra and is a multiplicity-free direct sum of all
the unitary irreducible representations of SU(2) [21]. Here
we summarize the usual approach and generalize it to the
Schwinger representation of U(2).

2469-9926/2016/93(5)/052326(11) 052326-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.052326


NATASHA GABAY AND NICOLAS C. MENICUCCI PHYSICAL REVIEW A 93, 052326 (2016)

In an optical setting, the harmonic oscillators used in
the Schwinger representation of SU(2) are qumodes that
occupy a Fock space, i.e., an infinite-dimensional Hilbert space
endowed with the orthonormal basis {|n〉}∞n=0 and operators â,
â† satisfying [â,â†] = 1. The Schwinger spin operators are

Ŝx
1,2 = 1

2
(â†

1â2 + â
†
2â1),

Ŝ
y

1,2 = 1

2i
(â†

1â2 − â
†
2â1), (2.1)

Ŝz
1,2 = 1

2
(â†

1â1 − â
†
2â2),

where the 1,2 subscripts denote qumodes 1 and 2.
The appropriate su(2) Lie algebra relations are satisfied:

[Ŝk,Ŝl] = i
∑
m

εklmŜm, (2.2)

where εklm is the Levi-Civita symbol. It is also important to
introduce the Ŝ0 operator,

Ŝ0
1,2 = 1

2 (â†
1â1 + â

†
2â2), (2.3)

which is related to Ŝ2 = (Ŝx)2 + (Ŝy)2 + (Ŝz)2, the Casimir
invariant of su(2), as

Ŝ2 = Ŝ0(Ŝ0 + 1). (2.4)

Therefore, the Ŝ0 operator corresponds to the spin quantum
number s,

Ŝ0 �→ s, (2.5)

while Ŝz corresponds to the spin quantum number ms ,

Ŝz �→ ms. (2.6)

Combining the Schwinger Ŝ0 operator with the three
Schwinger spin operators, the Schwinger representation of
u(2) is defined by the generators:

Ŝj := 1
2 âHσ j â, j ∈ {0,x,y,z}, (2.7)

where σ j is the identity or a Pauli matrix and â = (â1,â2)T

and âH = (â†)T = (â†
1,â

†
2) are vectors of operators. As the

Schwinger operators (2.7) form a representation of u(2), any
element Û ∈ U(2) can be written as

Û (θ) = exp(−iθ · Ŝ), (2.8)

where Ŝ = (Ŝ0,Ŝx,Ŝy,Ŝz), θ = (θ0,θx,θy,θz), and θi ∈ R for
i ∈ {0,x,y,z}.

B. Passive interferometry

To describe passive interferometric symmetries of optical
Gaussian states, we first note that only Hamiltonians that are
quadratic in the quadrature operators correspond to Gaussian
unitary transformations, i.e., unitary operations that preserve
the Gaussian form of the state.

There are two varieties of quadratic Hamiltonians: compact,
which correspond to transformations that preserve the total
photon number, and noncompact, which do not preserve
the total photon number. In this work we are concerned
with passive transformations, i.e., those that are generated

by compact Hamiltonians. These can be employed with
interferometry (beam splitters and phase shifters). Operators
that generate passive transformations on n qumodes are known
to correspond to the group U(n), a subgroup of Sp(2n,R) [33],
the latter being the group of all Gaussian unitary operations.
Considering a system of two qumodes, any passive transforma-
tion corresponds to elements of U(2) and thus can be expressed
in the form of Eq. (2.8). Generalizing to an n-qumode system,
any U(n) transformation can be decomposed into a sequence
of U(2) operations acting on two-dimensional subspaces of
the underlying n-dimensional Hilbert space [34]. Therefore,
any n-qumode passive interferometer can be interpreted as a
sequence of two-qumode passive interferometers defined in
Eq. (2.8) acting on two-qumode subspaces of the system.

The Ŝx and Ŝy generators correspond to two-mode mix-
ing operators [35] that couple the qumodes together. Such
operators can be modeled as different beam-splitter con-
figurations [23]. The Ŝz generator, the relative-phase-shift
operator, corresponds to an equal and opposite phase shift
being applied to each qumode. The fourth generator, Ŝ0,
imparts an equal phase shift on both qumodes. The unitary
generated by this operator consists of two individual qumode
phase-space rotation operators R̂j (θ ) = exp(−iθ â

†
j âj ), where

j denotes qumode j . This operator acting on an eigenstate of
the number operator simply results in an overall phase factor
of e−iθn. However, in general, such an operator has a nontrivial
effect on a state.

Concerning some previous investigations of interferometry
using group theory [22,23,36], it has been sufficient to only
use a representation of SU(2). This is because in those cases
the effects of interest were either interference effects (that only
depend on the relative phase difference between qumodes and
are thus not altered by the Ŝ0 generator) or effects that can be
measured with photodetectors (photodetectors are insensitive
to the transformations generated by Ŝ0). We are nonetheless
interested in the full Schwinger U(2) representation, which
describes the most general interferometric operation. This re-
quires accounting for overall phase shifts on each two-qumode
subspace because on the full n-qumode space these will now
become relative phase shifts, which are physically significant.

C. The graphical calculus for Gaussian pure states

The nullifier formalism is well suited for analysis of
Gaussian pure states, including CV cluster states [10,15,37].
Any Gaussian pure state can be defined uniquely (up to phase-
space displacements) by an undirected graph with complex-
valued edge weights, given by the matrix Z = V + iU, where
U = UT > 0 and V = VT [37]. Every such Z also defines a
unique Gaussian pure state. The position-space wave function
for a Gaussian pure state on n qumodes is related to Z by

ψZ(q) = (det U)1/4

πn/4
exp

(
i

2
qTZq

)
. (2.9)

The nullifiers for a Gaussian pure state are also captured
within this formalism. For an n-qumode Gaussian pure state
|ψZ〉, n independent nullifiers can be written succinctly as

(p̂ − Zq̂)|ψZ〉 = 0, (2.10)
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FIG. 1. Precise graphical representation (described in Sec. II C)
of a two-mode squeezed (TMS) state with adjacency matrix K [given
in Eq. (2.13)], where α > 0 is an overall squeezing parameter.

where p̂ = (p̂1, . . . ,p̂n)T and q̂ = (q̂1, . . . ,q̂n)T are column
vectors of quadrature operators.

We now introduce the complex, symmetric matrix K that is
related to Z by [37]

K = (I + iZ)(I − iZ)−1 (2.11)

and thus also uniquely specifies the state. The symmetry of K
is an immediate consequence of the symmetry of Z.

The requirements on U and V mentioned above induce the
following restriction on K:

‖K‖ < 1, (2.12)

where ‖K‖ is the spectral norm (i.e., the largest singular value)
of K. For proof of this, see Appendix B.

The uniqueness of K enables a useful graphical represen-
tation of the Gaussian pure state that it defines, whereby the
graphical depiction of the state is simple, yet precise, as it
represents the wave function for the corresponding state [37].
We illustrate this graphical formalism with an example using
a two-mode squeezed (TMS) state and its corresponding K
matrix. A TMS state is an entangled, bipartite Gaussian state
of two qumodes that exhibits correlations like those in an
Einstein-Podolsky-Rosen (EPR) state [38]. The K matrix for
a TMS state is [37]

K =
(

0 tanh α

tanh α 0

)
, (2.13)

where α > 0 is an overall squeezing parameter. Figure 1
displays the graphical representation of K, whereby qumodes
are depicted by nodes, and the edge weight corresponds to the
off-diagonal terms in K.

Definition 1. Any Gaussian pure state can be uniquely
specified, up to displacements and overall phase, by the
complex, symmetric matrix K, which we define to be the
adjacency matrix of the state.

The nullifier relation of Eq. (2.10) can be written in terms of
K and the qumode annihilation operators. First, we multiply
Eq. (2.10) by i on both sides, and then we use the relation
between quadrature operators and annihilation operators, â =

1√
2
(q̂ + ip̂), to rewrite this expression as

(â − â†) − iZ(â + â†)|ψZ〉 = 0, (2.14)

(I − iZ)â − (I + iZ)â†|ψZ〉 = 0. (2.15)

Multiplying both sides of this equation by (I − iZ)−1 results
in the expression

(â − Kâ†)|ψZ〉 = 0. (2.16)

For K defined through Eq. (2.11), the state defined by K is the
same as the state defined by Z (|φK〉 = |ψZ〉), and thus, we
can write the nullifier relation for a Gaussian pure state on n

qumodes in terms of K:

(â − Kâ†)|φK〉 = 0. (2.17)

This is written in terms of the column vectors of anni-
hilation and creation operators â = (â1, . . . ,ân)T and â† =
(â†

1, . . . ,â
†
n)T.

Now that we have provided the reader with the relevant
graphical formalism for Gaussian pure states as well as the
nullifier relations in terms of the adjacency matrix K, we
proceed to define Schwinger nullifiers for Gaussian pure states,
the interferometric symmetries they generate, and several
applications of this idea.

III. SCHWINGER NULLIFIERS
FOR A GAUSSIAN PURE STATE

Here we derive the main technical results of the paper:
necessary and sufficient conditions for a Schwinger operator
to be a nullifier for a particular Gaussian pure state, as well as
the symmetry that such an operator generates.

Definition 2. Let |φK〉 be a Gaussian pure state on n

qumodes. A Schwinger nullifier for |φK〉 is a real linear
combination of Schwinger U(2) operators that is a nullifier
for |φK〉.

Lemma 1. Any real linear combination of Schwinger U(2)
operators acting on n qumodes can be written concisely as

âHMâ, (3.1)

where M is an n × n Hermitian matrix, the column vector
â = (â1, . . . ,ân)T, and the row vector âH = (â†

1, . . . ,â
†
n).

Furthermore, any expression of this form corresponds to some
real linear combination of Schwinger U(2) operators acting on
n qumodes.

Proof. Recall from Sec. II B that any real linear combination
of Schwinger U(2) operators corresponds to a compact
Hamiltonian. The most general compact Hamiltonian for a
system of n qumodes has the following form [35]:

n∑
i,j=1

Mij â
†
i âj , (3.2)

where Mij = M∗
ji . Using the row and column vectors of

creation and annihilation operators defined above, we can
rewrite expression (3.2) as

n∑
i,j=1

Mij â
†
i âj = âHMâ, (3.3)

where M is a Hermitian matrix with entries Mij .
To prove the converse, consider a pair (r,s) of the n

qumodes. Let σ
(r,s)
j be the n × n Hermitian matrix whose

entries are all zero except for (r,r), (r,s), (s,r), and (s,s),
which contain the corresponding entries from the Pauli matrix
σ j . Then, a Schwinger U(2) operator acting on that pair can
be written concisely as

Ŝj
r,s := 1

2 âHσ
(r,s)
j â, j ∈ {0,x,y,z}. (3.4)

The collection of all σ
(r,s)
j for all index pairs (r,s) and all j ∈

{0,x,y,z} form an overcomplete basis for all n × n Hermitian
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operators. As such, we can write

M =
∑
(r,s)

∑
j

c
(r,s)
j σ

(r,s)
j (3.5)

for some real constants c
(r,s)
j . When M is sandwiched between

the vectors of creation and annihilation operators, we have

âHMâ =
∑
(r,s)

∑
j

2c
(r,s)
j Ŝj

r,s , (3.6)

which is explicitly a real linear combination of Schwinger U(2)
operators. �

Theorem 1. Let |φK〉 be a Gaussian pure state on n qumodes.
Let M be an n × n Hermitian matrix. Then, âHMâ is a
Schwinger nullifier for |φK〉 if and only if MK = −(MK)T.

Proof. Starting with the known nullifier relation for a
Gaussian pure state,

(â − Kâ†)|φK〉 = 0, (3.7)

we note that multiplying this expression on the left by âHM
results in the following (which is also a nullifier relation):

(âHMâ − âHMKâ†)|φK〉 = 0. (3.8)

By Lemma 1, the first term in parentheses is a real linear
combination of Schwinger U(2) operators. The second term
contains â

†
i â

†
j and âi âj , terms which correspond to active

transformations and are not linear combinations of Schwinger
U(2) operators. Thus, in order for expression (3.8) to be a
Schwinger nullifier, the second term must vanish.

Assume MK = −(MK)T. We now show that the second
term in (3.8) thus vanishes. We use the result that for any
antisymmetric, complex matrix A, xTAx = 0 for any vector x,
where xT denotes the transpose of x. Therefore, âHMKâ† = 0.
Although we are dealing with vectors of operators in this case,
we can still use this result because all the operators commute.

Conversely, assume MK 
= −(MK)T. The second term
in (3.8) never equals zero. To see this, decompose MK into its
symmetric and antisymmetric components:

MK = 1
2 {[MK + (MK)T] + [MK − (MK)T]}. (3.9)

The second term in (3.8) can then be written as

1
2 âH[MK + (MK)T]â† + 1

2 âH[MK − (MK)T]â†. (3.10)

The second term in this expression vanishes (according to the
same antisymmetric argument used previously), resulting in

1
2 âH[MK + (MK)T]â†. (3.11)

This expression will never vanish. To see this, let MK +
(MK)T = A and note

âHAâ† =
∑
i,j

â
†
i â

†
jAij . (3.12)

There are two cases in which this expression could potentially
vanish. The first is if A = 0, which is not the case as we are
assuming MK 
= −(MK)T. The second case would be if ∀ i,j

Aij â
†
i â

†
j + Aji â

†
j â

†
i = 0, (3.13)

but since Aij = Aji , by assumption there exists some i,j such
that Aij 
= 0, implying

Aij (â†
i â

†
j + â

†
j â

†
i ) 
= 0. (3.14)

�
Theorem 2. Let |φK〉 be a Gaussian pure state on n qumodes

with bipartite adjacency matrix K. Schwinger nullifiers can
be derived for this state, simply using the singular value
decomposition of K and an additional diagonal matrix.

Proof. Starting with bipartite K,

K =
(

0 K0

KT
0 0

)
, (3.15)

we decompose K0 into its singular value decomposition:

K =
(

0 U�VH

V∗�UT 0

)
, (3.16)

where U and V are unitary n × n matrices, � is an n × n

diagonal matrix with non-negative values, and VH denotes the
conjugate transpose of V.1 We can then write K as

K = (U ⊕ V∗)(σ x ⊗ �)(UT ⊕ VH), (3.17)

where σ x is the Pauli x matrix. If we define M to be of the
form

M = (U ⊕ V∗)(σ z ⊗ D)(UH ⊕ VT), (3.18)

where D is any symmetric matrix that commutes with � and
σ z is the Pauli z matrix, the equation MK = −(MK)T holds.
By Theorem 1, this means that âHMâ is a Schwinger nullifier
for |φK〉. �

Theorem 3. Let |φK〉 be a Gaussian pure state on n

qumodes. Schwinger nullifiers for this state generate passive
interferometric symmetries that apply to the state, i.e., passive
interferometric operations that leave the state invariant.

Proof. Let N̂ be a Schwinger nullifier for |φK〉. Therefore, it
is a real linear combination of Schwinger U(2) operators. Con-
sider the unitary operator Û (θ ) = e−iθN̂ , where θ ∈ R. This
unitary is generated by Schwinger U(2) elements and therefore
is a passive interferometric operation on two qumodes. As
N̂ is a nullifier for |φK〉, Û (θ ) is a stabilizer for |φK〉 (i.e.,
Û (θ )|φK〉 = |φK〉) and is therefore an operator that leaves the
state invariant. �

IV. SCHWINGER NULLIFIERS FOR H-GRAPH STATES

There exists a particular class of Gaussian pure states whose
adjacency matrix K depends on a real, symmetric matrix G:

K = tanh(αG), (4.1)

where α > 0 is an overall squeezing parameter. These states
have been previously discussed in terms of the Z matrix
formalism [37], where Z = ie−2αG. For proof of Eq. (4.1)
in light of this formalism, see Appendix A. Such states
can be generated via parametric down conversion in an

1We reserve the dagger symbol (†) for the Hermitian conjugate of
an operator. See Ref. [37] for more details on this notation.
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optical parametric oscillator [39], whereby the multiqumode
squeezing interaction is defined by the Hamiltonian

H = i�κ
∑
m,n

Gmn(â†
mâ†

n − âmân), (4.2)

where κ is a global coupling strength and G is a matrix
that specifies the multiqumode interactions. Such states are
called H-graph states [16,17], as they are defined in terms
of a matrix (or graph) G that determines the multimode-
squeezing Hamiltonian. H-graph states can also be generated
via different optical methods. For instance, they can be
generated by sending pairs of TMS states through a series
of beam splitters [40].

A. Schwinger nullifiers for H-graph states with bipartite,
self-inverse adjacency matrices

The class of H-graph states with self-inverse and bipartite
G matrices is particularly useful for measurement-based
quantum computation since it has been shown that these
states are equivalent to CV cluster states up to certain phase
shifts [16] and can be generated in a highly scalable and
compact fashion [17,39–42]. H-graph states of this form that
have a square-lattice structure are universal resources for
measurement-based quantum computation [16,40,42].

When G is self-inverse, K can be written as

K = (tanh α)G. (4.3)

For proof of this, see Appendix A. When G is also bipartite,

K = (tanh α)

(
0 G0

GT
0 0

)
, (4.4)

which allows a straightforward derivation of M (as defined in
Theorem 2) as

M = (U ⊕ V∗)(σ z ⊗ D)(UH ⊕ VT), (4.5)

where U�VH = G0 is the singular value decomposition of G0

and D is any symmetric matrix that commutes with �.
This method can be used to derive local Schwinger nullifiers

for any H-graph state with bipartite, self-inverse G. The
simplest example of such a graph is the TMS state shown
in Fig. 1 and for which G = σ x and therefore M = σ z by
the above construction. This means that Ŝz nullifies a TMS
state, as is well known [30]. A more substantial example is
the dual-rail quantum wire, which is a useful resource for
CV measurement-based quantum computation [40,43]. This
is discussed next.

V. THE DUAL-RAIL QUANTUM WIRE

As an example, we consider the dual-rail quantum wire
(dual rail), which is a Gaussian cluster state with one-
dimensional topology. Such a state can be generated by
sending a collection of TMS states through beam-splitter
operations [40]. Suitably weaving multiple dual rails together
results in a structure that is equivalent to a 2D cluster state and
is thus a universal resource for universal measurement-based
quantum computation [16] (with fault tolerance possible if the
squeezing is above a finite threshold [44]).

FIG. 2. The graph of the adjacency matrix K for the dual-rail
quantum wire with periodic boundary conditions. The weights of
the links are ± 1

2 tanh α, differentiated by the blue and yellow
links, respectively. Schwinger spins are formed by pairing qumodes
together vertically, where each Schwinger spin is labeled by integer
values 1–5 and contains two qumodes, labeled by a and b.

We depict a dual rail under periodic boundaries in Fig. 2,
which shows the precise graphical representation (discussed in
Sec. II C) for the state, as well as additional labels that clarify
how we reinterpret this state as entangled Schwinger spins.
We interpret a dual rail on 2n qumodes as a collection of n

entangled Schwinger spins (labeled along the horizontal axis
in Fig. 2), with qumodes paired vertically (labeled a and b

along the vertical axis). A single qumode can thus be labeled
according to which spin it is part of as well as where it lies
on the vertical axis. For example, the first Schwinger spin in
Fig. 2 contains qumodes 1a and 1b.

The method outlined in Sec. IV A can be applied to derive
local Schwinger nullifiers for the dual rail. In this section, we
introduce another method that can be applied to such states,
which is more intuitive. This method involves reinterpreting
the dual rail (or any H-graph state with self-inverse and
bipartite G) in a different qumode decomposition.

A. Physical and distributed qumodes

It is possible to represent the dual rail in a different
conceptual way, which is illustrated in Fig. 3. This is an
equivalent description of the state, whereby the labeling of
the qumodes has changed from (a,b) to (±). This represents
a change of tensor-product structure, i.e., a different qumode
decomposition of the two-qumode Hilbert space. Specifically,
we have defined

ân± = 1√
2

(âna ± ânb). (5.1)

In effect, this change of tensor-product structure allows the
beam-splitter interaction to be absorbed into the qumode
redefinition and the system to be interpreted as a collection
of TMS states in the ± qumodes even after the beam-splitter
operation has been done [18,43]. We will call the ± qumodes
the distributed qumodes and the (a,b) qumodes the physical
qumodes from now on.

FIG. 3. The graph of the adjacency matrix for the dual-rail
quantum wire in the distributed qumodes, with the qumode-operator
relabeling (in terms of ± along the vertical axis) as indicated in
Eq. (5.1). The weights of the links are all tanh α in this qumode
decomposition.

052326-5



NATASHA GABAY AND NICOLAS C. MENICUCCI PHYSICAL REVIEW A 93, 052326 (2016)

B. Local nullifiers for the dual-rail quantum wire

We now show how to derive local Schwinger nullifiers for
the dual rail using its representation in distributed qumodes
(Fig. 3). The dual-rail wire in these modes is just a collection of
TMS states in these modes. As discussed in Sec. IV A, a TMS
state admits a nullifier of Ŝz acting on the corresponding two
(distributed) qumodes [30]. As such, each of these operators
is also a nullifier for the full dual-rail wire. Expressing this
in terms of the physical qumodes [using Eq. (5.1)], this is
equivalent to a sum of two Schwinger spin operators acting on
neighboring physical-qumode spins.

Concretely, one nullifier for the dual rail (see Fig. 3) is
Ŝz

2−,3+, which can be rewritten in the physical modes as

Ŝz
2−,3+ = 1

2 (â†
2−â2− − â

†
3+â3+)

= 1
2 (Ŝ0

2a,2b − Ŝx
2a,2b − Ŝ0

3a,3b − Ŝx
3a,3b). (5.2)

For a dual rail (on periodic boundaries) on n Schwinger spins,
this technique applied to every TMS state in the system results
in n local, independent Schwinger nullifiers:

N̂i = Ŝ0
ia,ib − Ŝx

ia,ib − Ŝ0
(i+1)a,(i+1)b − Ŝx

(i+1)a,(i+1)b (5.3)

for all i ∈ Zn, where the qumodes are labeled a and b and
paired vertically into Schwinger spins that are labeled by i.
Note that addition is modulo n.

The technique described in Sec. IV A, which derives
Schwinger nullifiers for any H-graph state with bipartite,
self-inverse G, could also have been used to derive the
nullifiers in this section. However, the technique of switching
qumode decomposition lends itself to a more natural and
straightforward derivation and also provides us with a second
method to derive such nullifiers in this case.

The nullifiers of Eq. (5.3) reveal information about the
underlying Schwinger spin structure of the dual rail on periodic
boundaries. For instance, they reveal that for any pair of
adjacent Schwinger spins i and j , the values obtained by
measuring Ŝ0

ia,ib − Ŝ0
ja,jb determine the total spin along the

x axis. The Ŝ0
ia,ib operator corresponds to the total photon

number in the Schwinger spin i, and thus, the spin along the
x axis at any two adjacent spins on the ring of entangled
Schwinger spins is directly determined by the photon-number
difference between the spins.

It is worthwhile to note that these nullifiers do not solely
generate rotations of the corresponding Schwinger spins,
as these nullifiers include the Ŝ0 operator, which is not a
generator of the Schwinger representation of SU(2). It is,
however, a generator of the Schwinger representation of U(2)
(as discussed in Sec. II A) and corresponds to an equal phase
shift being applied to both qumodes it acts on.

C. Chainlike Schwinger spin nullifiers
for the dual-rail quantum wire

Any linear combination of the nullifiers given in Eq. (5.3)
is also a Schwinger nullifier. In this section, we show that by
taking positive combinations of some of these local nullifiers,
chainlike nullifiers emerge. These provide information about
a segment of the ring of entangled Schwinger spins on the
dual rail, where the length of the segment depends on the
number of nullifiers summed. We illustrate this by considering

FIG. 4. A portion of the dual-rail quantum wire on periodic
boundaries interpreted as a ring of Schwinger spins. The qumodes
are paired vertically into Schwinger spins, labeled 1–5. The colored
ellipses are an illustration of the chainlike nullifier that results from
taking linear positive combinations of three of the n independent
nullifiers from Eq. (5.3) (where the green and red ellipses correspond
to Ŝ0

1a,1b − Ŝx
1a,1b and −Ŝ0

4a,4b − Ŝx
4a,4b, respectively), and the 2Ŝx

operator acts on spins 2 and 3, indicated by the blue ellipses.

a dual-rail quantum wire on eight Schwinger spins with
periodic boundaries, which has corresponding nullifiers given
by Eq. (5.3) with n = 8. Summing nullifiers N̂1 to N̂3 results
in a nullifier of the form

Ŝ0
1a,1b − Ŝx

1a,1b − 2Ŝx
2a,2b − 2Ŝx

3a,3b − Ŝ0
4a,4b − Ŝx

4a,4b, (5.4)

which we illustrate graphically in Fig. 4. We call these
chainlike nullifiers as it can be shown that by adding more
nullifiers to the summed expression, the nullifier grows along
the wire until all of the n independent nullifiers have been
summed, resulting in a global nullifier that is described in the
next section.

These chainlike nullifiers reveal information about any
segment of the dual rail. The nullifier that is illustrated in
Fig. 4 reveals that the total spin along the x axis for Schwinger
spins 2 and 3 depends on the values obtained by measuring
Ŝ0

1a,1b − Ŝx
1a,1b and Ŝ0

4a,4b − Ŝx
4a,4b, which can be done with

beam splitters and photon counting.

D. Global Schwinger spin nullifiers
for the dual-rail quantum wire

We just discussed how, by taking linear combinations of
some of the local nullifiers presented in Eq. (5.3), we can
derive new nullifiers that act on segments of the dual rail.
As we will show in this section, taking linear combinations
of all the independent nullifiers for a given system results in
global nullifiers, i.e., nullifiers that act on every Schwinger
spin in the system simultaneously. In terms of systems of
entangled Schwinger spins, these global nullifiers reveal global
properties of the system, such as what the overall spin is
along a certain direction. As will become clear in this section,
the differing global nullifiers also illustrate different spin
structures, i.e., different potential qumode pairings.

For the dual rail on periodic boundaries comprising a total
of n Schwinger spins, by taking the sum of all nullifiers from
the set given in Eq. (5.3) we arrive at a global nullifier:

n∑
i=1

Ŝx
ia,ib, (5.5)

where i denotes the Schwinger spin labeled i along the
horizontal direction and the a and b labels indicate the
vertically paired qumodes. This is illustrated graphically in
Fig. 5, which indicates the Ŝx operator with blue ellipses.
From this nullifier, we can conclude that the ring of entangled
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FIG. 5. Schwinger spin structure for the dual-rail quantum wire
with periodic boundary conditions, where the qumodes (labeled by
a and b) are paired together vertically into Schwinger spins, labeled
1–4. The blue ellipses are an illustration of the global nullifier for
this state, i.e., an Ŝx operator acting on every Schwinger spin of the
system.

Schwinger spins (that is of variable length) always has a total
spin along the x axis equal to zero.

If n is even, taking a sum of the differences of pairs of
nullifiers from Eq. (5.3) results in another global nullifier that
acts on a different spin structure than the one that has been
discussed so far. This new spin structure consists of qumodes
that are paired horizontally into spins. The following nullifier
applies to the structure:

n/2∑
i=1

∑
j∈{a,b}

Ŝz
(2i−1)j,(2i)j , (5.6)

where i denotes the Schwinger spin labeled i, which consists of
horizontally paired qumodes. This is illustrated in Fig. 6, where
the purple ellipses correspond to the Ŝz nullifiers acting on the
corresponding qumodes. Thus, a dual rail with an even number
of Schwinger spins (made out of horizontally paired qumodes
rather than vertically) is a ring of entangled Schwinger spins
in which the total spin along the z axis is equal to zero at all
times.

VI. NOISE IN CV MEASUREMENT-BASED
QUANTUM COMPUTATION

As an application of these results, we show that the
interferometric symmetries of the dual-rail quantum wire
derived above can be used to deduce noise properties of
measurement-based quantum computation using this resource
state [43].

We know from Theorem 3 that Schwinger nullifiers gen-
erate passive interferometric symmetries. The local nullifier
of Eq. (5.2), which acts on the dual rail with periodic
boundary conditions |ψ〉, corresponds to the following local

FIG. 6. Alternate Schwinger spin structure for the dual-rail
quantum wire with periodic boundary conditions (where the number
of Schwinger spins is even). Note that the qumodes are now paired
horizontally into spins. A global nullifier for this state is illustrated
by the purple ellipses, which denote the Ŝz operator acting on all of
the Schwinger spins in the system.

interferometric symmetry:

e−iθ(Ŝ0
2a,2b−Ŝx

2a,2b)|ψ〉 = e−iθ(Ŝ0
3a,3b+Ŝx

3a,3b)|ψ〉 (6.1)

for all θ ∈ R. In this section, we show how this symmetry
explains a key result from recent work [43].

Measurement-based quantum computation on the dual rail
in the physical qumodes is equivalent to sequential gate
teleportation in the distributed qumodes [18]. As TMS states
are not maximally entangled, no CV gate teleportation scheme
achieves perfect teleportation. Rather, there is always noise
that distorts the information passing through the teleportation
channel in a way that depends specifically on which gate is
being teleported.

Interestingly, it was recently found [43] that performing
a rotation gate on the dual rail introduces the same amount
of noise as performing the identity gate. This fact can be
explained by the local symmetry of (6.1), as we will now
show.

A. Two pictures of measurement-based quantum computing

To discuss measurement-based quantum computing on the
dual rail, we will vertically pair qumodes (which we label a

and b) into macronodes, which coincide with the spins shown
in Fig. 5. Bare teleportation by one macronode on the dual-rail
wire (with no ensuing phase shift) requires simply measuring
q̂a and p̂b [18]. Preceding these same measurements by an
equal phase shift of φ on each qumode still results in the
information being teleported but now with a phase shift of 2φ

subsequently being applied to the encoded information. This
property was calculated explicitly in Refs. [18,43].

In fact, the symmetry of Eq. (6.1) explains this fact
intuitively. This symmetry allows us to replace the premeasure-
ment phase shifts on the measured qumodes with equivalent
postmeasurement phase shifts on the target qumodes, which
will then be applied to the encoded quantum information
after it has been teleported. Both pictures are equivalent, but
the symmetry-based explanation is more elegant and more
powerful, and it can be generalized easily to other symmetries
of other states.

The connection is not immediate, however, so we will show
it explicitly in two parts. (a) First, we will show that measuring
q̂a and p̂b on the state represented by the left-hand side of
Eq. (6.1) can be effected by taking linear combinations of the
outcomes of measurements of the rotated quadratures q̂θ

a and
p̂θ

b . These are defined by

(
q̂θ

p̂θ

)
:=

(
cos θ sin θ

− sin θ cos θ

)(
q̂

p̂

)
, (6.2)

which corresponds to the unitary Heisenberg action

x̂θ = R̂(θ )†x̂R̂(θ ), (6.3)

where R̂(θ ) = exp(−iθ â†â) is called a (positive) phase shift
by θ . (b) Second, we will show that the operation on the
right-hand side of Eq. (6.1) is equivalent to a local phase shift
on the teleported information.
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The symplectic matrix corresponding to the Heisenberg
action of e−i2φ(Ŝ0

2a,2b−Ŝx
2a,2b) is given by

S =

⎛
⎜⎜⎝

c2 s2 cs −cs

s2 c2 −cs cs

−cs cs c2 s2

cs −cs s2 c2

⎞
⎟⎟⎠, (6.4)

where c = cos φ and s = sin φ. This means that multiplying
the vector of quadrature operators

x̂ =

⎛
⎜⎝

q̂2a

q̂2b

p̂2a

p̂2b

⎞
⎟⎠ (6.5)

by S gives the Heisenberg evolution of each operator and thus
determines the rotated quadratures that are measured. Under
this evolution (x̂ �→ Sx̂),

q̂2a �→ q̂
φ

2a cos φ − p̂
φ

2b sin φ,

p̂2b �→ q̂
φ

2a sin φ + p̂
φ

2b cos φ. (6.6)

Notice that these operators can be measured simply by
measuring the (local) rotated quadratures q̂

φ

2a and p̂
φ

2b and
then taking appropriate linear combinations of the results. This
verifies part (a) above.

Next, we use Eq. (5.1) to evaluate

exp
[ − i2φ

(
Ŝ0

3a,3b + Ŝx
3a,3b

)] = exp(−i2φâ
†
3+â3+)

= R̂3+(2φ). (6.7)

Since the quantum information in the dual-rail wire is carried
in the symmetric (+) distributed qumode, this has the effect of
phase shifting that information by 2φ after the teleportation.
This verifies part (b) above.

The symmetry of (6.1) thus implies that performing
e−i2φ(Ŝ0

2a,2b−Ŝx
2a,2b) is equivalent to applying e−i2φ(Ŝ0

3a,3b+Ŝx
3a,3b)

(illustrated in Fig. 7). The symmetry implies that applying a
rotation gate can be described by two equivalent scenarios:
(a) application of the unitary e−i2φ(Ŝ0

2a,2b−Ŝx
2a,2b) followed by

measuring q̂2a and p̂2b and taking appropriate linear com-
binations of the results and (b) measurements of q̂2a and
p̂2b (and thus regular teleportation) followed by application
of the unitary R̂3+(2φ) to the teleported information. The
fact that this gate teleportation can be decomposed into
regular teleportation followed by some unitary implies that
this teleportation introduces the same amount of noise as
performing ordinary teleportation. This was surprising when
it was first shown in Ref. [43], but now it can be seen to be a

FIG. 7. Illustration of the local symmetry from (6.1). Applying

e−i2φ(Ŝ0
2a,2b

−Ŝx
2a,2b

) (illustrated by the green ellipse) is equivalent to

applying e−i2φ(Ŝ0
3a,3b

+Ŝx
3a,3b

) (illustrated by the red ellipse).

trivial result of the interferometric symmetry of the dual-rail
wire shown in Fig. 7.

B. Connection between CV cluster states and H-graph states

A careful reading of Ref. [43] reveals that the quadratures
prescribed for measurement in the scenario above are different
from the ones presented here (even after accounting for the
different conventions for the definition of positive phase shift).
Specifically, Ref. [43] prescribes measuring q̂

φ+π/4
a and p̂

φ+π/4
b

to achieve the effect described above. Accounting for this
difference is a different convention in talking about “the
dual-rail wire.”

Since the adjacency matrix K for the dual-rail wire results
from a bipartite, self-inverse H-graph, it is by now well
established [16,18,37,40,45] that this state can be transformed
into a CV cluster state with the same basic form of the
graph (for details, see references) simply by phase shifting
all qumodes in one of the two graph bipartitions by −π

2
(also known as a Fourier transform). In this case, it means
performing this phase shift on all physical qumodes of all
even (or all odd) macronodes of our version of the dual-rail
wire [40].

The global symmetry illustrated in Fig. 6 shows, however,
that by an argument analogous to Eq. (6.1), rather than phase
shift half of the physical qumodes by −π

2 , one can choose
instead to phase shift all of the physical qumodes by −π

4 to
achieve the same effect.2 Therefore, in order to adapt the results
above for use on the CV-cluster-state form of the dual-rail wire
(used in Ref. [43]), we must first phase shift all modes by +π

4 to
convert to the H-graph-state form (used in the results above),
measure q̂

φ
a and p̂

φ

b , and then phase shift all modes by −π
4

to return to the CV-cluster-state form. All in all, this means
measuring x̂φ above is equivalent to measuring

R̂

(
π

4

)†
x̂φR̂

(
π

4

)
= x̂φ+π/4 (6.8)

on the CV-cluster-state version. This agrees with the prescrip-
tion given in Ref. [43].

VII. CONSERVATION LAWS FOR HARMONIC SYSTEMS

As a second application of these results, in this section we
interpret |φK〉 as the ground state of a two-body Hamiltonian
Ĥ (K) and show that the Schwinger nullifiers commute with
this Hamiltonian and thus reveal symmetries of the dynamics
of the system. Recall that the following nullifier relation holds:

(â − Kâ†)|φK〉 = 0. (7.1)

We can multiply a nullifier by anything on the left and it
remains a nullifier. We can therefore (as is done in [37]) define
annihilation and creation operators for the state defined by K

2If the graph has boundary conditions other than periodic, then one
must modify this result for the ends of the chain, but the bulk of the
chain remains unaffected by this, and thus, we can ignore this detail
without any loss of validity.
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as follows:

âK = P1/2(â − Kâ†), (7.2)

âH
K = (âH − âTK∗)P1/2, (7.3)

where P is some positive-definite matrix. If we set P = (I −
KK∗)−1, the ordinary commutation relations hold: [âK,âH

K] =
I. These operators can be used to derive the following
(nonunique) Hamiltonian whose ground state is |φK〉:

Ĥ (K) = âH
KâK = (âH − âTK∗)P(â − Kâ†). (7.4)

For any state |φK〉 and corresponding Schwinger nullifiers
âHMâ, the commutator [âHMâ,Ĥ (K)] expands to

[âHMâ,Ĥ (K)] = âH�M,P�â + âT�K∗PK,M∗�â†

− âH(MPK + PKM∗)â†

+ âT(M∗K∗P + K∗PM)â, (7.5)

where �·,·� is the ordinary matrix commutator.3 Recall from
Theorem 1 that MK = −(MK)T, K is symmetric, and M is
Hermitian. Therefore, MK = −KM∗ and M∗K∗ = −K∗M,
which means that �M,KK∗� = 0, and therefore, �M,P� = 0.
Using these relations to simplify the above shows that the
commutator vanishes:

[âHMâ,Ĥ (K)] = 0. (7.6)

Therefore, for the quadratic Hamiltonian Ĥ (K) constructed
from K by Eq. (7.4), the Schwinger nullifiers of its ground
state |φK〉 are conserved quantities for the dynamics of the
system.

As a simple example, consider the periodic dual-rail
quantum wire on 2n qumodes with adjacency matrix K
(introduced in Sec. V). Pairing qumodes vertically, this is
equivalent to a ring of n entangled Schwinger spins. Applying
the results above to this state involves viewing the dual-rail
quantum wire as the ground state of the two-body Hamiltonian
Ĥ (K) = âH

KâK. As discussed in Sec. V D, there exists a global
Schwinger nullifier which is a sum of Ŝx operators acting on
each spin in the system:

Ŝx
tot :=

n∑
i=1

Ŝx
ia,ib, (7.7)

where i denotes the Schwinger spin labeled i along the hori-
zontal direction and the a and b labels indicate the vertically
paired qumodes. Thus, total spin along x is conserved in this
system, as are each of the local two-spin observables from
Eq. (5.3).

In fact, we are not limited to quadratic Hamiltonians. One
may add to Ĥ (K) other terms constructed solely from the
nullifiers in order to produce a nonquadratic Hamiltonian with
the same conservation laws but more complicated dynamics.

3Specifically, �A,B� := AB − BA. We need this new notation
because we are following the conventions of Ref. [37], which, among
other things, defines the commutator for operator-valued matrices

as [Â,B̂] := ÂB̂ − (B̂
T
Â

T
)
T
. Using this definition, [A,B] = 0 for all

c-number matrices even when �A,B� 
= 0.

(While |φK〉 will always remain an eigenstate of such a system,
it may lose its privileged position as the ground state depending
on the strength and signs of the additional terms.) We expect
that this construction will open the doors to engineering
bosonic systems that have particular desired properties in terms
of their spin dynamics [32].

VIII. CONCLUSION

We have presented a method for analyzing multimode
Gaussian states in terms of their interferometric symmetries.
These symmetries are generated by considering nullifiers for
the state that are linear combinations of operators in the
Schwinger representation of U(2). In addition to producing a
number of mathematical results, we applied this formalism to a
straightforward analysis of noise in measurement-based quan-
tum computation on the dual-rail quantum wire [18,40,43] and
to the dynamics of harmonic and more general systems that
have a Gaussian ground state.

As large-scale multimode Gaussian states become within
reach in a compact laboratory setting [18,19,42,46], their
representation [37] and analysis (this work) become all the
more important. Furthermore, they are now becoming a testing
ground for measurement-based quantum computing [15]
and the creation and manipulation of topologically ordered
quantum states [47]. As this research moves forward, the
tools presented here, analysis in terms of number-conserving
symmetries, will play an important role in the development
of experimental protocols and theoretical understanding of
Gaussian states and harmonic systems.
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APPENDIX A: PROOF OF RELATIONSHIP BETWEEN
K AND G AND FURTHER SIMPLIFICATION WHEN

G IS SELF-INVERSE

Noting the relationship between Z and the H-graph G,

Z = ie−2αG, (A1)

and recalling the relationship between Z and K,

K = (I + iZ)(I − iZ)−1, (A2)

we can rewrite K as

K = (I + iZ)(I − iZ)−1 (A3)

= (I − e−2αG)(I + e−2αG)−1. (A4)

Noting that G is diagonalizable and that

(1 − e−2x)(1 + e−2x)−1 = tanh x, (A5)

we can write K as

K = tanh(αG). (A6)
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Expanding this out in a Taylor series,

K = αG − 1

3
(αG)3 + 2

15
(αG)5 − 17

315
(αG)7 + · · · , (A7)

which converges for ‖αG‖ < π
2 . If G is self-inverse, this

simplifies to

K =
[
α − 1

3
α3 + 2

15
α5 − 17

315
α7 + · · ·

]
G

= (tanh α)G. (A8)

Even though the series expansion for tanh only holds when
|α| < π

2 , since we are able to resum the series analytically, we
can use analytic continuation to extend this result to all α ∈ R.

APPENDIX B: DERIVATION OF RELATIONS FOR K

The following relations between Z and K will be useful:

1
2 (I − iZ) = (I + K)−1, (B1)

1
2 (I + iZ∗) = (I + K∗)−1, (B2)

1
2 (I + iZ) = (I + K−1)−1, (B3)

1
2 (I − iZ∗) = (I + K−∗)−1. (B4)

To prove that ‖K‖ < 1, first, we write U (defined in Sec. II C)
in terms of K as follows:

U = 1

2i
(Z − Z∗) (B5)

= 1

2
(I − iZ) + 1

2
(I + iZ∗) − I (B6)

= (I + K)−1 + (I + K∗)−1 − I

= (I + K)−1(I − KK∗)(I + K∗)−1. (B7)

Since K = KT and (I + K) is invertible, the condition that U >

0 implies that I − KK∗ > 0. This means that the eigenvalues
of KK∗ are all less than 1. Since these eigenvalues are the
squares of the singular values of K, the spectral norm condition
follows.
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[13] M. Zwierz, C. A. Pérez-Delgado, and P. Kok, Unifying param-
eter estimation and the Deutsch-Jozsa algorithm for continuous
variables, Phys. Rev. A 82, 042320 (2010).

[14] S. Lloyd and S. L. Braunstein, Quantum Computation over
Continuous Variables, Phys. Rev. Lett. 82, 1784 (1999).

[15] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.
Ralph, and M. A. Nielsen, Universal Quantum Computation
with Continuous-Variable Cluster States, Phys. Rev. Lett. 97,
110501 (2006).

[16] S. T. Flammia, N. C. Menicucci, and O. Pfister, The optical
frequency comb as a one-way quantum computer, J. Phys. B 42,
114009 (2009).

[17] H. Zaidi, N. C. Menicucci, S. T. Flammia, R. Bloomer, M.
Pysher, and O. Pfister, Entangling the optical frequency comb:
Simultaneous generation of multiple 2x2 and 2x3 continuous-
variable cluster states in a single optical parametric oscillator,
Laser Phys. 18, 659 (2008).

[18] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong,
T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C.
Menicucci, and A. Furusawa, Ultra-large-scale continuous-
variable cluster states multiplexed in the time domain, Nat.
Photonics 7, 982 (2013).

[19] M. Chen, N. C. Menicucci, and O. Pfister, Experimental
Realization of Multipartite Entanglement of 60 Modes of a
Quantum Optical Frequency Comb, Phys. Rev. Lett. 112,
120505 (2014).

[20] J. Schwinger, On Angular Momentum, in Quantum Theory of
Angular Momentum, edited by L. C. Biedenharn and H. V. Dam
(Academic Press, New York, 1965), pp. 229–279.

[21] S. Chaturvedi, G. Marmo, N. Mukunda, R. Simon, and A.
Zampini, The Schwinger representation of a group: Concept
and applications, Rev. Math. Phys. 18, 887 (2006).

[22] B. Yurke, S. L. McCall, and J. R. Klauder, SU(2) and SU(1, 1)
interferometers, Phys. Rev. A 33, 4033 (1986).

052326-10

http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1016/S0079-6638(10)05409-0
http://dx.doi.org/10.1016/S0079-6638(10)05409-0
http://dx.doi.org/10.1016/S0079-6638(10)05409-0
http://dx.doi.org/10.1016/S0079-6638(10)05409-0
http://dx.doi.org/10.1140/epjst/e2012-01532-4
http://dx.doi.org/10.1140/epjst/e2012-01532-4
http://dx.doi.org/10.1140/epjst/e2012-01532-4
http://dx.doi.org/10.1140/epjst/e2012-01532-4
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1103/PhysRevLett.93.250503
http://dx.doi.org/10.1103/PhysRevLett.93.250503
http://dx.doi.org/10.1103/PhysRevLett.93.250503
http://dx.doi.org/10.1103/PhysRevLett.93.250503
http://dx.doi.org/10.1103/PhysRevLett.88.047904
http://dx.doi.org/10.1103/PhysRevLett.88.047904
http://dx.doi.org/10.1103/PhysRevLett.88.047904
http://dx.doi.org/10.1103/PhysRevLett.88.047904
http://dx.doi.org/10.1103/PhysRevLett.90.167903
http://dx.doi.org/10.1103/PhysRevLett.90.167903
http://dx.doi.org/10.1103/PhysRevLett.90.167903
http://dx.doi.org/10.1103/PhysRevLett.90.167903
http://dx.doi.org/10.1103/PhysRevLett.84.4002
http://dx.doi.org/10.1103/PhysRevLett.84.4002
http://dx.doi.org/10.1103/PhysRevLett.84.4002
http://dx.doi.org/10.1103/PhysRevLett.84.4002
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.78.012301
http://dx.doi.org/10.1103/PhysRevA.78.012301
http://dx.doi.org/10.1103/PhysRevA.78.012301
http://dx.doi.org/10.1103/PhysRevA.78.012301
http://dx.doi.org/10.1038/nphys1309
http://dx.doi.org/10.1038/nphys1309
http://dx.doi.org/10.1038/nphys1309
http://dx.doi.org/10.1038/nphys1309
http://dx.doi.org/10.1103/PhysRevA.82.042320
http://dx.doi.org/10.1103/PhysRevA.82.042320
http://dx.doi.org/10.1103/PhysRevA.82.042320
http://dx.doi.org/10.1103/PhysRevA.82.042320
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1088/0953-4075/42/11/114009
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1134/S1054660X08050186
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1142/S0129055X06002802
http://dx.doi.org/10.1142/S0129055X06002802
http://dx.doi.org/10.1142/S0129055X06002802
http://dx.doi.org/10.1142/S0129055X06002802
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033


PASSIVE INTERFEROMETRIC SYMMETRIES OF . . . PHYSICAL REVIEW A 93, 052326 (2016)

[23] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Quantum-
mechanical lossless beam splitter: SU(2) symmetry and photon
statistics, Phys. Rev. A 40, 1371 (1989).

[24] M. D. Reid, W. J. Munro, and F. De Martini, Violation of
multiparticle Bell inequalities for low- and high-flux parametric
amplification using both vacuum and entangled input states,
Phys. Rev. A 66, 033801 (2002).
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