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Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics
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Three-level quantum systems, which possess some unique characteristics beyond two-level ones, such as
electromagnetically induced transparency, coherent trapping, and Raman scatting, play important roles in
solid-state quantum information processing. Here, we introduce an approach to implement the physically
feasible three-level transitionless quantum driving with multiple Schrödinger dynamics (MSDs). It can be
used to control accurately population transfer and entanglement generation for three-level quantum systems
in a nonadiabatic way. Moreover, we propose an experimentally realizable hybrid architecture, based on two
nitrogen-vacancy-center ensembles coupled to a transmission line resonator, to realize our transitionless scheme
which requires fewer physical resources and simple procedures, and it is more robust against environmental
noises and control parameter variations than conventional adiabatic passage techniques. All these features inspire
the further application of MSDs on robust quantum information processing in experiment.
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I. INTRODUCTION

Accurately controlling a quantum system with high fidelity
is a fundamental prerequisite in quantum information pro-
cessing [1], high precision measurements [2], and coherent
control of atomic and molecular systems [3]. To this end, rapid
adiabatic passage [4], which leads two-level quantum systems
to evolve slowly enough along a specific path, can produce
near-perfect population transfer between two quantum states
of (artificial) atoms or molecules. The adiabatic evolution
requires long runtime, which will generate the extra loss of
coherence and spontaneous emission of quantum systems.
Shortcuts to adiabaticity are alternative fast processes to
reproduce the same physical processes in a finite shorter time,
which is only limited by the energy-time complementarity [5].
There are two potentially equivalent shortcuts to speed up
adiabatic process in a nonadiabatic route: Lewis-Riesenfeld
invariant-based inverse engineering [6–10] and transitionless
quantum driving (TQD) [11–17]. Interestingly, TQD has
attracted considerable attention in experiment [18,19]. In 2012,
Bason et al. [18] demonstrated the quantum system following
the instantaneous adiabatic ground state nearly perfectly on
Bose-Einstein condensates in optical lattices. In 2013, Zhang
et al. [19] implemented the assisted adiabatic passages through
TQD in a two-level quantum system by controlling a single
spin in a nitrogen-vacancy center in diamond.

For three-level quantum systems, the stimulated Raman
adiabatic passage (STIRAP) technique [20] uses partially
overlapping pulses (Stokes and pump pulses) to perfectly
realize the population transfer between two quantum states
with the same parity, in which single-photon transitions are
forbidden by electric dipole radiation. The STIRAP over the
rapid adiabatic passage is its robustness against substantial
fluctuations of pulse parameters, since the evolution of the
quantum system is in the dark state space and only the two
quantum states are involved. This technique has gained theoret-
ical and experimental studies in atomic and molecular [21] and
superconducting quantum systems [22]. When TQD is applied
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to speed up the adiabatic operation in three-level quantum
systems, the situation becomes more complicated [15,23–26].
In 2010, Chen et al. [15] employed the TQD to speed up
adiabatic passage techniques in three-level atoms extending
to the short-time domain their robustness with respect to
parameter variations. In 2014, Martı́nez-Garaot et al. [23]
studied shortcuts to adiabaticity in three-level systems by
means of Lie transforms. Alternatively, in 2012, Chen and
Muga [27] designed the resonant laser pulses to perform the
fast population transfer in three-level systems by invariant-
based inverse engineering. In 2014, Kiely and Ruschhaupt [28]
constructed fast and stable control schemes for two- and
three-level quantum systems.

Interestingly, multiple Schrödinger dynamics (MSDs)
[29,30] were presented to adopt iterative interaction pictures to
get physically feasible interactions or dynamics for two-level
quantum systems recently. Meanwhile, it enables the designed
interaction picture to reproduce the same final population
(or state) as those in the original Schrödinger picture by
appropriate boundary conditions. In 2012, Ibáñez et al. [29]
first employed several Schrödinger pictures and dynamics to
design alternative and feasible experimental routes for trap
expansions and compressions, and for harmonic transport.
In 2013, Ibáñez et al. [30] also examined the limitations
and capabilities of superadiabatic iterations to produce a
sequence of shortcuts to adiabaticity by iterative interaction
pictures. This raises a significative question: whether one can
find an effective way for three-level TQD in experimental
applications. Three-level quantum systems play important
roles in solid-state quantum information processing as they
possess some unique characteristics beyond two-level ones,
such as electromagnetically induced transparency, coherent
trapping, Raman scatting, and so on. Therefore, manipulating
such quantum systems in an accurate and robust manner is
especially important.

Inspired by the two-level TQD with MSDs [29,30], here we
employ the iteration process to obtain physically feasible TQD
in three-level quantum systems. More interestingly, we present
a physical implementation for the transitionless scheme
with the hybrid quantum system composed of nitrogen-
vacancy-center ensembles (NVEs) and the superconducting
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transmission line resonator (TLR). It has some advantages.
First, it can accurately control quantum systems in a shorter
time, as adiabatic quantum evolution can be efficiently
accelerated by TQD. Second, the MSDs-based Hamiltonian
required for three-level TQD is physically feasible, which
can be used to implement accurate and robust population
transfer and entanglement generation with high fidelity in a
single-shot operation. Third, it is more robust against control
parameter fluctuations and dissipations than conventional
adiabatic passage technique. Fourth, the transitionless scheme
presented here is quite universal, and it is broadly applicable in
other quantum systems, such as atom cavity, superconducting-
qubit TLR, and so on. All these advantages provide the
good applications of MSDs on robust quantum information
processing in experiment in the future.

This paper is organized as follows: In Sec. II, we show
the basic principle of our scheme for obtaining the physically
feasible TQD in three-level quantum systems by using MSDs.
In Sec. III, we give specific comparisons of population transfer
and superposition state generation based on the conventional
STIRAP and MSDs, respectively. In Sec. IV, we present a
physical implementation of the transitionless scheme on an
NVEs-TLR system, and analyze the fidelity in the presence
of decoherence. A discussion and a summary are enclosed in
Sec. V.

II. PHYSICALLY FEASIBLE HAMILTONIAN WITH MSDS
ON THREE-LEVEL QUANTUM SYSTEMS

A. The transitionless Hamiltonian with multiple
Schrödinger dynamics

First, we give a brief review of TQD. Considering an
arbitrary time-dependent Hamiltonian H0(t) of a quantum
system, which has the nondegenerate instantaneous eigenstates
|n0(t)〉 with corresponding eigenvalues En(t), we get

H0(t)|n0(t)〉 = En(t)|n0(t)〉. (1)

In the adiabatic approximation, the state evolution of the
system driven by H0(t) can be written as (� = 1)

|�n(t)〉=exp

{
−i

∫ t

0
dt ′En(t ′)−

∫ t

0
dt ′〈n0(t ′)|ṅ0(t ′)〉

}
|n0(t)〉.

(2)

As a consequence, the evolution operator for this given
quantum system is specified. Alternatively, one can seek
a transitionless Hamiltonian H (t) that can accurately drive
evolving state |ψn(t)〉 in a shortest possible time, which
guarantees that there are no transitions between the eigenstates
of H0(t). That is, it should satisfy

H (t)|ψn(t)〉 = i|ψ̇n(t)〉. (3)

Defining a time-dependent unitary operator

U (t) =
∑

n

exp

{
−i

∫ t

0
dt ′En(t ′)−

∫ t

0
dt ′〈n0(t ′)|ṅ0(t ′)〉

}

× |n0(t)〉〈n0(0)|, (4)

TABLE I. Scheme for superadiabatic iteration to realize MSDs
as a result of Hamiltonian H0(t).

Iteration Hamiltonian Eigenstates Unitary operator

0 − th H0(t) |n0(t)〉 A0(t)=∑
n

|n0(t)〉〈n0(0)|
1 − st H1(t) |n1(t)〉 A1(t)=∑

n

|n1(t)〉〈n1(0)|
· · · · ··
j − th Hj (t) |nj (t)〉 Aj (t)=∑

n

|nj (t)〉〈nj (0)|
· · · · ··

which obeys H (t)U (t) = iU̇ (t). By analytically solving the
equation H (t) = iU̇ (t)U †(t), we have

H (t) =
∑

n

En|n0〉〈n0| + i
∑

n

(|ṅ0〉〈n0| − 〈n0|ṅ0〉|n0〉〈n0|)

≡ H0(t) + Hcd
0 (t), (5)

where all kets are time dependent. From Eq. (5), one can
see that the transitionless Hamiltonian H (t) consists of the
original Hamiltonian H0(t) for adiabatic evolution and a
counterdiabatic driving Hamiltonian Hcd

0 (t) [11,12,14,15].
TQD offers an effective accurate route for the controlled
system following perfectly the instantaneous ground state of
a given Hamiltonian in theory and experiment. Nevertheless,
it is found that the transitionless Hamiltonian is difficult to
implement, for example, in three-level quantum systems [15]
since the counterdiabatic driving Hamiltonian has to break
down the energy structure of the original Hamiltonian or bring
extra detunings.

Superadiabatic iterations as an extension of the usual
adiabatic approximation have been introduced in [31]. The
process of superadiabatic iteration can be summarized in
Table I, where Hj (t) donates the j − th Hamiltonian by a uni-
tary transformation Aj−1(t) on the (j − 1) − th Hamiltonian
Hj−1(t), Aj (t) = ∑

n |nj (t)〉〈nj (0)| (j = 1,2, · ··), |nj (t)〉 are
the eigenstates of the Hamiltonian Hj (t), and j is the number
of superadiabatic iteration.

Here, our goal is to use MSDs to obtain physically feasible
transitionless Hamiltonian for three-level quantum systems in
TQD. In what follows we will present an explicit explanation
about it, reviewing the ideas from Refs. [29,30]. For the initial
Hamiltonian H0(t) with eigenstates |n0(t)〉, the corresponding
transitionless Hamiltonian HT

0 (t) for the 0th iteration reads

HT
0 (t) = H0(t) + Hcd

0 (t) =
∑

n

En|n0〉〈n0| + iȦ0(t)A†
0(t),

(6)

where A0(t) = ∑
n

|n0(t)〉〈n0(0)| is defined as the unitary oper-

ator based on the eigenstates |n0(t)〉 of the initial Hamiltonian
H0(t), and |n0(0)〉 is the bare adiabatic basis. Here, the
eigenstates are chosen to fulfill the parallel transport condition,
i.e., 〈n0(t)|ṅ0(t)〉 = 0.

In the first interaction picture (the 1th iteration), by a unitary
transformation A0(t), the interaction picture Hamiltonian
H1(t) becomes

H1(t) = A
†
0(t)[H0(t) − K0(t)]A0(t), (7)
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where K0(t) = iȦ0(t)A†
0(t). In this case, the transitionless

Hamiltonian is described by

HT
1 (t) = A

†
0(t)[H0(t) − K0(t) + Hcd

0 (t)]A0(t)

= A
†
0(t)H0(t)A0(t). (8)

Here, we employ the relation K0(t)=Hcd
0 (t). In the

Schrödinger picture, the Hamiltonian for TQD is H0(t) +
Hcd

0 (t). It is worth noticing that HT
0 (t) and HT

1 (t) are related
by a unitary transform A0(t), and they represent the same
common underlying physics.

In the second interaction picture (the 2th iteration), for
the Hamiltonian H1(t) with eigenstates |n1(t)〉, the interaction
picture Hamiltonian H2(t) can be expressed as

H2(t) = A
†
1(t)[H1(t) − K1(t)]A1(t), (9)

where A1(t) = ∑
n

|n1(t)〉〈n1(0)| and K1(t) = iȦ1(t)A†
1(t). In

the same way, by adding a counterdiabatic driving term, one
can obtain another transitionless Hamiltonian HT

2 (t). Then
the Hamiltonian in TQD is H0(t) + Hcd

1 (t), where Hcd
1 (t) =

A0(t)K1(t)A†
0(t).

Similarly, in the high-order interaction picture [the
(j + 1)th iteration], one can also get the corresponding
Hamiltonian to realize TQD in the Schrödinger picture as

H0(t) + Hcd
j (t) = H0(t) + iBj (t)Ȧj (t)A†

j (t)B†
j (t), (10)

where Bj (t) = A0(t)A1(t) · · · Aj−1(t) and Aj (t) =∑
n |nj (t)〉〈nj (0)| (j = 1,2, . . .) with |nj (t)〉 being the

eigenstates of the Hamiltonian Hj (t) for the j th iteration.
Note that a physically feasible Hamiltonian is hard to obtain
due to the unpredictable number of superadiabatic iterations
needed for execution in the specific quantum systems.

B. Physically feasible three-level transitionless quantum driving

In three-level quantum systems, the effective Hamiltonian
for achieving adiabatic population transfer in the orthogonal
basis of {|φ1〉,|φ2〉,|φ3〉} takes the form of

H0(t) = η

⎛
⎝ 0 0 cos θ

0 0 sin θ

cos θ sin θ 0

⎞
⎠, (11)

where η =
√

η2
1 + η2

2, θ = arctan(η1/η2), and η, η1, and
η2 are time-dependent effective coupling strengths. The
instantaneous eigenvalues and the corresponding normalized
eigenstates are

E∓ = ∓η, E0 = 0,

|E−〉 = 1√
2

(cos θ |φ1〉 + sin θ |φ2〉 − |φ3〉),
(12)

|E+〉 = 1√
2

(cos θ |φ1〉 + sin θ |φ2〉 + |φ3〉),

|E0〉 = sin θ |φ1〉 − cos θ |φ2〉.
It is easy to see that 〈Em|Ėm〉 = 0(m = +,−,0). From Eq. (7),
one can obtain the interaction picture Hamiltonian in the
1th iteration for the effective Hamiltonian H0(t) in the basis

{|E−〉,|E+〉,|E0〉} as follows:

H1(t) =

⎛
⎜⎜⎝

−η 0 − iθ̇√
2

0 η − iθ̇√
2

iθ̇√
2

iθ̇√
2

0

⎞
⎟⎟⎠, (13)

where θ̇ = (η̇1η2 − η̇2η1)/η2. The unitary transform matrix
related to H0(t) and H1(t) is

A0 =

⎛
⎜⎜⎝

1√
2

cos θ 1√
2

cos θ sin θ

1√
2

sin θ 1√
2

sin θ − cos θ

− 1√
2

1√
2

0

⎞
⎟⎟⎠. (14)

The normalized eigenvectors of the Hamiltonian H1(t) are

λ∓ = ∓
√

η2 + θ̇2, λ0 = 0,

|λ−〉 = iW

R
|E−〉 + iQ

R
|E+〉 +

√
2θ̇

R
|E0〉,

(15)

|λ+〉 = iQ

R
|E−〉 + iW

R
|E+〉 −

√
2θ̇

R
|E0〉,

|λ0〉 = −i
√

2θ̇

R
|E−〉 + i

√
2θ̇

R
|E+〉 + 2η

R
|E0〉,

where W = η +
√

η2 + θ̇2, Q = −η +
√

η2 + θ̇2, and R =
2
√

η2 + θ̇2. It generates the unitary operator,

A1 =

⎛
⎜⎜⎝

iW
R

iQ

R
−i

√
2θ̇

R

iQ

R
iW
R

i
√

2θ̇
R√

2θ̇
R

−
√

2θ̇
R

2η

R

⎞
⎟⎟⎠, (16)

with which one can get the interaction picture Hamiltonian
in the 2th iteration. Substituting Eq. (14) and Eq. (16) into
Eq. (10) when j = 1, one can obtain the Hamiltonian HM (t)
in MSDs for realizing shortcuts to adiabaticity as

HM (t) =
⎛
⎝ 0 0 ηcosθ + V

0 0 η sinθ − V

ηcosθ + V ηsin θ − V 0

⎞
⎠, (17)

where V = 4 sinθ (η̇θ̇ − ηθ̈ )/R2, η̇ = (η1η̇1 + η2η̇2)/η, and
θ̈ = [(η̈1η2 − η1η̈2)η − 2η̇(η̇1η2 − η1η̇2)]/η3. It is not difficult
to find that the Hamiltonian HM (t) in MSDs has the same
form as the Hamiltonian H0(t), without additional couplings
and detunings. Thus, a simple and feasible control of TQD for
three-level systems is physically implemented with MSDs by
flexibly tuning the effective coupling strengths.

III. HIGH-FIDELITY POPULATION TRANSFER
AND SUPERPOSITION STATE GENERATION

A. Population transfer

From Eq. (12), one can see that when θ = 0 at time ti =
0, the dark state |E0(t)〉 becomes |φ2〉 with a global phase
factor π . If the system evolves adiabatically along the state
|E0(t)〉, the final state is |φ1〉 when θ = π

2 at later time tf . As
a result, a simple population transfer is completely realized by
STIRAP [20]. For this purpose, the time-dependent effective
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coupling strengths are in the Gaussian shapes as

ηj = η0e
−[(t−tj )/T ]2

, (18)

where η0, tj , and T are the amplitude, time delay, and
width of the coupling strength, respectively. In Fig. 1(a),
we display variations of the two optimal effective coupling
strengths with time t for achieving population transfer,
where η0/2π = 1.6 MHz, t1 = 0.75 μs, t2 = 0.25 μs, and
T = 0.408 μs. Figures 1(b) and 1(c) present time evolution
of the populations during the transfer process from |φ2〉 to |φ1〉
based on STIRAP and MSDs, respectively. The population is
defined as Pk(t) = 〈φk|ρ(t)|φk〉 (k = 1,2,3) with ρ(t) being
the time evolution of density matrix after the population
transfer operation on the initial state |φ2〉. In this case, both
the time evolutions governed by the Hamiltonians H0(t) and
HM (t) can achieve near-perfect population transfer from |φ2〉
to |φ1〉, while the population P3 of intermediate state |φ3〉
shows a slightly different behavior. When the time delay of η1

is changed to be t1 = 0.9 μs, which reduces overlap of the two
effective coupling strengths, we plot variations of the effective
coupling strengths, time evolution of the populations based on

μ

η
π

η π

η π

μ

μ

μ

η
π

η π

η π

μ

μ

FIG. 1. Comparisons of robustness of the population transfer
based on the STIRAP and MSDs. (a) The time-dependent effective
coupling strengths η1 and η2 are in the Gaussian shapes as ηj =
η0e

−[(t−tj )/T ]2
(j = 1,2) with η0/2π = 1.6 MHz, t1 = 0.75 μs, t2 =

0.25 μs, and T = 0.408 μs. Time evolution of the population Pk(t)
during the population transfer from |φ2〉 to |φ1〉 based on (b) STIRAP
and (c) MSDs, respectively. When the time delay of η1 is changed to be
t1 = 0.9 μs and other parameters remain invariant, time evolution of
the effective coupling strengths and the populations based on STIRAP
and MSDs are shown in (d), (e), and (f), respectively.

STIRAP and MSDs in Figs. 1(d), 1(e), and 1(f), respectively.
One can see that the population transfer by the Hamiltonian
HM (t) with MSDs is perfectly realized in a short evolution
time, and the final population of the target state |φ1〉 can reach
100%, while the Hamiltonian H0(t) with STIRAP cannot.
Moreover, numerical calculations reveal that the Hamiltonian
HM (t) is also valid for high-fidelity population transfer even
the time delay of η1 becomes much bigger than 0.9 μs,
suggesting that our transitionless scheme with MSDs is very
robust and can efficiently realize perfect population transfer.

B. Superposition state generation

Assuming the initial state of the system is |φ2〉, one can
easily get the superposition state |ψ〉 = 1√

2
(|φ1〉 − |φ2〉) by

STIRAP and MSDs. For this purpose, the two time-dependent
effective coupling strengths are designed as

η1 = η0e
−[(t−t3)/T ]2

,

η2 = η0e
−[(t−t4)/T ]2 + η0e

−[(t−t3)/T ]2
,

(19)

which should satisfy the boundary conditions of the STIRAP
that at the beginning of the operation η1/η2 = 0 and at
the end η1/η2 = 1. Given the parameters η0/2π = 1.6 MHz,
t4 = 0.25 μs, and T = 0.408 μs, the performances of the
populations for |φ1〉 and |φ2〉 with variation of t3 have two
conditions as follows: (i) When the parameter t3 gets an optimal
time 0.75 μs, time evolutions of the populations P1 and P2

with STIRAP and MSDs reach an approximate value 1
2 , that

is, the two approaches effectively generate the superposition
state |ψ〉; (ii) when t3 increases, the population dynam-
ics with STIRAP and MSDs exhibit significantly different
behaviors. The equivalent populations with P1 = P2 = 1

2 can
be implemented with MSDs, implying that time evolution of
the quantum state governed by HM (t) is in the superposition
state |ψ〉, while the Hamiltonian H0(t) in STIRAP leads to
oscillatory behaviors for P1 and P2, as shown in Figs. 2(a)
and 2(b), respectively. These results convince us that MSDs
could pave an efficient way to achieve accurate and robust
quantum information processing.

μ μ

FIG. 2. Time evolutions of the populations in the superposition
state generation scheme for |φ1〉, |φ2〉, and |φ3〉 based on (a) the
STIRAP and (b) MSDs, respectively, with η0/2π = 1.6 MHz, t3 =
1.15 μs, t4 = 0.25 μs, and T = 0.408 μs.
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FIG. 3. (a) Schematic diagram of the hybrid quantum system,
which consists of two NVEs coupled to a high-Q TLR. (b) The V -type
energy-level configuration for the ground state of NVE driven by the
resonator and appropriate external magnetic fields.

IV. PHYSICAL IMPLEMENTATION OF THE
TRANSITIONLESS SCHEME ON AN NVES-TLR SYSTEM

To experimentally realize the population transfer and
entanglement generation, we consider the hybrid quantum
system, in which two NVEs are coupled to a high-Q TLR,
as shown in Fig. 3(a). The NVE can be modeled as a V -style
three-level qubit with |g〉 and |e〉 being two upper levels, and
|a〉 serving as the lower level. As illustrated in Fig. 3(b),
the transition |a〉 ↔ |e〉 is largely detuned to the resonator
frequency with coupling strength gj and detuning 
j , and the
transition |a〉 ↔ |g〉 is off-resonant driven by a time-dependent
microwave pulse with Rabi frequency �L,j (t) and the same
detuning 
j , respectively. The interaction Hamiltonian with
� = 1 for the hybrid system is given by

HI (t) =
2∑

j=1

ηj (t) aσ
†
j + H.c., (20)

where σ
†
j = |e〉j 〈g| and ηj (t) = gj �L,j (t)/
j is the effective

coupling strength. Obviously, it is easy to realize full control
of ηj (t) by changing Rabi frequency �L,j (t) of the microwave
pulse when the parameters gj and 
j are prescribed. The
Hamiltonian HI (t) conserves the total excitation number
N = ∑2

j=1 σ
†
j σ−

j + nc during the dynamical evolution with

nc being the photon number in the resonator and σ
†
j =

(σ−
j )†. The whole system evolves in the one-excited subspace

spanned by {|φ1〉 = |0ge〉, |φ2〉 = |0eg〉, |φ3〉 = |1gg〉}c,1,2,
where the subscripts c, 1, and 2 donate the resonator mode,
the first NVE, and the second NVE, respectively. In the
basis of {|φ1〉, |φ2〉, |φ3〉}, the interaction Hamiltonian HI (t)
is equivalent to the Hamiltonian H0(t). Consequently, one
can achieve the robust and accurate population transfer and
maximally entangled state generation between two NVEs,
where the cavity state is employed as an ancillary.

In the presence of dissipations, the dynamics of the NVE-
TLR hybrid system is described by the Lindblad master
equation:

dρ

dt
=−i [H (t),ρ]+κD[a]ρ+γD[σ−]ρ+γϕD[σ z]ρ, (21)

where ρ is the density matrix operator for the hybrid system,
H (t) is the Hamiltonian in the form of Eq. (20), D[L]ρ =
(2LρL+ − L+Lρ − ρL+L)/2, κ is the decay rate of TLR,

μ κ′ κ

FIG. 4. (a) Fidelity of the population transfer scheme with
MSDs from |φ2〉 = |0eg〉 to |φ1〉 = |0ge〉 under the influence of
dissipations. In the simulation, κ−1 = 50 μs [32], γ −1 = 6 ms,
γ −1

ϕ = 600 μs [33], and other parameters are the same as those for
Fig. 1(c). (b) Fidelity of the population transfer scheme with MSDs
for different cavity decay rates κ ′ (in units of κ).

and γ and γϕ are the relaxation and dephasing rates of
NVE, respectively. For the proposed transfer scheme, the
fidelity is defined as F = 〈φ1|ρ|φ1〉 with |φ1〉 being the
corresponding ideally final state under the population transfer
on its initial state |φ2〉. By choosing the feasible experi-
mental parameters as g/2π = 20 MHz, 
/2π = 200 MHz,
κ−1 = 50 μs, γ −1 = 6 ms, γ −1

ϕ = 600 μs, and �L,j (t) =
�0e

−[(t−tj )/T ]2
MHz with t1 = 0.75 μs, t2 = 0.25 μs, T =

0.408 μs, �0/2π = 16 MHz, which meets the adiabatic con-
dition that

∫ τ

0 �L,j (t)dt 	 1 with τ = 1.2 μs [20], one can
find that the proposed scheme with MSDs can realize perfect
population transfer with the fidelity being 100%, as shown in
Fig. 4(a). To illustrate the robustness of the present scheme,
we also simulate the dependence of the fidelity F versus the
photon decay rate κ ′ in Fig. 4(b). It shows that a high fidelity
of 89.60% can still be obtained even for κ ′/κ = 200. The
reasons are two-manifold: The cavity state is just used as an
ancillary in the present scheme, so it is insensitive to the photon
decay in the resonator; the mean photon number n̄ = 〈a†a〉, in
consistency with the population P3 for intermediate state |φ3〉
in Fig. 1, remains a trivial value during the transfer process,
which cannot achieve the complete occupation of photon
states [34]. The above results suggest that time evolution of
the populations with MSDs is more robust against control
parameter fluctuations and imperfections than STIRAP.

V. DISCUSSION AND SUMMARY

We consider the feasibility with the current accessible
parameters in the NVE-TLR hybrid system. For an NVE
placed at the antinodes of the magnetic field of the full-wave
mode of the TLR, the coupling strength g/2π = 16 MHz
between them is reported experimentally [34,35]. The am-
plitude of microwave pulse is available with the current
experiment parameter �0/2π = 16 MHz [36]. The detuning
is 
/2π = 160 MHz so that 
 	 g and 
 	 �0, which
can adiabatically eliminate the state |a〉. From Eq. (20), the
effective coupling strength is ηj/2π = 1.6 MHz. When the
coupling strength g and detuning 
 remain invariant, we
have full control of the population transfer and entanglement
generation by controlling flexibly the time-dependent Rabi
frequency �L,j (t) of the microwave pulse with a single-shot
operation. The microwave coplanar waveguide resonators with
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the decay rate of κ−1 = 50 μs can be reached [32]. The
dephasing time of T2 > 600 μs for an NVE in bulk high-purity
diamond has been experimentally observed at room temper-
ature [33]. An optimized dynamical decoupling microwave
pulse has been demonstrated to increase the dephasing time of
NVE from 0.7 to 30 ms [37]. Moreover, our transitionless
scheme with MSDs requires fewer resources, one TLR
and two NVEs, which greatly simplifies the experimental
complexity.

In summary, we have presented a simple scheme for
physically feasible TQD for three-level quantum systems with
MSDs, which is used to realize perfect population transfer
and entanglement generation in a single-shot operation.
Our experimentally realizable transitionless protocol based
on the NVE-TLR hybrid system requires fewer physical
resources and simple procedures (one-step indeed), works

in the dispersive regime, and is robust against decoherence
and control parameter fluctuations. These features make our
protocol more accurate for the manipulation of the evolution of
three-level quantum systems than previous proposals, which
may open up further experimental realizations for robust
quantum information processing with MSDs.
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