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Heralded entangled coherent states between spatially separated massive resonators
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We put forward an experimentally feasible scheme for heralded entanglement generation between two distant
macroscopic mechanical resonators. The protocol exploits a hybrid quantum device, a qubit interacting with a
mechanical resonator as well as a cavity mode, for each party. The cavity modes interfere on a beam splitter
followed by suitable heralding detections, which postselect a hybrid entangled state with success probability 1/2.
Subsequently, by local measurements on the qubits, a mechanically entangled coherent state can be achieved.
The mechanical entanglement can be further verified via monitoring the entanglement of the qubit pair. The setup
is envisioned as a test bed for sensing gravitational effects on the quantum dynamics of gravitationally coupled
massive objects. As a concrete example, we illustrate the implementation of our protocol using the current circuit
QED architectures.
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I. INTRODUCTION

Experimental creations of nonclassical states of macro-
scopic continuous-variable systems have been motivated from
different perspectives. Long-term motivations are to explore
the limits of the standard quantum mechanics and perhaps
observe possible corrections at scales where collapse phenom-
ena [1–4] or gravitational effects become significant to fully
account for the quantum dynamics in tabletop quantum optics
experiments [5]. A particularly interesting case of nonclassical
states is entangled states between different modes [6]. There
are several proposals for entangling two mechanical oscillators
in either a system interacting with a common field [7–9]
or two distant resonators without direct interaction [10,11].
Recently, a scheme for generating the Einstein-Podolsky-
Rosen entangled state of two mechanical systems has been
proposed [12]. These schemes mainly deal with the creation of
bipartite Gaussian entanglement demonstrated by the second
moments of the phase-space quadratures.

Heralded entanglement generation is tailored to entangle
two remote particles where the entanglement is produced
conditionally based on measurement outcomes without any
direct interactions between the particles [13]. This method has
been proposed for entangling distant qubits and recently has
been implemented in a number of different systems [14–18].
It would be intriguing to extend such a technique to creat-
ing remote entanglement between macroscopic mechanical
resonators. In this work we propose a protocol for gener-
ating entangled states of two well-separated noninteracting
macroscopic mechanical resonators. Our heralding technique
is useful for preparing entangled coherent states [19], i.e.,
N±(|α〉|β〉 ± |β〉|α〉), between massive objects (see Fig. 1),
indicating entanglement between first moments (centers of
mass) of the resonators. This type of continuous-variable
entanglement is non-Gaussian, which is, unlike Gaussian
entangled states, characterized by a negative Wigner function
in the phase-space representation and thus is fundamentally
inconsistent with any classical description. An interesting
scenario here could be to consider the entanglement between
two test masses that are only gravitationally interacting with
each other and to track a genuine gravitational decoherence
on the entanglement dynamics [20]. Furthermore, the setup

is useful for a Bell test performed on remote macroscopic
subsystems [5,21–23]. We show that the proposed protocol
is experimentally feasible with the current technology of the
so-called circuit QED devices [24].

II. MODEL

We use a particular hybrid quantum device for implement-
ing our entangling protocol. The hybrid device is composed of
a mechanical oscillator with frequency ωm, a photonic cavity
mode with frequency ωc, and a qubit system made up of ground
|g〉 and excited |e〉 energy levels. We also need an auxiliary
excited state |f 〉 for conditionally entangling the qubit with an
emitted cavity photon. Solid-state qubits such as the spin of
a nitrogen-vacancy center [25] or superconducting transmon
qubits [26] have such a structure. The qubit strongly interacts
with both the mechanical and the electromagnetic modes,
i.e., its coupling rates to these modes are greater than the
respective decoherence and damping rates of the system. The
mechanical resonator is precooled to its motional ground state,
which can be achieved by sideband cooling of the mechanical
resonators via its coupling to the qubit [27]. Since typically
the thermal excitation numbers of the cavity and qubit itself
are very small at cryogenic ambient temperatures, one could
practically prepare the system very close to its ground state. In
order to create a mechanically entangled coherent state we are
specifically interested in a qubit-mechanics interaction of the
form

∑
j λj x̂|j 〉〈j |, with j = {g,e,f } and x̂ the position of the

resonator. This describes a state-dependent force generating
a time evolution of state-dependent displacement of the
resonator. In this model the cavity mode resonantly interacts
with the qubit described by the Jaynes-Cummings Hamiltonian
χ (|f 〉〈e|â + |e〉〈f |â†), where â is the cavity field annihilation
operator. This leads to an oscillatory |e〉 ↔ |f 〉 transition,
which can be exploited to entangle the qubit with a traveling
photon.

III. PROTOCOL

Having the above system in two remote sites, the following
protocol can be applied for entangling their distant mechanical
resonators:
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(i) Initialization. The separated parties A and B prepare
their system in the ground state |g,0,0〉A ⊗ |g,0,0〉B , where
within each ket the first argument stands for the qubit, the
second for the mechanical mode being in the ground state,
and the third for the vacuum mode of the cavity. Immediately
afterwards a [π/2]g↔e pulse is applied to each qubit, giving
|+,0,0〉A ⊗ |+,0,0〉B , where |±〉 = 1√

2
(|g〉 ± |e〉).

(ii) Displacing the resonators. After the state initialization,
the qubit and its respective mechanical mode interact for a
time duration of τ . For a coupling rate λj the maximum
achievable displacement is αj = − 2λj

ωm
, which is obtained

when τ = π/ωm. Therefore, the mechanical modes will be
conditionally displaced in their phase space. The distance
|αe − αg| determines the distinguishability of the two mechan-
ical coherent states. Thus, one needs to increase it by enhancing
the qubit-mechanical coupling rate, which is actually very
demanding from a technical point of view, though there have
been notable efforts for attaining it [28]. Instead, the long
coherence time of the current technology of qubits allows for
exploiting the method proposed in Ref. [29] to increase this
distance. The idea is to apply a sequence of [π ]g↔e pulses
to flip the qubit periodically synchronized with the resonator
frequency. By choosing an odd number of such pulses at half
mechanical period time intervals π/ωm, the state prepared
at the end of this stage will be 1√

2
[|g,α,0〉 + |e, − α,0〉]A(B),

where α = (Np + 1)(λe − λg)/ωm, with Np the number of
pulses.

(iii) Conditional photon emission. We now “copy” the qubit
excitations into the cavity photons by employing their third
state |f 〉. One first applies a [π ]e↔f pulse to bring up the qubit
from |e〉 to |f 〉. Once being back in |e〉, due to relaxation or
other mechanism, a single photon will be emitted conditioned
on the state of the qubit prior to the [π ]e↔f pulse. This
therefore results in the following state at each party:

1√
2

[|g,α,0〉 + |e, − α,1〉]A(B), (1)

already indicating a local three-body entangled state between
the qubit, mechanical resonator, and cavity photon.

(iv) Heralded hybrid entanglement. The cavity modes of
the parties A and B interfere on a 50:50 beam splitter resulting
in

1

2

[
|g,α〉A|g,α〉B |0,0〉D

+ |e, − α〉A|e, − α〉B |2,0〉D + |0,2〉D√
2

+ |g,α〉A|e, − α〉B + |e, − α〉A|g,α〉B√
2

|1,0〉D

+ |g,α〉A|e, − α〉B − |e, − α〉A|g,α〉B√
2

|0,1〉D
]
,

where | , 〉D ≡ | 〉D1 | 〉D2 denotes the state of the output modes
after the action of the beam splitter. An essential feature
appearing here is the Hong-Ou-Mandel effect in the second
line. This effect has been recently realized in the microwave
regime [30] This arises due to the indistinguishability of the
two input mode photons interfering on the beam splitter.

BS

readout
cavity

detector
qubit

Alice

Bob

(b)(a)

(c)

FIG. 1. (a) and (b) Schematic representation of different types of
entangled Schrödinger cat states of two suspended masses moving
harmonically along the x axis. Here α is the displacement amplitude
from the equilibrium position. (c) Sketch of a possible experimental
implementation with a quantum electromechanical circuit.

Therefore, generation of indistinguishable photons at the input
ports is crucial for successful heralded entanglement. The first
two lines show no entanglement, while the third and fourth
lines contain hybrid entanglements. By inspecting the above
expression, we realize that the projection onto an entangled
state in a single shot measurement can be achieved by adopting
a suitable photon detection scheme. Here we choose it to be
the photon-number-parity detection at the beam-splitter output
modes. This can be done by placing a detector qubit at each
output port j ∈ {1,2} and performing a controlled-PHASE gate

Cπ = |g〉〈g| + e
iπâ

†
Dj

âDj |e〉〈e| causing a bit flip |±〉 → |∓〉 in
the corresponding qubit conditioned on the arrival of an odd
number (here, only one photon) of photons. Therefore, we can
map the photon parity of the output modes onto the qubit states
and serve as parity detectors. The bit flip can be detected in a
Ramsey measurement by inserting Cπ between two π/2 pulses
on the detector qubits. Accordingly, detection of a bit flip in
either output port heralds the corresponding qubit-mechanical
entangled state

|g,α〉A|e, − α〉B ± |e, − α〉A|g,α〉B√
2

. (2)

The above state involves superposition of the two resonators
being in different relative distances [see Fig. 1(a)]. Another
form of entangled state can be created by simply overturning
the direction of the state-dependent force in one of the qubit
devices, giving a superposition of the center of mass in
different locations [see Fig. 1(b)].

(v) Entangled Schrödinger cat state. Finally, in order to
disentangle the mechanics from the qubits and obtain a purely
mechanical entanglement, each site applies a [π/2]g↔e pulse
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to its qubit, resulting in

(|g〉A|g〉B − |e〉A|e〉B)|ψ+〉 + (|e〉A|g〉B − |g〉A|e〉B)|ψ−〉
2
√

2
.

Here we have defined the state |ψ±〉 = | − α〉A|α〉B ± |α〉A| −
α〉B for the mechanical parties that already exhibits en-
tanglement between the first moments of the two distant
mechanical resonators. The users now can read out their
qubit and postselect |ψ±〉 with probability p± = 1

2 (1 ± e−4|α|2 )
according to the measurement outcomes.

IV. IMPLEMENTATION

Here we focus on a specific implementation of our protocol.
High controllability and tunability of superconducting qubits
makes them a versatile tool for engineering different regimes
of interactions and control over photonic and mechanical
systems [31,32]. There are important achievements in fab-
ricating such hybrid devices where a vibrational mode of a
mechanical resonator is coupled to a superconducting qubit
and at the same time the qubit strongly interacts with a coplanar
microwave resonator [28,33]. These make the hybrid circuit
quantum electrodynamical devices a promising framework
for implementing our protocol. We consider in particular
a recently proposed hybrid electromechanical circuit that
can basically be fabricated and employed by the current
technology [34].

The device consists of a transmon qubit capacitively
coupled to a microwave coplanar waveguide and a mechanical
resonator (see Fig. 1). The reduced anharmonicity of a
transmon qubit makes it possible to access its higher levels,
thus giving us the three-level ladder system for producing
cavity photons from the qubit excitations. The Hamiltonian of
the system at site A (similarly at site B) reads [34,35]

Ĥs = ωcâ
†
AâA + 1

2ωm

(
p̂2

A + x̂2
A

) − EJ cos ϕ̂A

+ 4EC(x̂A)[n̂A − η(âA + â
†
A)]2, (3)

where EJ and EC are the Josephson and charging energies
of the superconducting qubit, respectively. Here âA is the
annihilation operator of the microwave photons inside cavity
A, while x̂A and p̂A are, respectively, the normalized mechan-
ical position and momentum operators with the commutation
relation [x̂A,p̂A] = i. Also, n̂A and ϕ̂A are the superconducting
charge number and phase operators, respectively, satisfying the
commutation relation [ϕ̂A,n̂A] = i and η is the Lamb-Dicke
parameter. Since the charging energy of the qubit depends
on the position of the mechanical resonator, one arrives
at 4 dEC

dx
n̂2x̂ for the transmon–mechanical-mode interaction

featuring state-dependent force on the mechanical mode. Here
n̂ = ∑

n n|n〉〈n|, where n is the number of exchanged Cooper
pairs with corresponding eigenstate |n〉. By writing this in
energy eigenstates of the transmon Hamiltonian one retrieves
the interaction given above. The influence of the number of
transferred Cooper pairs by the cavity field also results in a
Jaynes-Cummings interaction between the qubit transitions
and the cavity mode with Rabi frequency χ = 8ECη〈f |n̂|e〉
(see Appendix A). This can be employed for coherently
converting the qubit excitations into the cavity photons as
explained below.

In such devices, an external magnetic field applied to the
Cooper pair box tunes the transition frequencies of the qubit,
thus bringing either of the transmon transitions into resonance
or taking them off-resonance from the cavity mode frequency.
In the third step of the protocol, we specifically are interested
in the situation where the frequency of the cavity matches
the qubit’s first- to second-excited-state transition: ωc = �f −
�e. To make a traveling microwave photon conditioned on
the state of the qubit, one first applies a π pulse that flips
the qubit from |e〉 to |f 〉 and then takes the state transfer
interaction between the transmon and cavity into resonance
for a half period of a Rabi oscillation π/2χ . This brings
the qubit into its first excited state accompanied by emission
of a microwave photon. We recall that high-fidelity single-
qubit gate operations can be performed by properly shaped
dispersive microwave pulses that can be used for controlled
flipping of the qubit in either of its transitions [36,37].

Emitting indistinguishable photons from each cavity is
essential for a faithful projection onto an entangled state.
Indistinguishability of the photons can indeed be guaranteed by
employing two low-finesse microwave resonators on the sites.
This leads to a broad wave packet that increases overlap of the
photonic wave packets and therefore their indistinguishability.
Its other consequence is lowering the emission time of
the photons, which basically makes them traveling photons,
therefore reducing the protocol run time.

Moreover, the controlled-PHASE gate performed on detector
qubits discussed in step (iv) of the protocol can also be
realized using superconducting qubits dispersively coupled to
a coplanar microwave resonator at the output of the beam
splitter. The Hamiltonian of this part of the system is that of a
qubit dispersively coupled to a cavity with frequency ωc, the
same frequency of the site cavities:

Ĥp =
(

ωc + χ2
p



|e〉〈e|

)
â
†
Dj

âDj
+

(
�e + χ2

p




)
|e〉〈e|, (4)

where 
 = �e − ωc is the qubit-cavity detuning. Because of
this dispersive coupling, the unitary time evolution operator of
the detector qubits in a frame rotating at the qubit and cavity

frequencies is exp{i χ2
p



tâ

†
Dj

âDj
|e〉〈e|}. Our goal is to have a

conditional π -phase shift given that the photon number in the
cavity is odd. Therefore, the interaction time of the qubit and
the photons must satisfy χ2

pt/
 = π . By storing the incident
photons in a high-finesse cavity, the interaction time between
photons and the detector qubits can be increased sufficiently.
Therefore, after arrival of the photons to these secondary
cavities one waits for π
/χ2

p seconds and then measures the
parity by performing a Ramsey pulse sequence on detector
qubits [38]. Today’s experiments are able to measure the parity
of the storage microwave cavity with fidelities above 90% via
another readout cavity coupled to a transmon superconducting
qubit [23].

It worth mentioning here that to maximize the absorption
of these photons (after mixing at the beam splitter) into the
detecting cavities two conditions must be met: The resonance
frequency of the cavities must match and their linewidths must
be close to each other. The former condition, in principle, is
easily met by employing equal frequency cavities, while the
latter sounds contradictory. On the one hand, in the detection
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parts, we need to employ high-finesse cavities in order to store
the arrived photons and give them enough time to rotate the
qubit states. On the other hand, as discussed above, site cavities
must have high decay rates to ensure indistinguishability of
the outgoing photons. This can be resolved by employing a
cavity with a tunable decay rate in the detecting parts [39].
These cavities are designed such that they can be tuned in situ
to different decay rates for the purpose of maximal capture,
storage, and retrieval of microwave photons. In our case,
the detecting cavities can be first tuned to a linewidth that
allows for maximal capture of the incoming photon(s) and
then the photon(s) can be stored for performing the parity
measurement.

V. DISCUSSION

The question of how to verify the nonlocal coherence
involving the mechanical parts can be approached by looking
into the dynamics of the two qubits coupled to their respective
resonators. Since ±α in Eq. (2) is periodic in time, it
becomes zero at some point at which the mechanical part
is disentangled from the qubit part, thus leaving the qubit
pair in a maximally entangled state. This is manifested in
the entanglement revival in the qubit pair, which can be
considered as a signature of the entangled superposition state
between the masses and qubits, i.e., Eq. (2), at intermediate
times. A similar consideration has been used previously for
probing macroscopic superposition states in Refs. [40,41]. In
our case this feature can point to even a stronger indication of
nonclassicality. Monotonicity of the entanglement allows the
entanglement revival if and only if the qubit pair has access to
a global coherent operation (e.g., direct interaction) inducing
this entanglement. Since there is no direct interaction between
the qubits, this revival has to be provided by the dynamics of
the resonators being in an entangled superposition with the
pair prior to the revival time. This is an unambiguous way
of verifying entangled superposition including the mechanical
parts, because the action of separable resonators on the qubits
falls under the local operation and classical communication
operations that cannot increase the entanglement. For this
purpose, one should use an entanglement monotone such as
concurrence [42] or negativity [43] for monitoring the entan-
glement. Concurrence has already been measured experimen-
tally on superconducting qubits with high fidelity using state
tomography [44,45]. In Fig. 2 we plot the time evolution of the
concurrence of the two qubits for two different displacement
amplitudes and the effect of decoherence on this evolution.
Detailed analytical and numerical analyses are presented in
Appendix B.

Information transmission about mass positions due to, for
instance, the interaction with the environment suppresses the
magnitude of the entanglement revival and the state evolves
towards statistical mixture with the same rate regardless of
which form of mechanical entanglement (a) or (b) shown
in Fig. 1 was created (see Appendix C). However, if we
think of an unconventional situation in which the two masses
gravitationally interact with each other, then the masses’
configuration in the mechanical parts of the entanglement
becomes important. One model of gravitational decoherence
is presented in Ref. [46], which is equivalent to a different

(a)

(b)

FIG. 2. (a) Periodic revival of the concurrence, undergoing
decoherence, signifies the entangled superposition between the
masses for small (dashed line) and large (solid line) displacement
amplitudes. For larger amplitudes the decay of entanglement revival
under decoherence occurs with a higher rate. (b) Preparation of
large entangled superposition using the [π ]g↔e pulse sequence and
monitoring the concurrence afterwards without decoherence (solid
line) and with decoherence (dashed line).

formulation proposed in Ref. [20]. In these models the
decoherence rate is completely determined by the gradient of
the gravitational force between the masses. The gradients of
the gravitational forces in the two types of entanglement shown
in Figs. 1(a) and 1(b) are different. Therefore, adding this new
source of noise may lead to a detectable gap in the decay
of entanglement between the two cases undergoing identical
environmental decoherence, yet different gravitational deco-
herence rates. This gap then can be attributed to a genuine
gravitational effect. This is an intriguing strategy, because the
main challenge in the observation of gravitational effects is that
it is hard to distinguish the intrinsic gravitational field effects
from those of environmental (conventional) decoherence in
quantum dynamics as both these sources of noise lead to a
similar reduction of the superposition states.

VI. CONCLUSION

In this work we proposed an experimentally feasible
protocol for creating heralded entangled Schrödinger cat
states between spatially separated mechanical resonators. The
scheme can be implemented in currently available circuit QED
architectures. We expect that the setup will provide a useful
platform for experimentally probing the interface between
gravity and quantum physics where the mechanical resonators
in the present scenario serve as test masses undergoing
gravitational decoherence. Finally, we think that going beyond
a single-particle superposition and monitoring the dynamics of
gravitationally different types of entangled states may provide
a more visible test of gravitational decoherence models in a
new regime of gravitational sensing.
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APPENDIX A: IMPLEMENTATION HAMILTONIAN

The Hamiltonian describing the device we are considering
in this paper is composed of the transmon qubit coupled to the
mechanical resonator via its charging energy, that is (� = 1),

Ĥs = ωcâ
†â + 1

2ωm(p̂2 + x̂2) − EJ cos(π�/�0) cos ϕ̂

+ 4EC(x̂)[n̂ − ng − η(â + â†)]2, (A1)

where η = Cg

2e
(�ωc/2C)1/2 is the circuit QED Lamb-Dicke

parameter and ng is the induced dc gate charge. Here � is the
externally applied magnetic flux through the superconducting
loop and �0 = h/2e is the superconducting flux quantum.
The operators n̂ and ϕ̂ denote the number of Cooper pairs
transferred between the islands and the gauge-invariant phase
difference between the superconductors, respectively.

Since in transmon qubits EJ/EC � 1, the nonlinearity of
the qubit is reduced such that the higher levels play a role in its
dynamics. We simplify the above Hamiltonian by first Taylor
expanding the EC(x̂), keeping only to the first order in x̂, and
then applying rotating-wave approximations and truncating
the transmon Hilbert space to its first three levels. This brings
us to

Ĥs = ωcâ
†â + 1

2
ωm(p̂2 + x̂2) +

∑
j

(�j + λj x̂)|j 〉〈j |

+χ

[(
1√
2
|e〉〈g| + |f 〉〈e|

)
â + H.c.

]
, (A2)

with j = {g,e,f }. Here â is the annihilation operator of
the microwave photons inside the cavity, while x̂ and p̂

are, respectively, the normalized mechanical position and
momentum operators with the commutation relation [x̂,p̂] =
i. The Hamiltonian (A2) already features a state-dependent
force on the mechanics via the qubit, which is crucial in our
protocol. The second line of the Hamiltonian is the generalized
Jaynes-Cummings transmon-cavity interaction.

The probe qubits discussed in step (iv) of the protocol could
be realized by superconducting qubits dispersively coupled
to the coplanar microwave transmission line at the output of
the beam splitter. Here the goal is to have a parity flip in
the qubits conditioned on the odd incident photon numbers.
Therefore, the interaction time of the qubit and the photons
must satisfy χ2

pt/
 = π . The pulse duration of the incident
single-photon states is roughly the same as the time it has taken
to be emitted in the sites, i.e., π/2χ . Therefore, one needs to
fulfill χ2

p = 2χ
 to get a half rotation about the z axis for
every photon. Since we have 
 � χp from the dispersive
coupling regime, this can be achieved only for χp � χ . This
however looks impractical for a waveguide because of the finite
coherence time of the qubits. By storing the incident photons in
a high-finesse superconducting resonator the interaction time

between photons and the probe qubits can be significantly
increased.

APPENDIX B: MONITORING THE ENTANGLEMENT
DYNAMICS UNDER THE INFLUENCE OF DECOHERENCE

We aim to monitor the entanglement dynamics of the
two-qubit system in which the qubits and their respective
resonator evolve under the influence of the interaction with the
environment. Here we use the Wooter concurrence, which is
defined as C(ρ) = max{0,

√
λ1 − √

λ2 − √
λ3 − √

λ4}, where
λi are the eigenvalues of the matrix ρρ̃ = ρσy ⊗ σyρ

∗σy ⊗ σy

and λ1 is the maximum eigenvalue.

1. Environmental decoherence: Analytic treatment

As an illustration, in this section we treat a simple scenario
of probing the entanglement dynamics under decoherence in
which the qubits are coupled with constant coupling strengths
to their respective mechanical resonators. We evaluate the
effect of qubit decoherence and mechanical decoherence due
to a weak coupling of the resonator to a finite-temperature bath
where the Markovian master equation of a Lindblad form is
applied. Therefore, we model these decoherence processes by
a master equation of the form

ρ̇ = Lρ = −i[Ĥ ,ρ] +
∑

j=A,B

Lqj
ρ +

∑
j=A,B

Lmj
ρ, (B1)

where

Lqj
ρ = γ̃q

2

(∑
k

|k〉〈k|jρ|k〉〈k|j − ρ

)
(B2)

describes qubit dephasing acting locally with dephasing time
T2 = 1/γ̃q and

Lmj
ρ = γm

2
(n̄ + 1)(2b̂j ρb̂

†
j − b̂

†
j b̂j ρ − ρb̂

†
j b̂j )

+ γm

2
n̄(2b̂

†
j ρb̂j − b̂j b̂

†
j ρ − ρb̂

†
j ) (B3)

describes the mechanical dissipation within a single resonator,
where γm = ωm/Qm is the mechanical damping rate for
a mechanical resonator with the quality factor Qm and
n̄ = 1/(e�ωm/kBT − 1) is the equilibrium occupation number
(identical resonators and dissipation are assumed). In the high-
temperature limit n̄ � 1 we obtain �th = γmn̄ 
 kBT/�Qm as
the relevant mechanical decoherence rate.

Let us now consider the effect of decoherence on the
entanglement dynamics of the qubit pair after the preparation
of the hybrid entangled state ρ(t0) obtained by the heralded
detection. The state at a later time t after a period of τ = t − t0
is obtained from the Liouville superoperator of the time
evolution ρ(t) = eLτ ρ(t0), which is the solution to Eq. (B1). In
particular we are interested in the dynamics of the off-diagonal
term of the qubit pair’s reduced state

ρge,eg(t) = 〈g|〈e|ρ(t)|e〉|g〉 = 〈g,e|ρqAqB
(t)|e,g〉ρge,eg

mAmB
(t).

Now let us analyze a scenario in which after a fast preparation
of the hybrid entangled state at time t0 the system undergos
decoherence processes according to Eq. (B1) at the later time
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t (t � t0). For the expectation value at t = t0 + τ we need to
solve

ρge,eg(t) = 〈g,e|[eLτ |g,e〉〈e,g|〈g,e|ρqAqB
(t0)|e,g〉

× ρge,eg
mAmB

(t0)]|e,g〉. (B4)

According to the master equation (B1) and the Hamiltonian
(1), this operator evolves as

ρ̇ge,eg =
∑

j=A,B

{−iωm[b̂†j b̂j ,ρge,eg] + Lmj
ρge,eg + Lqj

ρge,eg}

− iλe,A(b̂†A + b̂A)ρge,eg + iλe,B(b̂†B + b̂B)ρge,eg.

(B5)

We have assumed λg = 0 for both systems.
From the above we can obtain the time evolution of an

entanglement monotone for the two-qubit system. In the
special case we consider, concurrence simplifies to

C[ρ(t)] = 2|TrmA,mB
{ρge,eg(t)}|. (B6)

Note that the concurrence is completely characterized by the
off-diagonal term of the qubit pair’s state in which the qubits
undergo only dephasing and the mechanical resonators interact
with a finite-temperature bath. The plot is shown in Fig. 2(a).
In the absence of the resonator decoherence

TrmA,mB
{ρge,eg(t)} = ± 1

2e−2γ̃q τ 〈DA[αe(τ )]〉mA
〈DB[αe(τ )]〉mB

.

The displacement amplitude is αe(τ ) = λe/ωm(e−iωmτ − 1),
which is periodic in time, and thus the concurrence demon-
strates collapse and revival. Here we have taken λe,A = λe,B =
λe. Concurrence is the same regardless of which state

1√
2

(|g,α〉A|e, − α〉B ± |e, − α〉A|g,α〉B) (B7)

or

1√
2

(|g, − α〉A|e, − α〉B ± |e,α〉A|g,α〉B) (B8)

was prepared at time t0. For the entangled state (B8) the force
exerted from the second qubit reverts to the x axis. Therefore,
the associate configuration indicates a superposition between
two different relative distance between the resonators.

Equivalently, we can define the Wigner characteristic func-
tions χmA

eg (βA,t) = 〈D(βA)〉mA
and χmB

ge (βB,t) = 〈D(βB)〉mB

and write

TrmAmB
{ρge,eg(t)} = ± 1

2e−2γ̃q τ χge(βA,t)χeg(βB,t). (B9)

The evolution of the characteristic function is given by the
Fokker-Planck equation

χ̇eg(β) = i

(
�β

∂

∂β
− �∗β∗ ∂

∂β∗

)
χeg(β)

− γm

2
(2n̄ + 1)|β|2χeg(β)

+ iλe

(
β + β∗

2

)
χeg(β) − iλe

(
∂

∂β
− ∂

∂β∗

)
χeg(β),

(B10)

where � = ωm + iγm/2. We solve this equation in three steps.
First, we make the ansatz

χeg(β,t) = eiφ(t)eβκ∗(t)−β∗κ(t)χI (β,t), (B11)

where κ̇ = −i�κ − iλe/2 and φ̇ = −λe[κ(t) + κ∗(t)]. For the
next equation, for χI (β,t) we have

χ̇I (β,t) = i

(
(�β − λe)

∂

∂β
− (�∗β∗ − λe)

∂

∂β∗

)
χI (β,t)

− γm

2
(2n̄ + 1)|β|2χI (β,t). (B12)

We now make the second ansatz

χI (β,t) = e−(n̄+1/2)[|β|2−βκ̃∗(t)−β∗κ̃(t)+ζ (t)]χII (β,t), (B13)

where ˙̃κ = −i�κ̃ − iλe and ζ̇ = −iλe(κ̃ − κ̃∗). This leaves
us with the remaining equation for χII (β,t), which is given by

χ̇II (β,t) =
[
i(�β − λe)

∂

∂β
− i(�∗β∗ − λe)

∂

∂β∗

]
χII (β,t).

(B14)
This equation is solved by a function of the form

χII (β,t) ≡ χII

(
x = ei�tβ − iλe

∫ t

0
ei�sds

)
(B15)

and the specific expression for χII (x) is determined by the
initial conditions

χII (x) = e(2n̄+1)|x|2/2χeg(x,t = 0). (B16)

For an initial thermal state χII (x) = 1 and therefore

χge(β = 0,t) = e−(n̄+1/2)ζ (t). (B17)

In the limit γm � ω where the dissipative part of the master
equation is valid we obtain

ζ (t) 
 2λ2
e

ω2
m

[
(1 − cos(ωmt)e−γmt/2) + γmt

2

]
. (B18)

This shows that for λe ∼ ωm the signal of a single measurement
decays with a total decoherence rate �dec = (2n̄ + 1)γm. For
kBT � �ωm we obtain n̄γm 
 kBT/�Qm. Similar conclusions
are obtain when starting from a precooled state or for λe �
ωm, when a π -pulse sequence is obtained to amplify the
displacement amplitude.

We should remark that in the decoherence model it is
assumed that the oscillator damping is very small (γm � ωm).
We use this model of damping in this section to provide a
simple illustrative evaluation of the effect of the resonator’s
dissipation on the qubit pair’s entanglement dynamics. In
the next section we use a quantum Brownian motion master
equation, which gives more accurate results for a higher
damping rate and reduces to the above master equation using
the rotating-wave approximation. In the next section we treat
this scenario numerically in a more involved decoherence
process.

2. Numerical simulation of the full dynamics of the system

The system dynamics is composed of free evolution and
dissipation. The free evolution part is captured by the system
Hamiltonians in the mechanical sites given by (A1) and (3)
and the dispersive Hamiltonian describing the dynamics
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of the probe sites given by Eq. (4), the dissipation and
decoherence stemming from dephasing of the transmon qubits
and relaxation in the cavity modes, and finally thermalization
in the mechanical modes. Here we assume that the cavity decay
rates is mostly due to its coupling the transmission lines. This
will not lead to serious restriction as it is almost the practical
case. Moreover, note that the cavities are irreversibly coupled
to each other via transmission lines mediated by a beam splitter.
These are the major sources of imperfection and one includes
them all in a single master equation to study the full dynamics
of the whole system

ρ̇ = −i[Ĥ ,ρ] + (Lq + Lm + Lc)ρ, (B19)

where Ĥ = Ĥs,A + Ĥs,B + Ĥp,D1 + Ĥp,D2 is the total Hamil-
tonian, which is composed of the both mechanical sites and
the detection facilities denoted by the subscript p. We have
also decomposed the dissipator into three parts, each for
a distinct form of energy: photonic, charge, and phononic.
The mechanical resonators damping rate is γm and because
of the low frequency its diffusion is largely affected by the
environmental thermal phonons n̄. The mechanical dissipator
was already introduced in Eq. (B3).

For the qubits, the dissipator is can be divided into the four
local dissipators (for four qubits) Lq = L̃A + L̃B + L̃D1 +
L̃D2 . This assumption is true so long as there is no dissipative
coupling between the qubits and remains true in our case
since the qubits are well separated from each other and any
potential coupling between them will happen coherently via
the coupled cavities. The dissipator of every qubit must include
both relaxation and its pure dephasing. For example, L̃A is
given by

L̃A[ρ] = γA

2

∑
j<k

(2|j 〉〈k|ρ|k〉〈j | − |k〉〈k|ρ − ρ|k〉〈k|)

+ γ̃A

2

∑
j

(|j 〉〈j |ρ|j 〉〈j | − ρ), (B20)

where the |k〉, with k = {g,e,f }, are the three lowest transmon
states. The first of the above dissipators and the second
line correspond, respectively, to the relaxation and the pure
dephasing of qubit A. The relaxation happens with rate γA and
the pure dephasing rate is γ̃A such that the total dephasing time
of the qubit is 1/T ∗

2 = γA + γ̃A/2. The same arguments hold
for the remaining three qubits.

Finally, for the cavities, the photons experience both decay
into the coupled transmission line and loss (absorption and
decay into the free space), leading to the total decay rate κtot =
κin + κloss. However, the current technology superconducting
resonators have negligible loss κin � κloss and the microwave
photons mostly escape to the coupled transmission line κtot ≈
κin. We therefore have a dissipator in the Lindblad form with
the decay rates κs and κp for the site and probe cavities,
respectively. We also include the unidirectional coupling of the
detecting cavities and the site cavities. Actually, this coupling
is not direct and it happens via the beam splitter. Thus, the
detecting cavities are irreversibly fed by both of the site
cavities. Since we are considering a 50:50 beam splitter, the
effective modes that would couple to the D1 and D2 cavities
are (âA ± âB)/

√
2. By taking this into account, the following

Liouvillian holds for the cavity modes:

Lcρ =
{

κs

2
(LA + LB) + κp

2
(LC1 + LC2 )

}
ρ

−√
εκsκp

{[
â
†
D1

,

(
âA + âB√

2

)
ρ

]

+
[
ρ

(
â
†
A + â

†
B√

2

)
,âD1

]

+
[
â
†
D2

,

(
âA − âB√

2

)
ρ

]
+

[
ρ

(
â
†
A − â

†
B√

2

)
,âD2

]}
,

(B21)

where Lôρ = 2ôρô† − ô†ôρ − ρô†ô is the Lindblad dissipa-
tor. Here the last two lines express the irreversible coupling
between the probe and site cavities including the beam-splitter
mixing effect and ε is the efficiency of the transmission chan-
nels that takes values 0 < ε < 1 [47,48]. The parameter ε con-
tains the waveguide losses, which are typically negligible, and
reflection of the microwave photons at the port of the detecting
cavities and the beam splitter. As we have discussed in the main
text, the reflection effects can be minimized by appropriate
choice of devices, therefore giving ε very close to one.

3. Simulation parameters

One numerically solves the full master equation (B19) with
the above Liouvillians and by a postselection simulated by a
projective measurement one of the states (2) will be obtained.
However, this cannot be done by the available computational
resources because of the very large system size. Instead, we
turn to simulate the protocol step by step. Therefore, we
first solve the master equation for each local site coupled
the waveguide at the output, which at the end of the third
step of the protocol gives �j with j = A,B, and then we
merge their photon parties by assuming a perfect 50:50 beam
splitter. In the next step, the dynamics in the probe cavities are
simulated with the initial separable quadripartite qubit-cavity
state �0 ⊗ |+〉〈+|D1 ⊗ |+〉〈+|D2 , where �0 = Trq,m{U (�A ⊗
�B)U †} is the photonic parity of the state mixed at the beam
splitter. Here U = exp{π

4 (â†
AâB − âAâ

†
B)} expresses the beam

splitter’s unitary operation, while �A and �B are the outputs
of the first stage of the simulations. The measurements are

TABLE I. Parameters of the system.

Quantity Symbol Value

Mechanical mass m 3 pg
Mechanical frequency ωm/2π 1 MHz
Mechanical quality factor Qm 105

Transmon-mechanics coupling rate λe/2π 50 kHz
Josephson energy EJ/2π 35–55 GHz
Charging energy EC/2π 0.5 GHz
Transmon relaxation rate γq/2π 5 kHz
Transmon pure dephasing rate γ̃q/2π 20 kHz
Transmon-cavity coupling rate χ/2π 45 MHz
Cavity frequency ωc/2π 11 GHz
Cavity decay rate κs/2π 200 kHz
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(b)(a)

FIG. 3. (a) Time evolution of entanglement of two qubits in terms of concurrence with (dashed line) and without (solid line) decoherence
and (b) probability of finding the A qubit in its ground state and the B qubit in its first excited state. This quantity is obtained by simulating the
protocol and the evolution of the prepared state using the parameters listed in Table I.

simulated as perfect projections. Therefore, the postselected
state according to the parity of the detecting qubits and state
of the site qubits gives us the final state, which turns out to be
an entangled coherent state.

In Fig. 3 we plot the evolution of the probability of
simultaneously finding the qubits A and B in the ground state
and excited state, respectively. The parameters used here are
feasible with the current technology (see Table I). In the detec-
tion section, a microwave resonator with κp/2π = 20 kHz is
considered. The detector qubits are transmon qubits with the
same properties as the site qubits and operated at EJ/EC = 40,
which makes them well away from the cavity resonance
(χp/
 ≈ 0.02). This means having π
/χ2

p ≈ 1/4κs , which
gives enough time to change the qubit parity. The ambient
temperature is taken to be T = 25 mK.

It worth mentioning here that in the detection parts, we
need to employ high-Q cavities in order to store the photons
that have arrived and give them enough time to rotate the
qubit states and thus perform the parity measurement. On
the other hand, the photons leaving the A and B cavities
must have a broader band to ensure indistinguishability, the
key point for the Hong-Ou-Mandel effect. To maximize the
absorption of these photons (after mixing at the beam splitter)
into the detecting cavities two conditions must be met: The
resonance frequency of the cavities must match and their
linewidths must be close to each other. The former condition,
in principle, is easily met by employing equal frequency
cavities. However, the second condition requires κp ≈ κs ,
which is in contradiction with our requirements of the parity
measurement. This can be resolved by employing a cavity
with a tunable decay rate in the detecting parts [39]. These
are designed such that they can be tuned in situ to different
decay rates with a three orders of magnitude difference. In our
case the difference between κs and κp is only one order of
magnitude: 1/κs ≈ 8 × 10−7 s and 1/κp ≈ 8 × 10−6 s within
the reported cavity lifetimes in Ref. [39].

APPENDIX C: GRAVITATIONAL DECOHERENCE OF
COLLECTIVE MODES OF TWO GRAVITATIONALLY

COUPLED HARMONIC OSCILLATORS

For the sake of gaining more insight into the idea discussed
in the main text let us focus on a simple and ideal example. An

interesting scenario happens if the two mechanical resonators
are gravitationally coupled to each other for a sufficiently large
gravitational coupling strength. In this case the dynamics of
the two resonators is described by two independent collective
modes of oscillations with coordinates x̂+ = (x̂A + x̂B)/

√
2

for the center of mass mode and x̂− = (x̂A − x̂B)/
√

2 for the
breathing mode, at corresponding frequencies ω±. For further
details on the model see Ref. [20].

The intermode interaction is ĤI = 2Kx̂Ax̂B ≈ K(b̂Ab̂
†
B +

b̂
†
Ab̂B), where K = Gm/ωmd3 is the coupling rate with

G the universal gravitational constant and d the distance
between the mechanical resonators. One then diagonalizes
the total Hamiltonian by applying the unitary operator Û =
exp{(π/4)(b̂Ab̂

†
B − b̂

†
Ab̂B)}. The effect of gravitational cou-

pling will appear in the free evolution part of Eq. (B5) and
after applying the above unitary transformation the equation
reads

˙̃ρge,eg = −
∑

j=+,−
i[ωj b̂

†
j b̂j ,ρ̃ge,eg]

− i
λe,A√

2
(b̂+ + b̂

†
+ + b̂− + b̂

†
−)ρ̃ge,eg

+ i
λe,B√

2
ρ̃ge,eg(b̂+ + b̂

†
+ − b̂− − b̂

†
−)

+
∑

j=+,−
Lmj

ρ̃ge,eg +
∑
j=1,2

Lqj
ρ̃ge,eg, (C1)

where b̂± = (b̂A ± b̂B)/
√

2 are the normal annihilation oper-
ators and ρ̃ge,eg = Ûρge,egÛ

†.
The initial conditions (the coupling signs to the qubits

and the initial positions) are fixed such that only one normal
mode is excited and put into a superposition via the heralded
technique. In a realistic situation the normal mode splitting
is expected to be small and thus is approximated to be

 = ω− − ω+ ≈ 2Gm/ωd3 [20]. In the first scenario we
imagine that only the center-of-mass mode b̂+ with frequency
ω+ is excited by the proper constant coupling strength to the
qubit: λe,A = −λe,B = λe. This corresponds to Eq. (B8) and
gives

TrmA,mB
{ρge,eg(t)} = ± 1

2e−2γ̃q τ Trm+{D+[
√

2αe(τ )]ρ(t0)}.
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Here D+(
√

2αe) = e
√

2αeb̂
†
+−√

2α∗
e b̂+ = DA(αe)DB(αe). For the

second scenario only the breathing mode b− is excited with
the proper coupling strength to the qubits: λe,A = λe,B = λe.
This corresponds to Eq. (B7). Therefore, we have

TrmA,mB
{ρge,eg(t)} = ± 1

2e−2γ̃q τ Trm−{D−[
√

2αe(τ )]ρ(t0)},
oscillating with normal mode frequency ω−.

Therefore, in this representation we can think of a single
massive system being in a harmonic potential oscillating with
frequency ω±. Environmental noise as described by (B3) is
coupled locally to each resonator’s coordinate and therefore
qubit pair entanglement, according to the definition (B6),
undergoes the same decoherence rate regardless of the col-
lective mode. In the presence of large enough normal mode
splitting, due to the gravitational force between the mechanical
resonators, the collective mechanical modes undergo different
gravitational decoherence rates. The difference in the decoher-
ence generates a gap in the amount of entanglement revival per
single oscillation period. The effect of normal mode frequency
splitting, i.e., the gap in the entanglement revival, becomes
more pronounced for larger λe/ωm. The decoherence channel
opened up by the gravitational interaction may be captured by

L±
gravρ = −�±

grav[x±,[x±,ρ]]. (C2)

This form of master equation leads to the suppression of a
superposition in the position coordinate of a collective mode.
This effect can also be easily seen by rewriting the double
commutator in the position space

�±
grav[x±,[x±,ρ(t)]] → �±

grav(x ′
± − x±)2ρ(x ′

±,x±,t),

describing in particular the spatial collapse of the oscillating
mode due to gravitational decoherence. The gravitational
decoherence is proportional to the inverse of the normal mode
frequency, i.e., �±

grav ∝ 1/ω± [20]. Therefore, unlike envi-
ronmental decoherence, gravitational decoherence attributes
different decoherence rates to the two collective modes,
which can be manifested in the gap in the amount of the
entanglement revival between the two scenarios. This is a
preliminary illustration of how a non-Gaussian entangled state
might be useful for probing quantum dynamical phenomena
that result from a purely gravitational effect. This leads us
to ask whether non-Gaussian mechanical entanglement can
provide us with sensitive detection of the genuine effect of
gravitational decoherence. To estimate this effect in a real
experimental situation one needs to take into account all the
practical limitations, which is a challenging issue but not
impossible.

[1] M. Arndt and K. Hornberger, Nat. Phys. 10, 271 (2014).
[2] Y. Chen, J. Phys. B 46, 104001 (2013).
[3] A. Asadian, C. Brukner, and P. Rabl, Phys. Rev. Lett. 112,

190402 (2014).
[4] O. Gittsovich, T. Moroder, A. Asadian, O. Gühne, and P. Rabl,

Phys. Rev. A 91, 022114 (2015).
[5] C. Pfister, J. Kaniewski, M. Tomamichel, A. Mantri, R.

Schmucker, N. McMahon, G. Milburn, and S. Wehner,
arXiv:1503.00577.

[6] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Science 342, 710 (2013).

[7] S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys. Rev.
Lett. 88, 120401 (2002).

[8] F. Xue, Y.-x. Liu, C. P. Sun, and F. Nori, Phys. Rev. B 76, 064305
(2007).

[9] M. J. Hartmann and M. B. Plenio, Phys. Rev. Lett. 101, 200503
(2008).

[10] S. Pirandola, D. Vitali, P. Tombesi, and S. Lloyd, Phys. Rev.
Lett. 97, 150403 (2006).

[11] M. Abdi, S. Pirandola, P. Tombesi, and D. Vitali, Phys. Rev.
Lett. 109, 143601 (2012).

[12] R. Schnabel, Phys. Rev. A 92, 012126 (2015).
[13] S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005).
[14] S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther,

Nat. Photon. 4, 553 (2010).
[15] I. Usmani, C. Clausen, F. Bussieres, N. Sangouard, M. Afzelius,

and N. Gisin, Nat. Photon. 6, 234 (2012).
[16] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok,

L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L.
Childress, and R. Hanson, Nature (London) 497, 86 (2013).

[17] A. Roy, L. Jiang, A. D. Stone, and M. Devoret, Phys. Rev. Lett.
115, 150503 (2015).

[18] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber,
W. Rosenfeld, and H. Weinfurter, Science 337, 72 (2012).

[19] B. C. Sanders, Phys. Rev. A 45, 6811 (1992).
[20] D. Kafri, J. M. Taylor, and G. J. Milburn, New J. Phys. 16,

065020 (2014).
[21] S. G. Hofer, K. W. Lehnert, and K. Hammerer, Phys. Rev. Lett.

116, 070406 (2016).
[22] V. C. Vivoli, T. Barnea, C. Galland, and N. Sangouard,

Phys. Rev. Lett. 116, 070405 (2016).
[23] B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa,

Y. Liu, M. Hatridge, J. Blumoff, L. Frunzio, M. Mirrahimi, L.
Jiang, M. H. Devoret, and R. J. Schoelkopf, Nat. Commun. 6,
8970 (2015).

[24] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf,
Nature (London) 431, 162 (2004).

[25] K. Iakoubovskii, G. J. Adriaenssens, and M. Nesladek, J. Phys.:
Condens. Matter 12, 189 (2000).

[26] A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B.
R. Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, Nature (London) 449, 328
(2007).

[27] P. Rabl, Phys. Rev. B 82, 165320 (2010).
[28] J.-M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T.
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