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Superiority of photon subtraction to addition for entanglement in a multimode squeezed vacuum
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We investigate the entanglement patterns of photon-added and photon-subtracted four-mode squeezed vacuum
states. Entanglements in different scenarios are analyzed by varying the number of photons added or subtracted
in certain modes, which are referred to as the “player” modes, the others being “spectators.” We find that
the photon-subtracted state can give us higher entanglement than the photon-added state which is in contrast
to the two-mode situation. We also study the logarithmic negativity of the two-mode reduced density matrix
obtained from the four-mode state which again shows that the state after photon subtraction can possess higher
entanglement than that of the photon-added state, and we then compare it to that of the two-mode squeezed
vacuum state. Moreover, we examine the non-Gaussianity of the photon-added and photon-subtracted states to
find that the rich features provided by entanglement cannot be captured by the measure of nonclassicality.
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I. INTRODUCTION

Distribution of entanglement in a multipartite quantum
system is known to be a useful resource in several quan-
tum communication and quantum computational tasksx [1].
Notable ones include quantum secret sharing [2], distributed
quantum dense coding [3], distribution and concentration of
quantum state [4], and cluster state quantum computing [5].
Such protocols have successfully been realized in physical
systems such as photons [6], ions [7], nuclear magnetic
resonance [8], nitrogen vacancy centers [9], etc.

One of the physical systems in which quantum information
tasks have been realized in the laboratory is the class of
continuous variable (CV) systems. Historically, the notion of
the quantum correlated state of two particles in CV systems
first arrived in the seminal paper of Einstein, Podolosky, and
Rosen in 1935 [10]. In recent years, several communication
schemes such as teleportation [11] and classical information
transfer by quantum channels [12], have extensively been
investigated both theoretically and experimentally, in CV
systems, especially in Gaussian states [13–16]. However, it
has been discovered that there are several protocols which
cannot be implemented using Gaussian states with Gaussian
operations. Examples include entanglement distillation [17],
measurement-based universal quantum computation [18], tele-
portation [19], and quantum error correction [20].

Non-Gaussian states are increasingly being found to be
important in several applications. They have also been realized
in the laboratory [21].

An important method to make such states is by adding
and subtracting photons, when the initial state is the squeezed
vacuum state. Starting with the single-mode squeezed vacuum
state, whose Wigner function [22] is always positive, it was
shown that photon addition can generate a negative dip of
the Wigner function in the phase space [23] and hence can
deviate from being a Gaussian state. In the case of the
two-mode squeezed vacuum (TMSV) state as input state, both
entanglement and fidelity of teleportation can be increased
by adding and subtracting photons to (from) one or two
modes [24]. For such experiments, see [25,26]. Moreover, the
entanglement content of the photon-added state obtained from

the TMSV state was shown to be always higher than that of
the photon-subtracted state [24].

Investigations of the squeezed vacuum state with respect to
photon addition and subtraction are usually restricted to the
two-mode case, even though the importance of the multimode
CV system is unquestionable [27–30]. For example, several
preparation schemes have been proposed for preparing of mul-
timode cluster states which form one of the main ingredients in
measurement-based quantum computation [29]. Moreover, it
is believed that multimode entangled states can be a resource
to build quantum communication networks, for transferring
both classical as well as quantum information between several
senders and several receivers [30].

In this paper, we consider the four-mode squeezed vacuum
(FMSV) state as input to a de-Gaussification scheme. The
latter is being carried out by adding and subtracting photons in
different modes. We evaluate entanglement between different
modes in all possible bipartitions and compare the results of the
photon-added state with the subtracted ones. We call a mode
as “player” mode when we analyze the effect on entanglement,
by varying the number of photons added or subtracted in that
mode. There could be several such player modes. The remain-
ing modes, in which either no photons or a fixed number of
photons are added or subtracted, are referred to as the spectator
modes. We here investigate two scenarios: (1) one player
mode and (2) two player modes. We analytically show that
in the single player case, i.e., when photons have been added
(subtracted) to (from) a single mode, in the player:spectator
bipartition, entanglements of the photon-added and photon-
subtracted states coincide. In this situation, we prove that
entanglements in both photon-added and photon-subtracted
states monotonically increase with the number of photons
added or subtracted. Unlike the TMSV case, we observe
that there exists scenarios in which photon-subtracted output
states obtained by subtracting photons from one or two modes
contain higher entanglement, compared to the photon-added
state. Specifically, we find that the photon-subtracted state
contains more entanglement in the spectator:rest bipartition
than that of the photon-added state, when a single mode acts
as a player. Similar hierarchy can also be obtained when
any two modes act as players. Interestingly, the advantageous
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situation for photon subtraction can be reversed by adding a
fixed number of photons in the spectator modes.

Such behavior can also be viewed by analyzing the
logarithmic negativity of the output two party state which can
be obtained by discarding either two player modes or two
spectator modes.

Finally, we study a distance-based measure of non-
Gaussianity in these scenarios and find that the non-
Gaussianity in general is higher for the photon-added state than
that of the photon-subtracted state. In the case of two modes,
photon-added states are known to be more non-Gaussian than
the photon-subtracted states. However, as already noticed in
[24], the relation between entanglement and non-Gaussianity
is not straightforward. In the four-mode case, we again find
that the photon-added state has always higher non-Gaussianity
than that of the photon-subtracted states, and hence reflects that
entanglement and non-Gaussianity are possibly not directly
connected.

One should note here that there are several experimentally
viable methods available, by which a single photon can be
added (subtracted) to (from) a given continuous variable
state [25,26]. In recent years, it has been proposed that such
schemes can be extended to the case of addition (subtraction)
of a large number of photons to (from) a given state [31]
by using currently available experimental techniques. The
existence of possible experimental strategies to prepare and
manipulate such states is also motivates us to investigate
nonclassical properties of the multimode states after photon
addition (subtraction).

The paper is organized in the following way. In Sec. II,
we discuss briefly the N -mode squeezed vacuum state, and
two special cases, the two-mode squeezed vacuum state,
in Sec. II A, and the four-mode squeezed vacuum state, in
Sec. II B. In Sec. II B 1, we consider the FMSV state, when mi

number of photons are added to or subtracted from the mode
i. In Secs. III and IV, we briefly introduce a nonclassicality
measure of a quantum state in a CV system, and the
quantum correlation measures which are relevant in the paper,
respectively. In Sec. V, we present the main results in which
we systematically compare the entanglement of the four-mode
photon-added state with that of the photon-subtracted state by
considering the von Neumann entropy in different bipartitions.
Another entanglement measure, the logarithmic negativity, for
the photon-added and photon-subtracted states are evaluated in
Sec. VI, while the behavior of non-Gaussianity for the output
state is studied in Sec. VII. We summarize in Sec. VIII.

II. N-MODE SQUEEZED VACUUM STATE

In this section, we discuss the N -mode squeezed vacuum
state (NMSV), specifically the two-mode and four-mode
squeezed vacuum states, and a state obtained after adding
(subtracting) an arbitrary number of photons at the mode i.
These states are examples of entangled states in continuous
variables which can be used in various quantum information
tasks. To define such states, let us first denote the bosonic
creation and annihilation operators at the mode i, as â

†
i and âi ,

respectively, which satisfy the bosonic commutation relations,
[âi ,â

†
j ] = δij , and [âi ,âj ] = 0, [â†

i ,â
†
j ] = 0. By using bosonic

operators, an N -mode squeezing operator can be defined as

S(ε) = exp

[
1

2

N∑
i=1

(ε∗âi âi+1 − εâ
†
i â

†
i+1)

]
, (1)

where âN+1 = â1. The corresponding NMSV state is given by

|ψN 〉 = S(ε)|0102 · · · 0N 〉

= 1

NS

exp

⎛
⎝−1

2

N∑
j,k=1

â
†
j tanh(rQ)jkâ

†
ke

iθ

⎞
⎠

×|0102 · · · 0N 〉, (2)

where |0102 · · · 0N 〉 is the N -mode vacuum state, NS is
a normalization constant, and ε = reiθ , with r being the
squeezing parameter. Here the matrix Q is obtained from the
following relation:

S(ε)†âjS(ε) =
N∑
k

[cosh(rQ)jkâk − sinh(rQ)jke
iθ â

†
k]

∀ j = 1, . . . ,N. (3)

Let us now define the position and momentum operators for
each mode, given by

qi = (âi + â
†
i ), (4)

pi = 1

i
(âi − â

†
i ), (5)

to show that Eq. (2) indeed represents a squeezed state.
The variances of the N -mode quadrature operators, X1 =

1
2
√

N

∑
j (âj + â

†
j ) and X2 = 1

2i
√

N

∑
j (âj − â

†
j ), are given by

�X2
1 = 1

4 [e2r sin2(θ/2) + e−2r cos2(θ/2)] (6)

and

�X2
2 = 1

4 [e2r cos2(θ/2) + e−2r sin2(θ/2)]. (7)

Thus for θ = 0 or π , we have �X1�X2 = 1
4 . However, for any

one of the i = 1,2, �Xi � 1
2 , while �Xi � 1

2 for the other i.
This guarantees that the state given in Eq. (2) is a squeezed
state. We assume θ = 0 throughout the paper.

A. Two-mode squeezed vacuum state

The two-mode squeezed vacuum state can be obtained by
putting N = 2 in Eq. (2), where Q = ( 0 1

1 0 ), and

tanh rQ =
(

0 tanh r

tanh r 0

)
. (8)

Thus, the TMSV state with θ = 0 is given by

|ψ2〉 = sech re− tanh râ
†
1 â

†
2 |00〉

= sech r

∞∑
n=0

(− tanh r)n|n〉|n〉, (9)

where |n〉 = (â†)n√
n

|0〉 is the occupation number state.
Taking |ψ2〉 as the initial state, the behavior of entanglement

and non-Gaussianity after adding or subtracting photons have
extensively been investigated [24].
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B. Four-mode squeezed vacuum state

Let us now consider the FMSV state obtained by setting
N = 4 in Eq. (2). The 4 × 4 matrix, Q, in this case, takes the
form

Q = 1

2

⎛
⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎠. (10)

The FMSV state with θ = 0 is then given by [32]

|ψ4〉 = 1

cosh r
e−(tanh r/2)(â†

1+â
†
3)(â†

2+â
†
4)|0000〉. (11)

Expanding the exponential in Eq. (11), we have

|ψ4〉 = 1

cosh r

∞∑
n=0

(
− tanh r

2

)n n∑
r1,r2=0

√(
n

r1

)(
n

r2

)

×|n − r1〉|n − r2〉|r1〉|r2〉. (12)

Such an FMSV state can be prepared in the laboratory by using
currently available technology [28]. In particular, to create an
FMSV state, one has to first create a TMSV state, given in
Eq. (9), which can be obtained by passing two single-mode
squeezed vacuum states through a 50:50 beam splitter. After
that, each part of the TMSV state along with two vacuum
states are sent through two 50:50 beam splitters, resulting in
the FMSV state.

1. Photon-added and photon-subtracted four-mode state

In this paper, we consider the FMSV state, |ψ4〉, as an initial state and our aim is to find the characteristics of its entanglement
and the measure of non-Gaussianity after adding and subtracting a finite number of photons. Suppose mi number of photons are
added at each mode i, with i = 1,2,3,4. Then the output four-mode (FM) state reads as

∣∣ψadd
{mi }

〉 = 1

N add

∞∑
n=0

(
− tanh r

2

)n n∑
r1,r2=0

√(
n

r1

)(
n

r2

)√
(n − r1 + m1)!

(n − r1)!

√
(n − r2 + m2)!

(n − r2)!

√
(r1 + m3)!

r1!

√
(r2 + m4)!

r2!

×|n − r1 + m1〉|n − r2 + m2〉|r1 + m3〉|r2 + m4〉

≡
∞∑

n=0

n∑
r1,r2=0

p{mi }
n,r1,r2

|n − r1 + m1〉|n − r2 + m2〉|r1 + m3〉|r2 + m4〉, (13)

where N add is the normalization constant. Similarly, after subtracting {mi} (i = 1,2,3,4) number of photons from each mode of
the FMSV state, the resulting state is given by

∣∣ψ sub
{mi }

〉 = 1

N sub

∞∑
n=M

(
− tanh r

2

)n n−m1∑
r1=m3

n−m2∑
r2=m4

√(
n

r1

)(
n

r2

)√
(n − r1)!

(n − r1 − m1)!

√
(n − r2)!

(n − r2 − m2)!

√
r1!

(r1 − m3)!

√
r2!

(r2 − m4)!

×|n − r1 − m1〉|n − r2 − m2〉|r1 − m3〉|r2 − m4〉

≡
∞∑

n=M

n−m1∑
r1=m3

n−m2∑
r2=m4

q{mi }
n,r1,r2

|n − r1 − m1〉|n − r2 − m2〉|r1 − m3〉|r2 − m4〉, (14)

where N sub is the normalization constant and M = max{m1 + m3,m2 + m4}. The above two equations will help us to obtain
several single- and two-mode reduced density matrices which are required to study the behavior of entanglement for a four-mode
state in different bipartitions.

III. MEASURE OF NONCLASSICALITY IN CONTINUOUS
VARIABLE SYSTEMS

The negative Wigner function of a given state indicates
the nonclassical nature of the corresponding state while
the positivity implies the opposite. On the other hand, it
is known that the Wigner function of a Gaussian state is
always positive [33]. Therefore, one can define a measure of
non-Gaussianity or nonclassicality by measuring the departure
of a given state, ρ, in a CV system from a Gaussian state. In
terms of relative entropy distance, it is given by [34–36]

δNG(	) = S(	||	G) = S(	G) − S(	), (15)

where S(η||σ ) = −tr(η log2 σ ) − S(η), and ρG is a Gaussian
state which has the same covariance matrix and first moment

as ρ. Here, S(σ ) = −tr(σ log2 σ ) is the von Neumann entropy
of σ .

The von Neumann entropy, S(	G), of any Gaussian state can
be calculated by using its covariance matrix, σ . For an N -mode
Gaussian state, 	G, the von Neumann entropy is defined [14] as

S(	G) =
N∑

k=1

g(νk), (16)

where νk is the Williamson normal form of the covariance
matrix of the N -mode Gaussian state 	G, and the function
g(x) is given by

g(x) = −x + 1

2
log2

(x + 1

2

)
− x − 1

2
log2

(x − 1

2

)
. (17)
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In this paper, we will take a Gaussian state as the input
state, and after photon addition (subtraction), the diversion of
the output state from the input Gaussian state will be quantified
by δNG.

IV. QUANTUM CORRELATION MEASURES

Quantum correlation measures in bipartite systems, es-
pecially for two qubit systems, are well understood. Such
quantifications include the von Neumann entropy of local
density matrices for pure states [37], entanglement of forma-
tion [38], concurrence [39], and logarithmic negativity [40].
However, measures of quantum correlation in a multipartite
scenario, both in discrete and CV systems, are limited [1,15].
To characterize entanglement in a CV system with multiple
modes, one possibility is to compute von Neumann entropy
in different bipartitions of modes. Another possibility is to
study the logarithmic negativity of two modes which can be
obtained after discarding all the modes except two. In this
section, we briefly discuss the local von Neumann entropy and
the logarithmic negativity in CV systems.

A. Entanglement of a pure state

Entanglement of a bipartite pure state can be defined by the
von Neumann entropy of the reduced density matrix of a given
state [37], i.e.,

E(|ψ〉AB) = S(ρA), (18)

where ρA = trB(|ψ〉AB〈ψ |). In CV systems, entanglement of
a two-mode pure state can be quantified by the von Neumann
entropy of a single mode. The single-mode density matrix can
be a matrix of infinite dimension which has to be diagonalized
to evaluate its von Neumann entropy. The calculation of the
entropy can be carried out after truncating the matrix to a
large block. The block size is determined by checking for
convergence of trace, with increasing block size, to unity up to
a certain significant digit. We will discuss this issue in detail
for a specific scenario.

In the multipartite domain, entanglement is difficult to
characterize even for pure states [1]. However, if one divides
a multipartite system into two blocks, then the entanglement
between the two subsystems is the von Neumann entropy of
one of the blocks, provided the system is in a pure state. The
entanglement between two blocks of a multiparty state can
capture entanglement distribution in the multipartite domain.
Such a quantification has been extensively used in many-body
systems [41]. Here, we divide the multimode system into two
parts and investigate the behavior of the entanglement content
in the bipartition by adding (subtracting) photons in various
modes.

B. Logarithmic negativity

In CV systems, logarithmic negativity (LN) is an important
entanglement measure [40]. For a state ρN , with N = N1 + N2

modes, it is given by

LN(ρN ) = log2 N (ρN ), (19)

where the negativity of the given state is given by

N (ρN ) = 1 + 2

∣∣∣∣∣∑
i

μi

∣∣∣∣∣. (20)

Here μi’s are the negative eigenvalues of the partially

transposed density matrix, ρ
TN1
N , where partial transposition is

taken with respect to the N1 modes [42]. As mentioned for the
evaluation of the von Neumann entropy, LN is also calculated
by truncating to a large block of the infinite dimensional
matrix.

V. COMPARISON OF ENTANGLEMENT ENHANCEMENT
BETWEEN PHOTON ADDITION AND SUBTRACTION

In this section, our aim is to investigate the effects on
entanglement in different bipartitions, when photons are added
(subtracted) in (from) different modes of a four-mode squeezed
vacuum state. To study such behavior, we divide the modes into
two different categories, viz., (1) player modes—the modes in
which the number of photons that we add (subtract) varies, and
(2) spectator modes—the modes in which either no photon or
a fixed number of photons are added (subtracted) and hence
plays a spectator role in the de-Gaussification process. A
comparison has been made between the situations, when the
mi, i = 1,2, . . . photons are added in the player modes, and the
scenario when the same number of photons are subtracted from
the player modes. To execute such comparison, we introduce
a quantity

δE
A({mi}) = E

(
ρ

add{mi }
A:B

) − E
(
ρ

sub{mi }
A:B

)
, (21)

where A :B is a bipartition with A ∩ B = ∅. The positivity
of δE({mi}) implies that addition is better than subtraction
from an entanglement perspective. It is clear that the behavior
of δE

A({mi}) with {mi} depends on the number of player and
spectator modes as well as the bipartite splits.

A. Photon added and subtracted with one player mode

Let us first consider a situation in which one mode acts
as a player while the rest are the spectator modes. We first
restrict ourselves in the 1:234 cut irrespective of the choice
of the player mode. In this case, there exist three different
possibilities of choosing a player mode: (a) first mode as player
and the rest as spectators, (b) second mode as player, and (c)
third mode as player (see Fig. 1). From Eqs. (13) and (14), it is
clear that fourth mode as a player is equivalent with case (b),
and hence we exclude this case.

1. Single player mode in the smallest bipartition

Suppose that we add or subtract m1 photons in the first
mode without putting any number of photons in the rest of the
modes, as shown in Fig. 1(a). Here the first mode acts as a
player. The reduced density matrices can be calculated from
Eqs. (13) and (14), which read as

ρadd
1,m1

= 1

N add
1

∞∑
n=0

tanh2n r

2n

n∑
r1=0

(
n

r1

)
(n + m1 − r1)!

(n − r1)!

×|n + m1 − r1〉〈n + m1 − r1| (22)
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FIG. 1. Schematic diagram of choices of player and spectator
modes as well as partitions. If we fix the bipartition to be 1:234
there are three nontrivial possibilities of choosing a single player in
the photon-added and the photon-subtracted FM state. There are the
cases (a)–(c), and the number in the square mentioned for each case
is the mode at which the photon is added or subtracted.

for photon addition, and

ρsub
1,m1

= 1

N sub
1

∞∑
n=0

tanh2n r

2n

n∑
r1=0

(m1 + r1)!

r1!

(
n + m1

r1 + m1

)

×|r1〉〈r1| (23)

for photon subtraction. We now analytically establish that
entanglement in the bipartition of the player and the spectator
modes increases with the number of photons added.

Proposition. Entanglement increases with the addition of a
single photon in a four-mode photon-added state, i.e.,

E
(∣∣ψadd

m1+1

〉)
1:234 � E

(∣∣ψadd
m1

〉)
1:234, (24)

where |ψadd
m1+i〉, i = 0,1 denotes the state in which m1 + i

number of photons are added at the mode 1.
Proof. To evaluate entanglement in the 1:234 bipartition,

we have to study the single-mode reduced density matrix ρadd
1,m1

of the four-mode state |ψadd
m1

〉. To prove E(|ψadd
m1+1〉)1:234 �

E(|ψadd
m1

〉)1:234, it is equivalent to show S(ρadd
1,m1+1) � S(ρadd

1,m1
).

After inserting the normalization constant in Eq. (22), we get

ρadd
1,m1

= 2m1
(1 − x)m1+1

(2 − x)m1

∞∑
r1=0

f (r1,x)

(
m1 + r1

m1

)

×|m1 + r1〉〈m1 + r1|

=
∞∑

r1=0

g(x,m1,r1)|m1 + r1〉〈m1 + r1|, (25)

where x = tanh2 r ,

f (r,x) =
∞∑

n=r

xn

2n

(
n

r

)
(26)

and

g(x,m,r) = 2m (1 − x)m+1

(2 − x)m
f (r,x)

(
m + r

m

)
. (27)

Therefore, entanglement in the player:spectator
bipartition is given by E(|ψadd

m1
〉1:rest) = S(ρadd

1,m1
) =

−∑∞
r1=0 g(x,m1,r1) log2 g(x,m1,r1).

Now if we add one more photon to the state in
Eq. (22), the entanglement is going to be E(|ψadd

m1+1〉1:rest) =
−∑∞

r1=0 g(x,m1 + 1,r1) log2 g(x,m1 + 1,r1). Let us now
evaluate g(x,m1 + 1,r1). It simplifies as

g(x,m1 + 1,r1) = 2(1 − x)

(2 − x)
g(x,m1,r1)

+ x

2 − x
g(x,m1 + 1,r1 − 1), (28)

by using Pascal’s identity, and the recursion relation of f (r,x),
which is given by

f (r,x) = x

2 − x
f (r − 1,x). (29)

Using the concavity of the function h(x) = −x log2 x, we get

h[g(x,m1 + 1,r1)] � 2(1 − x)

(2 − x)
h[g(x,m1,r1)]

+ x

2 − x
h[g(x,m1 + 1,r1 − 1)]. (30)

Taking the sum over r1 in both sides, we have

S
(
ρadd

1,m1+1

)
� 2(1 − x)

(2 − x)
S
(
ρadd

1,m1

) + x

2 − x
S
(
ρadd

1,m1+1

)
(31)

which immediately implies

S
(
ρadd

1,m1+1

)
� S

(
ρadd

1,m1

)
. (32)

Hence the proof. �
Similarly one can also show that entanglement of the

photon-subtracted state in the player:spectator split increases
with the number of photons subtracted from the state.

We are now going to analyze the effects on entanglement
under addition and subtraction of same number of photons.

Proposition. When a single mode acts as a player, entan-
glement between the player and the spectator modes of the
photon-added state coincide with that of the photon-subtracted
state.

Proof. To prove that the increase of entanglement in the
multimode state is the same for addition and subtraction, we
consider the single-mode reduced density matrix. The single
site reduced density matrix of photon-subtracted state after
inserting N sub

1 is given by

ρsub
1,m1

= (1 − x)m1+1
∞∑

r1=0

(
m1 + r1

m1

)

×
∞∑

n=r1

xn

2n

(
n + m1

r1 + m1

)
︸ ︷︷ ︸

fsub(r1,m1,x)

|r1〉〈r1|, (33)
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FIG. 2. Behavior of E(|ψ add
m1

〉1:234) and E(|ψ sub
m1

〉1:234) vs m1. We
add (×) and subtract (+) up to 40 photons in (from) the first mode,
and calculate entanglement in the 1:234 bipartition, when no photons
are added (subtracted) in (from) the spectator modes. As shown in the
propositions, entanglement in both the cases increases monotonically
with m1 and they coincide. Here the entanglement is plotted in the
unit of ebits while the abscissa is dimensionless.

where

fsub(r1,m1,x) = xr1 2m1+1

(2 − x)r1+m1+1
, (34)

which can be obtained by a recursion relation similar to that
given in Eq. (29). On the other hand, the reduced density matrix
after adding the same number of photons reads as

ρadd
1,m1

=
∞∑

r1=0

2m1
(1 − x)m1+1

(2 − x)m1

2

2 − x

( x

2 − x

)r1

×
(

m1 + r1

m1

)
|r1 + m1〉〈r1 + m1|. (35)

Comparing Eqs. (33) and (35), we have S(ρadd
1,m1

) =
S(ρsub

1,m1
). �

To visualize the above propositions, we plot S(ρadd/sub
1,m1

),
with respect to m1 by fixing the squeezing parameter r = 0.4
in Fig. 2. It clearly shows that the curve for photon addition
merges with the curve of photon subtraction. Moreover, it
shows that entanglement in that bipartition monotonically
increases with the addition or subtraction of photons as
shown in Proposition 1. Note here that although the results
presented here are when the photons are added at mode 1
and the bipartition is considered as player:spectator mode, the
propositions remain unaltered if another mode also acts as a
player by keeping the similar bipartition.

2. Effects on entanglement due to change of partition

We now consider the entanglement in the same bipartition
as in the previous case, i.e., 1 :234. However, the second or
third mode now acts as player and no photons are added in the
rest of the modes. In the previous case, one block contained
only the player mode, while the other one contains all the
spectator modes. In this case, one part of the partition contains
one spectator mode while the other one consists of both the
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FIG. 3. (a) Trends of E(|ψ add
m2

〉1:234) and E(|ψ sub
m2

〉1:234) with the
number of photons added (subtracted) in (from) the second mode. (b)
A similar study has been carried out when the third mode acts as a
player. Both the cases reveal that subtraction is better than addition.
Ordinates are plotted in the unit of ebits, while the abscissas are
dimensionless.

player and the rest of the spectator modes. In the previous case,
we have already shown that the effects on entanglement due to
addition and subtraction of photons are similar. We will now
show whether such observation remains invariant even in this
scenario.

Let us now take the four-mode squeezed vacuum state as
input, and add (subtract) m2 photons in (from) the second
mode. As depicted in Fig. 3(a), we find that unlike the previous
case, the photon-subtracted state possesses more entanglement
in the 1:234 bipartition than that of the photon-added state.
The ordering remains unchanged if one takes the third mode
as player and considers entanglement in the 1:234 split
[see Fig. 3(b)]. Moreover, we observe that the amount of
entanglement decreases in this scenario, compared to the case
when the second mode acts as a player. Note here that if
one takes the two-mode squeezed vacuum state as input,
it was observed that the bipartite entanglement content of
the photon-subtracted state is always lower than that of the
photon-added state.

3. Bipartition with both player and spectator modes

We still restrict ourselves to the case of a single player.
But we now move to the situations in which entanglement of a

FIG. 4. Schematic diagram of two different blocks, when a single
mode, specifically the first mode, acts as a player.
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four-mode state is studied by considering a bipartition in which
both sides of the split contain two modes, namely, 12:34 and
13:24. The other split between modes, i.e., 14 :23, reflects a
similar behavior, due to the symmetry of the four-mode state.
In these two scenarios, photons are added or subtracted in the

first mode, as shown in Fig. 4, and no photons are added or
subtracted in the other spectator modes.

To study entanglement of |ψadd
m1

〉 (|ψ sub
m1

〉) in the 12:34 or
13:24 bipartition, we require the two party reduced density
matrices ρadd

12,m1
, ρadd

13,m1
, ρsub

12,m1
, and ρsub

13,m1
.

We have

ρadd
12,m1

= 1

N add
12

∞∑
n,n′=0

x(n+n′)/2

2n+n′

min{n,n′}∑
r1,r2=0

√(
n

r1

)(
n

r2

)√(
n′

r1

)(
n′

r2

)√
(n + m1 − r1)!

(n − r1)!

√
(n′ + m1 − r1)!

(n′ − r1)!

×|n + m1 − r1〉1|n − r2〉2〈n′ + m1 − r1|1〈n′ − r2|2 (36)

and

ρsub
12,m1

= 1

N sub
12

∞∑
n,n′=m1

x(n+n′)/2

2n+n′

min{n,n′}−m1∑
r1=0

min{n,n′}∑
r2=0

√(
n

r1

)(
n

r2

)√(
n′

r1

)(
n′

r2

)√
(n − r1)!

(n − m1 − r1)!

√
(n′ − r1)!

(n′ − m1 − r1)!

×|n − m1 − r1〉1|n − r2〉2〈n′ − m1 − r1|1〈n′ − r2|2. (37)

Note that in the previous cases, where one partition contains
only a single mode, we required single-site density matrices
to calculate the entanglement, and they are always diagonal in
the number basis. The same is not the case for two-site density
matrices. Similarly, one can find out the reduced density
matrices of ρadd

13,m1
and ρsub

13,m1
. In both scenarios, we observe

that entanglement increases against the number of photons
added, m1, and the same is true for subtraction of photons (see
Fig. 5). Moreover, as observed in the previous case with the
smallest partition consisting of the spectator mode, the photon-
subtracted state contains higher entanglement in the 12:34
as well as 13:24 partitions than that of the corresponding
photon-added state [see Figs. 5(a) and 5(b)].

We briefly mention here the method used to calculate
S(ρadd

12,m1
), and the other local entropies. The von Neumann

entropy of ρadd
12,m1

can be obtained if one can diagonalize the
infinite dimensional matrix, given in Eq. (36). To calculate
it, for fixed m1, we have to truncate the summation up to
a large value of n and n′, say N for both, and calculate
its trace, i.e., trN (ρadd

12,m1
), as well as von Neumann entropy,

SN (ρadd
12,m1

). We then choose 2N as maximum of n and n′ and
obtain the quantities. When the difference between SN (ρadd

12,m1
)

and S2N (ρadd
12,m1

) is of the order of 10−6, we take SN (ρadd
12,m1

)
as the actual entropy. In Fig. 6, for a fixed value of m1, we
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FIG. 5. Plots of entanglements of photon-added and photon-
subtracted states in the 12:34 (a) and 13:24 (b) bipartitions with
m1. The ordinates are plotted in the unit of ebits, while the abscissas
are dimensionless.

plot SN (ρadd
12 ) and trN (ρadd

12 ) with the variation of N . With the
increase of m1, we observe that we require higher values of N .
However, the figure shows both the quantities converge when
N � 10, irrespective of the value of m1. When we compute
entropy or LN, we always carry out a similar scaling analysis
for choosing N .

B. Behavior of entanglement of photon-added and
photon-subtracted states with two player modes

In this section, keeping the four-mode squeezed vacuum
state as the input state, we increase the number of players
from one to two modes, and hence the possibilities of
choosing the player modes with nontrivial bipartition grows
substantially. For a fixed bipartition, we investigate the nature
of entanglement by changing the modes in which photons
are added or subtracted. Up to now, we have shown that the
entanglement content of the resulting state after subtracting
photons is either equal or higher than that of the photon-added
states. Let us now investigate whether such situation persists
when two modes are players.

 0

 1
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 0  10  20  30

SN
(ρ

12ad
d )

N

(a)

m1 = 10
m1 = 25
m1 = 40

 0

 0.5

 1
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tr
N

(ρ
12ad

d )

N

(b)

m1 = 10
m1 = 25
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FIG. 6. Plot of convergence of von Neumann entropy SN (ρadd
12,m1

)
in (a) and trN (ρadd

12,m1
) in (b) against N which is the maximum value

of n and n′. We choose three different values of m1, viz., m1 =
10,25,40. We find that, for example, for m1 = 40, trace goes to unity
and the entropy (entanglement) converges for N � 10. Here the von
Neumann entropy is measured in the unit of bits and the trace and the
abscissas are dimensionless.
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FIG. 7. Schematic diagram of four nontrivial possibilities of
choosing two modes as players in the 1:234 bipartition. Other choices
can be shown as repetitions due to the symmetry of the FM state.

1. One part of the bipartite split contains a single mode

We begin by concentrating on the entanglement of the
FM state after the addition (subtraction) of photons in the
1:234 bipartition. In this scenario, there are four possibilities
for adding and subtracting photons. As shown in Fig. 7, the
modes that act as players are as follows: (a) the first and the
second mode, (b) the first and the third mode, (c) the second
and the third mode, and (d) the second and the fourth mode.
Other possibilities can be reduced to any one of the above four
cases due to the symmetry in the four-mode squeezed state.
Moreover, it can be shown that the entanglement pattern of
cases (a) and (b) are qualitatively similar, while cases (c) and
(d) are analogous and hence the entanglement features will be
studied in pairs.

Cases (a) and (b). We now consider the situation where
either the first and the second modes act as players or the first
and the third modes are players. We calculate the δE

1 (m1,mi)
(i �= 1), when no photons are added and subtracted from the
spectator modes.

We observe that there exists a region for which
δE

1 (m1,mi) > 0, which is in contrast with the case when one
mode was player in the preceding subsection [see Fig. 8(a)]. As
seen from the figure, for moderate values of m1, the boundary
between the positive and negative regions is almost a straight
line and hence we can find the slope of the straight line
which can help to study these cases quantitatively. We find
that for high values of m1, the slope of δE

1 (m1,m3) = 0 is
approximately 0.28, which is small compared to the slope
of δE

1 (m1,m2) = 0, which is 0.64. Moreover, we notice that
max[δE

1 (m1,m3)] = 0.2 < max[δE
1 (m1,m2)] = 0.4, while the

minimum value of δE
1 (m1,m3)(=−2.0) is smaller than that

of δE
1 (m1,m2)(=−1.6), in the regions surveyed. Therefore,

we can conclude that to create maximal entanglement in this
scenario, photon addition is advantageous when one adds
photons in the first and the second modes compared to the
case of m1 and m3 being players (with m1  mi, i = 2,3).

In both cases, spectator modes play an important role in
the behavior of entanglement in the 1:234 bipartition. As
depicted in Fig. 8(b), entanglement in the photon-added state

FIG. 8. Behavior of δE
1 (m1,m3) against m1 (horizontal axes) and

m3 (vertical axes). Panels (a) and (b) correspond to inactive and
active spectator modes, respectively. In (b) we add (subtract) m2 =
5 photons in (from) the second mode. If both second and fourth
modes are active spectators, the region of δ1(m1,m3) increases in the
(m1,m3) plane. For example, if we choose m2 =, and m4 =, the region
for which δE

1 (m1,m3) > 0 increases. All the axes are dimensionless,
while entanglements are plotted in the unit of ebits.

can be increased by adding photons in the spectator modes.
For example, when m2(4) = 5,δE

1 (m1,m3) against m1 and m3

is depicted in Fig. 8(b). A quantitative comparison can be
made between Figs. 8(a) and 8(b). In particular, for m1  m3,
the region with δE

1 (m1,m3) > 0 when no photons are added
(subtracted) in the spectator modes can be calculated. In this
limit, we assume that the boundary is a straight line and hence
the area is the area of a quadrilateral. Let us call the area as �0.
In this case, we calculate the area of the quadrilateral when
m1 � 25 and m1 � 40, and we find �0 ≈ 160. After adding
(subtracting) five photons in the second or fourth modes,
we find that the area �5 of the corresponding quadrilateral
increases and �5 ≈ 253.

Behavior of entanglement in the 1:234 split for cases (c)
and (d) are almost identical with the previous cases. The only
difference is that entanglement of the subtracted state is always
better than that of the added state when spectator modes are
inactive. The picture changes, i.e., entanglement of the photon-
added states starts increasing faster than the photon-subtracted
states, like in the preceding cases, when fixed numbers of
photons are added (subtracted) in the spectator mode(s).

2. Bipartition containing equal number of modes

We will now consider the case where we still keep two
modes as players but we now divide four modes into two blocks
consisting of two modes instead of one mode in the preceding
discussion. In this case, the two nontrivial bipartitions are
12:34 and 13:24. Let us first concentrate on the bipartition
13:24. In this case, the symmetry of the FMSV state after the
addition or subtraction of an arbitrary number of photons in all
the modes, given in Eqs. (13) and (14), ensures that there are
only two nontrivial situations in the case of two player modes
(see Fig. 9). They are (a) when the players are the first and the
second modes, and (b) when the first and third modes act as
players. Cases (a) and (b) show similar entanglement behavior
like previous cases, when one part of the bipartition contains
a single mode, and hence we only discuss the situation when
two spectator modes are active, which has not been analyzed
before.
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FIG. 9. Distinct scenarios of two player modes in the 13:24 split.
There are two possibilities: (a) first and second as players and (b) first
and third as players.

Case (a). The reduced density matrix of the first and the
third mode, for the photon-added state, is given by

ρadd
13,{mi } = tr24

(∣∣ψadd
{mi }

〉〈
ψadd

{mi }
∣∣)

=
∞∑

n=0

n∑
r1=0

an,r1,q |n + m1 − r1〉1|m3 + r1〉3

×〈n + m1 − q|1〈m3 + q|3, (38)

where we write

an,r1,q

= 1

N add
13

xn

2n

n∑
r2=0

[(
n

r1

)(
n

q

)]1/2(
n

r2

)

×
(

(n + m1 − r1)!

(n − r1)!

(n + m1 − q)!

(n − q)!

(m3 + r1)!

r1!

(m3 + q)!

(q)!

)1/2

× (n + m2 − r2)!

(n − r2)!

(m4 + r2)!

r2!
. (39)

Similarly, one can also find the two party reduced density
matrix, ρsub

13,{mi }, for photon subtraction by tracing out the
second and fourth modes in Eq. (14).

If the first and second modes act as players, we find that
subtraction is always better than addition for arbitrary values
of m1 and m2. This case is similar to the case with a single
mode being player and cases with second and third modes or
second and fourth modes being players. To show once more
that spectators play a fundamental role in interchanging the
entanglement property for photon addition and subtraction,
we elaborate the analysis in two scenarios: (1) when a fixed
number of photons are added (subtracted) in a single spectator
mode, a positive region emerges, which indicates that the
quantum correlation in the 13:24 bipartition is greater for
photon addition than that for subtraction, as already seen
before. An interesting point to note here is that a positive
region appears for small values of m2 and almost for all values
of m1. This is probably due to the fact that we add photons
in the third mode which belongs to the same block as the
first mode. (2) When both the spectator modes are active, the

FIG. 10. Role of spectator modes in δE
13(m1,m2). In (a), m3 = 10

and m4 = 0, while in (b) m3 = m4 = 5. We see that spectator modes
help to enhance entanglement in the photon-added state. All the axes
are dimensionless, while entanglements are plotted in the unit of ebits.

positive region can be seen in both the axes due to symmetry
present in the FM state, as depicted in Fig. 10(b).

Finally, we concentrate on a nontrivial partition, the 12:34
cut (see Fig. 11). From the perspective of entanglement, this
partition is unique. In this scenario, there are three ways
to choose the players. We find that with and without the
participation of spectator modes, the entanglement of photon
subtraction is always higher or equal to that of the photon
addition which makes this situation exclusive from others.

VI. COMPARISON OF LOGARITHMIC NEGATIVITY
BETWEEN TWO-MODE AND FOUR-MODE STATES

Up to now, we have considered an FMSV state as input and
have compared the behavior of entanglement between photon-
added and photon-subtracted states as well as entanglement
of an output state in different bipartitions having different
player and spectator modes. In this section, our aim is to
make a comparison between the output state obtained from
the TMSV state after adding or subtracting photons and the
two-mode state obtained from the FMSV state. To perform
such comparison, we discard two modes from the four-mode
state and calculate the LN of the two-mode reduced state,
which we then compare with the LN of the photon-added
(subtracted) state that is obtained from the TMSV state as the
input [24].

When the input state is a TMSV state, the output state after
photon addition or subtraction remains a pure state. When the

FIG. 11. Schematic diagram of choices of two player modes in
the 12:34 split.
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input state is a FMSV state, the state after photon addition
and subtraction is again a pure state, but of four modes.
The entanglement of this four-mode state can be analyzed
in several ways. If one analyzes the entanglement properties
of this state in bipartite partitions, then entanglement entropy
serves as a good measure. However, if one wishes to analyze its
entanglement properties between two modes, when the other
two modes have been traced out, then one needs to use a
measure that is well defined and computable for two-mode
mixed quantum states. One is then naturally led to use the
logarithmic negativity. To perform a comparison between the
entanglements of the two-mode output states obtained from the
TMSV state as input, and of the two-mode state obtained from
the corresponding FMSV state as input, we use the logarithmic
negativities for both. This is because the former state is a pure
state, while the latter is a mixed one, and logarithmic negativity
is well defined and computable for both the states.

In the case of the TM state, the output state, after adding
(subtracting) photons, still remains pure and hence LN can
be calculated analytically [28]. However, for the FM case,
the output state is mixed which is obtained by discarding
two modes and we adopt the same mechanism as we have
done to calculate the von Neumann entropy of reduced density
matrices, described in Sec. V A 3. In particular, we evaluate
LN as well as trace for large n = N , and then by increasing N ,
we check whether trace goes to unity up to six decimal points.
We truncate the system when trace has already converged to
unity, up to six decimal points.

In the TMSV case, photons can be added to either of the
modes or to both the modes. On the other hand, there are
several scenarios for the four-mode states. If there is a single
player, either one of the modes of the output state can act as
player or none of the modes of the output state is the player. In
the case of two players, (i) two players can be the two modes
of the output state, (ii) one mode of the output state can be a
player, or (iii) the discarded modes can be the player modes.

Before considering the FMSV state, let us first consider the
TMSV state as input. Note that the nature of LN qualitatively
matches with the von Neumann entropy of the reduced density
matrix. As shown in [24], when the single mode acts as player,
the LN for photon addition coincides with the subtraction,
which is also the case for the von Neumann entropy. If both the
modes act as players, photon addition is always more beneficial
for entanglement than photon subtraction [24], which can be
seen from the behavior of LN of the output state.

In the case of a single player or two players in the FM
state, if the output state contains the player mode(s), then
the reduced two-mode state obtained from the photon-added
state has higher LN than that of the photon-subtracted state.
Hence, the behavior of the LN of the output state from the
TM and FM states is identical. As we have shown, this is
not the case if we consider the behavior of entanglement of
the pure four-mode output state in bipartitions. Figure 12
depicts the behavior of the LN of the two-mode reduced
state from the four-mode output state when the first mode
acts as player as well as both the modes of the two-mode
state are players. In all these situations, no photons are added
(subtracted) in the spectator modes. We observe that when
there is a single player, e.g., the first mode of the reduced
state, entanglement increases (decreases) monotonically, if
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FIG. 12. LN between the first and second modes obtained from
the FM output state. (a) First mode is player. (b) First and second
modes are players with m1 + m2 = 20. (c) First mode is player while
the second one is spectator with m2 = 10. The ordinates are plotted
in the unit of ebits, while the abscissas are dimensionless.

photons are added (subtracted). However, such monotonicity
with respect to the number of photons added (subtracted) is
lost if photons are added (subtracted) in both the modes with
total number of photons being fixed as shown in Fig. 12(b).
A similar qualitative feature in entanglement is seen when the
first mode acts as player while second mode is a spectator
having a fixed finite number of photons [see Fig. 12(c)]. We
find that the bipartite entanglement reaches its maximum with
respect to m1, when an equal number of photons are added
(subtracted) in both the modes, i.e., m1 = m2, in Fig. 12(b)
and m1 ≈ m2 in Fig. 12(c).

Lastly, we consider the scenario when we add and subtract
photons in the discarded modes, i.e., in the third and fourth
modes, and we find the LN between the first and the second
modes, which are spectators. The LN of the output state
decreases if one of the discarded modes acts as a player.
For example, by taking the third mode as player, we plot the
LN of the first and the second mode with m3 in Fig. 13(a).
Unlike previous cases, the LN of the photon-subtracted
state is higher than that of the added state when m3 � 9,
which can never be observed for the TM case. The LN
of the photon-subtracted state is more pronounced than that
of the added one if both the discarded modes act as players.
The same number of photons are added (subtracted) in (from)
both the spectator modes, i.e., m3 = m4, as shown in Fig. 13(b)
in which LN(ρsub

34 ) � LN(ρadd
34 ).

VII. NONCLASSICALITY MEASURE OF THE
PHOTON-ADDED (-SUBTRACTED) FM STATE

As mentioned in the Introduction, the photon addition and
subtraction is one of the ways to create a non-Gaussian state.
In this section, we quantify the departure of the photon-added
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FIG. 13. (a) The nature of LN of the first and second modes
against the number of photons added (subtracted) in (from) the third
mode which has been traced out. (b) LN of the same state in which
third as well as fourth modes act as players. The equal number
of photons are added (subtracted) in (from) both the modes. The
ordinates are plotted in the unit of ebits, while the abscissas are
dimensionless.

(-subtracted) FMSV state from Gaussianity, as a function of
added (subtracted) photons from the player modes, which was
introduced in Sec. III.

Since the photon-added (-subtracted) FM state is in a pure
state, the second term of δNG(ρ), given in Eq. (15), vanishes.
To calculate δNG(ρ), we have to find the covariance matrix of
ρG, which is same as ρ

add/sub
{mi } = |ψ〉〈ψ |add/sub

{mi } . It is given by

σ	 =

⎛
⎜⎜⎝

〈q2
1 〉I 〈q1q2〉σz 〈q1q3〉I 〈q1q4〉σz

〈q1q2〉σz 〈q2
2 〉I 〈q2q3〉σz 〈q2q4〉I

〈q1q3〉I 〈q2q3〉σz 〈q2
3 〉I 〈q3q4〉σz

〈q1q4〉σz 〈q2q4〉I 〈q3q4〉σz 〈q2
4 〉I

⎞
⎟⎟⎠, (40)

where qi = âi + â
†
i , and the expectations are taken over

the photon-added and photon-subtracted FM states, given in
Eqs. (13) and (14) (for details, see the Appendix).

The Williamson normal form of Eq. (40) can be evaluated
by using the prescription given in [43]. We numerically
calculate the Williamson normal form of the matrix in Eq. (40)
for both photon addition and subtraction and calculate the
non-Gaussianity, which in this case reduces to S(ρadd/sub

G,{mi } ).
In all the cases, photon addition leads to a more rapid

departure of Gaussianity than that of the photon subtraction.
We also notice that if among four modes, photons are added
only in two modes, then the behavior of δNG obtained in
the FM state and the TM state are qualitatively similar. It
is clear from the behavior of the non-Gaussianity measure that
the photon-subtracted state slowly becomes non-Gaussian as
compared to the photon-added state and the behavior remains
unchanged irrespective of the choices of the player and the
spectator modes (see Fig. 14). The rich picture of the role
of different modes, captured by entanglement, is not seen by
the non-Gaussianity measure and hence indicates that there is
possibly no direct connection between non-Gaussianity and
entanglement content of the output state obtained after photon
addition (subtraction) [24].

VIII. CONCLUSION

Photon addition and subtraction constitute useful methods
to prepare non-Gaussian states. It has already been established
that non-Gaussian states are useful in various quantum-
mechanical tasks ranging from entanglement distillation to
quantum error correction. We have investigated the entan-
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FIG. 14. Behavior of non-Gaussianity measure δNG against m1.
(a) First and second modes are players with m1 + m2 = 10. Spectator
modes are ineffective. (b) Spectator modes are active with m3 = 4
and in player modes, m1 + m2 = 10. The ordinates are plotted in the
unit of bits, while the abscissas are dimensionless.

glement properties of the non-Gaussian states generated by
adding or subtracting photons in Gaussian states. In the case
of two-mode states, entanglement of photon-added states are
known to be equal or higher than that of the photon-subtracted
ones.

We have shown that this is not the case when one increases
the number of modes. We found that for four-mode states,
the trend of entanglement distribution in different bipartitions
of the photon-added (-subtracted) states is much richer than
that in the two-mode states. Specifically, we showed that there
exists a scenario, in which multimode entanglement content
of the photon-subtracted state is always higher than that of
the corresponding photon-added one. The results remained
unchanged even if one discarded two modes from the four-
mode output state. Moreover, we showed that the picture that
emerges from entanglement of the output state does not match
with the behavior in the same states of distance-based non-
Gaussianity measures. Up to now, it was known that among
addition and subtraction, addition is more beneficial. But our
work shows that photon subtraction can also be advantageous
if we consider a state of a higher number of modes.

ACKNOWLEDGMENT

R.P. acknowledges financial support through the INSPIRE-
faculty position at Harish-Chandra Research Institute (HRI)
from the Department of Science and Technology, Government
of India.

APPENDIX

The expectations used in Eq. (40), for the calculation of
non-Gaussianity, taken over the photon-added and photon-
subtracted states are given below.

〈
q2

1

〉add = 1 + 2m1 + 2
∑

n,r1,r2

(
p{mi }

n,r1,r2

)2
(n − r1), (A1)

〈
q2

2

〉add = 1 + 2m2 + 2
∑

n,r1,r2

(
p{mi }

n,r1,r2

)2
(n − r2), (A2)

〈
q2

3

〉add = 1 + 2m3 + 2
∑

n,r1,r2

(
p{mi }

n,r1,r2

)2
r1, (A3)

〈
q2

4

〉add = 1 + 2m4 + 2
∑

n,r1,r2

(
p{mi }

n,r1,r2

)2
r2, (A4)
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〈q1q2〉add = 2
∑

n,r1,r2

p{mi }
n,r1,r2

p
{mi }
n+1,r1,r2

√
(n + m1 − r1 + 1)(n + m2 − r2 + 1), (A5)

〈q1q3〉add = 2
∑
n,r2

n−1∑
r1=0

p{mi }
n,r1,r2

p
{mi }
n,r1+1,r2

√
(n + m1 − r1)(m3 + r1 + 1), (A6)

〈q1q4〉add = 2
∑

n,r1,r2

p{mi }
n,r1,r2

p
{mi }
n+1,r1,r2+1

√
(n + m1 − r1 + 1)(m4 + r2 + 1), (A7)

〈q2q3〉add = 2
∑

n,r1,r2

p{mi }
n,r1,r2

p
{mi }
n+1,r1+1,r2

√
(n + m2 − r2 + 1)(m3 + r1 + 1), (A8)

〈q2q4〉add = 2
∑
n,r1

n−1∑
r2=0

p{mi }
n,r1,r2

p
{mi }
n,r1,r2+1

√
(n + m2 − r2)(m4 + r2 + 1), (A9)

〈q3q4〉add = 2
∑

n,r1,r2

p{mi }
n,r1,r2

p
{mi }
n+1,r1+1,r2+1

√
(m3 + r1 + 1)(m4 + r2 + 1), (A10)

where
∑

n,r1,r2
in the photon-added states, is the short form of

∑
n=0

∑n
r1=

∑n
r2=0. Further, for the photon-subtracted states,〈

q2
1

〉sub = 1 − 2m1 + 2
∑

n,r1,r2

(
q{mi }

n,r1,r2

)2
(n − r1), (A11)

〈
q2

2

〉sub = 1 − 2m2 + 2
∑

n,r1,r2

(
q{mi }

n,r1,r2

)2
(n − r2), (A12)

〈q2
3 〉sub = 1 − 2m3 + 2

∑
n,r1,r2

(q{mi }
n,r1,r2

)2r1, (A13)

〈
q2

4

〉sub = 1 − 2m4 + 2
∑

n,r1,r2

(
q{mi }

n,r1,r2

)2
r2, (A14)

〈
q1q2

〉sub = 2
∑

n,r1,r2

q{mi }
n,r1,r2

q
{mi }
n+1,r1,r2

√
(n − m1 − r1 + 1)(n − m2 − r2 + 1), (A15)

〈q1q3〉sub = 2
∑
n,r2

n−m1−1∑
r1=m3

q{mi }
n,r1,r2

p
{mi }
n,r1+1,r2

√
(n − m1 − r1)(r1 − m3 + 1), (A16)

〈q1q4〉sub = 2
∑

n,r1,r2

q{mi }
n,r1,r2

q
{mi }
n+1,r1,r2+1

√
(n − m1 − r1 + 1)(r2 − m4 + 1), (A17)

〈q2q3〉sub = 2
∑

n,r1,r2

q{mi }
n,r1,r2

q
{mi }
n+1,r1+1,r2

√
(n − m2 − r2 + 1)(r1 − m3 + 1), (A18)

〈q2q4〉sub = 2
∑
n,r1

n−m2−1∑
r2=m4

q{mi }
n,r1,r2

q
{mi }
n,r1,r2+1

√
(n − m2 − r2)(r2 − m4 + 1), (A19)

〈q3q4〉sub = 2
∑

n,r1,r2

q{mi }
n,r1,r2

q
{mi }
n+1,r1+1,r2+1

√
(r1 − m3 + 1)(r2 − m4 + 1), (A20)

where
∑

n,r1,r2
is the short form of

∑
n=M

∑n−m1
r1=m3

∑n−m2
r2=m4

, and M = max{m1 + m3,m2 + m4}.
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Phys. 75, 281 (2003); H. Häffner, C. Roos, and R. Blatt, Phys.
Rep. 469, 155 (2008); T. Monz, P. Schindler, J. T. Barreiro, M.
Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hänsel, M.
Hennrich, and R. Blatt, Phys. Rev. Lett. 106, 130506 (2011); J.
T. Barreiro, J.-D. Bancal, P. Schindler, D. Nigg, M. Hennrich,
T. Monz, N. Gisin, and R. Blatt, Nat. Phys. 9, 559 (2013).

[8] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2005); C. Negrevergne, T. S. Mahesh, C. A. Ryan, M.
Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D. G.
Cory, and R. Laflamme, Phys. Rev. Lett. 96, 170501 (2006).

[9] W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, Appl.
Phys. Lett. 96, 241113 (2010); P. C. Maurer, G. Kucsko, C. Latta,
L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawsk, D. Hunger, N.
Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M.
D. Lukin, Science 336, 1283 (2012); K. Nemoto, M. Trupke,
S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T.
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