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Entanglement dynamics of the ultrastrong-coupling three-qubit Dicke model
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We give an analytical description of the dynamics of the three-qubit Dicke model using the adiabatic
approximation in the parameter regime where the qubit transition frequencies are far off-resonance with the
field frequency and the interaction strengths reach the ultrastrong-coupling regimes. Qualitative differences arise
upon comparison to single- and two-qubit systems. Simple analytic formulas show that three revival sequences
produce a three-frequency beat note in the time evolution of the population. We find an explicit way to estimate the
dynamics for qubit-field and qubit-qubit entanglement inside the three-qubit system in the ultrastrong-coupling
regime, and the resistance to sudden death proves that the entanglement in the Greenberger-Horne-Zeilinger state
is more robust than that in the W state.
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I. INTRODUCTION

Recent experimental studies have shown that the
ultrastrong-coupling regime, where the coupling strength is
some tenths of the mode frequency, can be achieved in a num-
ber of implementations such as superconducting circuits [1–4],
semiconductor quantum wells [5–7], and possibly also surface
acoustic waves [8] and trapped ions [9]. The fast-growing
interest in the ultrastrong-coupling regime is motivated not
only by theoretical predictions of novel fundamental properties
[10–12] but also by potential applications in quantum comput-
ing tasks [13,14]. The advent of these impressive experimental
results prompts a number of theoretical efforts to find analytical
solutions for the quantum Rabi and Dicke models [15,16]
by applying various techniques [17–21]. On the other hand,
the models are expanded to more general cases, including
different qubits [22–26], anisotropic couplings [27–29], a
finite-size ensemble of interacting qubits [30], and two-photon
interactions [31], to name just a few.

In particular, people start to tackle the entanglement
features both between the qubit and the field and inside
the qubit system, yet with the rotating-wave approximation
(RWA) [32–35]. Entanglement, as a fundamental quantum
mechanical tool describing the nonlocal correlations between
quantum objects, lies at the heart of quantum information
sciences [36–38]. It is strongly expected that nontrivial
population and entanglement dynamics will emerge in the
ultrastrong-coupling regime where the RWA fails. For the
Rabi model, a displaced Fock-state method [39] is developed
to analytically predict the time evolution of the qubit’s
occupation probability in the case of strong coupling and
large detuning. The key step is the adiabatic approximation,
which nicely truncates the system Hamiltonian into a block
diagonal form, and the resulting solutions are utilized to study
the entanglement dynamics in a two-qubit system [25,40].
Specifically, a simple expression of the concurrence [41] for
the two qubits is given analytically and entanglement sudden
death appears even in the inhomogeneous coupling case. The
circuit quantum electrodynamics (QED) architecture offers
considerable potential for simulating such dynamics following
an analog-digital approach [42].
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This study was stimulated by the lack of an analytical
analysis of bipartite entanglement in a multiqubit system in
the ultrastrong-coupling regime. The typical model for this is
the three-qubit Dicke model, characterized by a realistic real-
ization of a Greenberger-Horne-Zeilinger (GHZ) state [43].
Recently, it has been shown that superconducting circuit
technology allows the exploitation of dynamical Casimir effect
physics as a useful resource for the generation of highly
entangled states for multisuperconducting qubits [44]. It is
thus desirable to demonstrate whether the sudden death of
entanglement would survive the dissipative effects in the
strong- and ultrastrong-coupling regimes [45]. Including the
dissipation in the model is a hard computational task for
numerical solution of the master equation since the mean
photon number increases exponentially with time until it
is balanced by the diminishing coupling strength to high-
photon-number spaces. Here, we, on the other hand, show
the robustness of the three-qubit GHZ and W states against the
interaction and the energy exchange between the qubits and
the field in the Dicke model, which could be of importance
for future applications, e.g., in quantum cryptography [46,47],
quantum computation [48], and quantum gates [49–51].

This paper is organized as follows. We solve the three-qubit
Dicke model in a spin-3/2 subspace and derive the analytical
eigensolutions by means of the adiabatic approximation in
Sec. II. These results are applied to study of the population
dynamics of three qubits coupled to, respectively, a Fock state
and a coherent state of the oscillator in Sec. III. The spectrum
of the multirevival signal is analyzed and compared to the
numerical calculation without the adiabatic approximation.
Then we explore the entanglement dynamics for three qubits
starting from the GHZ or W state and the field in a coherent
state and show the robustness of the GHZ state through the
bipartite entanglement measure I tangle and the negativity in
Sec. V. Finally, a brief summary is presented in Sec. VI.

II. EIGENSOLUTION OF THE THREE-QUBIT
DICKE MODEL

We consider the three-qubit Dicke model described by the
following Hamiltonian (� = 1) [16,19,20]:

H = ωca
†a − ωJx + 2g(a† + a)Jz. (1)

2469-9926/2016/93(5)/052305(7) 052305-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.052305


LIJUN MAO, YANXIA LIU, AND YUNBO ZHANG PHYSICAL REVIEW A 93, 052305 (2016)

Here a† (a) is the creation (annihilation) operator of the
single bosonic mode with frequency ωc, ω denotes the qubit
splitting, the constant g represents the coupling between the
qubit and the field mode, and the total spin operator is the
sum of the Pauli operators of the individual qubits, i.e.,
Ji = ∑3

α=1 σα
i /2 (i = x,y,z). Note that J 2 commutes with the

Hamiltonian, (1), i.e., [J 2,H ] = 0, this provides a splitting of
the eight-dimensional spin space into a quadruplet state space
j = 3/2 and two doublet state spaces j = 1/2,

H = H 3/2 ⊕ H 1/2 ⊕ H 1/2, (2)

which comes from three possible standard Young

tableaux 1 2 3 , 1 2
3

, and 1 3
2 in representation theory of

permutation-group theory [52]. The three-qubit Dicke model
thus decomposes into a system of one spin-3/2 and two
spin-1/2 Rabi models [19]. While both models have been
solved using the displaced Fock-space method [17,20,39]
and Bargmann-space techniques [18,19], little attention has
been paid to the analytical dynamics of the qubit occupation
probability due to the cumbersome task of extracting the
analytical solution in both formulations. Indeed the power
series must be terminated in the transcendental function
G±(x) [18] or the expansion of the wave function in terms
of displaced Fock space should be truncated in a finite Ntr

subspace [17,20].
Here, similar to the cases of the single-qubit [17,39]

and two-qubit [25,40] Rabi models, we apply the adiabatic
approximation to the numerical solutions when the frequencies
of the qubits are much lower than the oscillator frequency
ω � ωc. In this displaced oscillator basis the Hamiltonian
may be truncated to a block-diagonal form and the blocks
solved individually. We confine ourselves in the following to
a system with a four-dimensional spin subspace of j = 3/2,
due to the fact that the Hamiltonian only couples states in this
subspace, all interesting dynamics with the initial GHZ and W
states in the three-qubit system prepared in the experiments
is confined in this subspace, and best of all, this method is
the most effective way to study analytically the dynamical
properties of three qubits. The Hamiltonian H 3/2 reduces to a
4 × 4 block diagonal form, i.e., H 3/2 = ∑∞

n=0 ⊕Hn with

Hn =

⎛
⎜⎜⎜⎜⎝

εn
3/2

√
3�n 0 0√

3�n εn
1/2 2�n 0

0 2�n εn
1/2

√
3�n

0 0
√

3�n εn
3/2

⎞
⎟⎟⎟⎟⎠, (3)

where εn
m = ωc(n − β2

m). The system is spanned by the the joint
spin-field space |3/2,m〉|n〉Am

, where |j,m〉 are eigenstates
of J 2 and Jz with eigenvalues j (j + 1) and m = −j,−j +
1, . . . ,j , respectively, and the displaced Fock states satisfy
A

†
mAm|n〉Am

= n|n〉Am
, with Am = a + βm, βm = mα, and

α = 2g/ωc. The off-diagonal elements in the matrix are given
by

�n = −ω

2
e− α2

2

n∑
l=0

(−1)n−ln!

l![(n − l)!]2
α2(n−l). (4)

It can be easily proved that the parity operator defined in the
spin-3/2 subspace as �3/2 = exp [iπ (3/2 − Jx + a†a)], with

eigenvalues κ = ±1, commutes with the Hamiltonian, i.e.,
[H 3/2,�3/2] = 0. Accordingly, the Hilbert space splits into
two mutually orthogonal subspaces with even and odd pari-
ties [19]. The four eigenstates of Hn are nondegenerate and can
be classified uniquely by one quantum number. However, for
numerical solutions beyond the adiabatic approximation, it is
necessary to use the parity operator to classify the degeneracies
that take place between levels of states with different parities.
For consistency, we use parity invariance [Hn,�n] = 0, with
�n an antidiagonal matrix (−1)nadiag[1,1,1,1], to further
block diagonalize Hn as Hn = ∑

κ=±1 ⊕Hκ
n , with

Hκ
n =

(
εn

3/2

√
3�n√

3�n εn
1/2 + 2ξ�n

)
(5)

and ξ = κ(−1)n. The energy levels are given by

Eκ±
n = nωc + ξ�n − 5g2/ωc ± θκ

n , (6)

with θκ
n = √

(ξ�n + 4g2/ωc)2 + 3�2
n. The corresponding

eigenstates in the spin-field space are∣∣ψκ±
n

〉 = dκ±
n

(
cκ±
n ,1,ξ,ξcκ±

n

)T
, (7)

with cκ±
n = √

3�n/(ξ�n + 4g2/ωc ± θκ
n ) and dκ±

n =
1/

√
2|cκ±

n |2 + 2. We restrict the analysis in the following to
the case of |�n| � 4g2/ωc fulfilled by most experimental
systems in the ultrastrong-coupling regime g � 0.08ωc,
which enables us to achieve an analytical dynamics below.
The eigenvalues are therefore simplified to

Eκ±
n = nωc + (ξ ∓ 2)�n, (8)

and the corresponding eigenfunctions are

∣∣ψκ±
n

〉 =
√

2 ∓ ξ

8

( √
3

ξ ∓ 2
,1,ξ,

ξ
√

3

ξ ∓ 2

)T

. (9)

We observe that the parity κ and the photon number n in the
displaced Fock state are independent of each other. This is
due to the fact that in constructing the unitary transformation
which brings the Hamiltonian into a block-diagonal form, (5),
a phase difference nπ is introduced in the superposition of
two displaced Fock states |n〉Am

in opposite directions so that
the symmetric and antisymmetry superposition states of the
corresponding bases have, respectively, even and odd parities.
This situation resembles the parity of the ground state and the
first excited state in the standard quantum tunneling model of
a double-well potential.

III. POPULATION DYNAMICS

After a detailed discussion of the energy spectrum, we now
turn to the study of the population dynamics of the qubits. In
particular, we examine the dynamics with all three qubits being
excited to the upper level |eee〉, while the initial state of the
oscillator is prepared in the displaced Fock basis corresponding
to it, i.e., |�(0)〉 = |3/2,3/2〉|n〉A3/2

, which is expressed as the
linear combination of the eigenvectors, (7):

|�(0)〉 =
∑
κ,τ

dκτ
n cκτ

n

∣∣ψκτ
n

〉
. (10)
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Then at a subsequent time t the probability of finding three
qubits in the initial state |3/2,3/2〉 is easily obtained:

P1(n,t) = |A3/2〈n|〈3/2,3/2|�(t)〉|2. (11)

Substituting the simplified eigensolutions, (8) and (9), into
Eq. (11), we find that the probability is composed of three
oscillating frequencies,

P1(n,t) = 1
32 [10 + 15 cos(2�nt)

+ 6 cos(4�nt) + cos(6�nt)], (12)

while in the single- and two-qubit Rabi models we have, re-
spectively, one and two frequencies dominating the evolution.

If, instead, initially the oscillator is displaced from a
coherent state |z〉, i.e.,

|�(0)〉 =
+∞∑
n=0

e−|z|2/2zn

√
n!

|3/2,3/2〉|n〉A3/2
, (13)

which is the closest quantum state to a classical wave and more
realistic for describing the oscillator, the probability of three
qubits remaining in their initial state |3/2,3/2〉 is calculated
by tracing over all Fock states as

P1(z,t) = 〈3/2,3/2|TrF ρ(z,t)|3/2,3/2〉

=
+∞∑
n=0

p(n)P1(n,t). (14)

Here ρ(z,t) = |�(t)〉〈�(t)| is the density matrix of the system
and the normalized Poisson distribution is defined as p(n) =
e−|z|2 |z|2n/n!. Following the procedure established previously
for the two-qubit model [40] by keeping only three terms,
l = n, n − 1, and n − 2 in the summation of �n and replacing
the Poisson distribution with a Gaussian one for big enough
|z|, we may reduce Eq. (14) into the analytical form

P1(z,t) = 1
32 Re[10 + 15S(t,ω) + 6S(t,2ω) + S(t,3ω)],

(15)

with S(t,ω) = ∑+∞
k=0 Sk(t,ω). The collapse and revival of the

probability P1(z,t), which are approximated with a fairly
good accuracy by the sufficiently simple function Sk(t,ω), are
obvious here, and the individual revival function

Sk(t,ω) = hk exp (�Re + i�Im), (16)

with height hk = (1 + π2k2f 2)
−1/4

and

�Re = − 1
2h4

k(μ − μk)2f α2, (17)

�Im = 1
2 tan−1 (πkf ) + μ(1 − f ) + 2πk|z|2, (18)

describes the evolution around the kth revival time
t rev
k = μk/ω, where we have defined f = |αz|2, μ =
ωte−α2/2, and μk = πk(f + 2)/α2. During each period �t =
π (f + 2)/ωα2, however, the signals in Sk(t,2ω) and Sk(t,3ω)
revive twice and three times, respectively. We thus get three
revival sequences in the evolution of the probability P1(z,t).
The envelope and the fast oscillatory of the revival signal are
determined by �Re and �Im respectively [40].

In Fig. 1, a comparison of the analytic formula derived
for P1(z,t) and the numerical calculations is made in the
parameter regime where the coupling strength is strong enough
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FIG. 1. Probability P1(z,t) of finding three qubits in the initial
state |3/2,3/2〉 as a function of ωt/2π for ω = 0.15ωc, g = 0.08ωc,
and z = 3. Note that the breakup in the main revival peaks of the
numerical evaluation, which comes from the ω-2ω-3ω beat note, is
not included in the analytic calculation.

to invalidate the RWA. We see that with the time increasing
the equilibrium value 10/32, about which the revival signal
oscillates, is smaller than 16/32 in the single-qubit model and
12/32 in the two-qubit model [40] due to the involvement
of higher order harmonic signals in the probability. The
width of the successive revival signals keeps increasing as
δμk =

√
1 + π2k2f 2/|z|α2, which leads to the merging of the

third harmonic signal into the first and second ones after several
revival periods. The salient feature of the three-qubit model as
demonstrated above is that the revival signals corresponding
to the three oscillating terms S(t,ω), S(t,2ω), and S(t,3ω)
produce a beat note of ω-2ω-3ω. The three revival sequences
in the evolution of P1(z,t) are even clearer in the Fourier
analysis P̄1(z,ν), defined as

P̄1(z,ν) =
∫ +∞

0
dtP (z,t)e−i2πνt , (19)

which is presented in Fig. 2. The spectral signals P̄1(n,ν)
corresponding to the probability of the displaced Fock state are
δ functions located at 2�n, 4�n, and 6�n, respectively. The
involvement of Fock states of many photons in the coherent
state leads to a broad distribution of the spectral functions for
P1(z,t) at a fundamental frequency ω∗ = ωe−α2/2(1 − |z|2α2),
which is 0.76ω for g = 0.08ωc and z = 3, as well as at the
second and third harmonics with decreasing magnitude. This
contrasts the single and double revival sequences for the single-
and two-qubit systems as a consequence of having only one and
two Rabi frequencies, respectively, which have been shown
in [40]. The analytical results reproduce the multiple revival
sequences for the three-qubit model, except that breakups
appear in the main and the second harmonic revival frequencies
if no adiabatic approximation is made, which can be compared
with the RWA case in [53]. We find that the RWA completely

052305-3



LIJUN MAO, YANXIA LIU, AND YUNBO ZHANG PHYSICAL REVIEW A 93, 052305 (2016)

0 1 2 3
0

0.2

0.4

2πν/ω*

P̄
1
(z

,ν
)

0 1 2 3
0

0.4

0.8

2πν/ω*

P̄
1
(z

,ν
)

0 2 4 6
0

0.2

0.4

2πν/Ω
n

P̄
1
(n

,ν
)

Displaced Fock State

Numerical

Analytical

FIG. 2. Fourier analysis of the probability revival for the dis-
placed Fock state (top) and displaced coherent state (middle and
bottom panels for numerical and analytical calculations, respectively)
of the oscillator with all three qubits being excited to the upper
level. Three revival sequences in the dynamics produce a beat
note of ω-2ω-3ω and the breakups in the fundamental and the
second harmonic frequencies without the adiabatic approximation.
The corresponding parameters are the same as in Fig. 1.

breaks down in the ultrastrong-coupling parameter regime
considered here.

IV. ENTANGLEMENT BEHAVIORS

The entanglement properties of two identical qubits
strongly coupled to a single-mode radiation field have recently
been studied in [40] and [54], where the entanglement
sudden death does appear in the numerical and analytic
calculations. However, qualitative differences should arise
in the case of the three-qubit system. It is widely accepted
nowadays that entangled states of multiparticle systems are the
most promising resource for quantum information processing
[55–57]. Thus, it is highly desirable to explore the entangle-
ment dynamics of the three-qubit Dicke model.

In this section we provide some easily computable formulas
for the entanglement dynamics and compare the robustness of
two typical three-qubit states. First, we consider that the field is
initially in a coherent state |z〉 and the three qubits are initially
in the form of a familiar GHZ state 1√

2
(|eee〉 + |ggg〉), i.e.,

|�(0)〉 = 1√
2

(|3/2,3/2〉 + |3/2,−3/2〉)|z〉. (20)

For small values of α, we may expand the state |n〉 in the
displaced Fock space and the most important contribution
in the summation over n comes from the terms with the
same n, which is equivalent to taking |n〉 ≈ |n〉Am

[40]. This
approximation gives the state at subsequent time t as

|�(t)〉 =
∑
n,κτ

√
p(n)

2
(1 + ξ )dκτ

n cκτ
n

∣∣ψκτ
n

〉
e−iEκτ

n t . (21)

To examine the entanglement evolution of the system we
calculate the reduced density matrix of the qubits by tracing
over the quantum field

ρQ(t) =
∑

n

〈n|�(t)〉〈�(t)|n〉, (22)

which can be reduced to the matrix form

ρG
Q(t) = 1

4

⎛
⎜⎜⎝

1 0
√

3S(t,2ω) 0
0 0 0 0√

3S∗(t,2ω) 0 3 0
0 0 0 0

⎞
⎟⎟⎠ (23)

in the eigenbasis |3/2,m〉x of spin Jx . Note that only the
term S(t,2ω) contributes to the reduced density matrix. This
can be intuitively understood as a result of the classification
of the energy spectrum by the parity operator �: the initial
state with the three qubits in the GHZ state has a definite
parity depending on the photon number n. When we expand
the initial state, (20), in the basis of eigenstates of H 3/2,
the coefficients corresponding to the eigenstates with ξ =
−1 are 0 in the adiabatic approximation. In Eq. (21) one
must choose even n = 2k for κ = + or odd n = 2k + 1
for κ = −. As a result, the time evolution of the reduced
density matrix, (23), is uniquely characterized by the energy
difference |E++

2k − E+−
2k | = 4�n or |E−+

2k+1 − E−−
2k+1| = 4�n,

leaving only one oscillation frequency determined by S(t,2ω).
The entanglement between the field and the qubits may be

described by the I tangle

τFQ(t) = 2
(
1 − tr

(
ρ2

Q

))
, (24)

which is introduced in [58] and applicable to infinite-
dimensional bipartite systems [34]. It runs from 0 for a
product state to the maximum value 2(d − 1)/d = 1.75 with
d = min (d1,d2) for a maximally entangled state, where d1 and
d2 are, respectively, the dimensions of the three-qubit system
and the photon field. The analytic expression for the reduced
density matrix, (23), allows us to obtain the explicit formula

τG
FQ(t) = 3 − 3|S(t,2ω)|2

4
. (25)

In Figs. 3(a)–3(d), we plot the time evolution of the I tangle
τG
FQ for various values of g. Should we adopt expression (7) for

the eigenstates |ψκτ
n 〉 and not take into account |n〉 ≈ |n〉Am

,
the adiabatic approximation produces an excellent agreement
with the numerically exact solution in the ultrastrong-coupling
regime as shown in Figs. 3(a)–3(d). The analytic result
determined by formula (25) agrees well with the envelope of
the numerically evaluated result but fails in describing the long-
time behavior when the coupling strengths are sufficiently
high, which is evident in Figs. 3(a)–3(d). The I tangle τG

FQ

starts from 0 for the initial product state, (20), and undergoes
periodic weakening and recovery, with the oscillation period
getting smaller and smaller for increasing coupling strengths,
which, however, could never reach the maximum entanglement
value of the system. We see that the field-qubit entanglement
exhibits collapse and revival and the analytic formula predicts
correctly the main features of the individual entanglement
revival signals.

The initially pure state of the qubits evolves into a mixed
state described by the reduced density matrix ρG

Q in Eq. (23).
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FIG. 3. Time evolution of the I tangle between the qubits and
the light field with the initial GHZ (left) and W (right) states for ω =
0.15ωc, z = 3, and different coupling strengths: (a,e) g = 0.02ωc,
(b,f) g = 0.04ωc, (c,g) g = 0.06ωc and (d,h) g = 0.08ωc, given by
the numerical method (solid gray line), the adiabatic approximation
(solid red line), and the analytical approach (dashed blue line).

We analytically study the entanglement between the qubits in
the following. The measures of entanglement for mixed states
depend on the pure-state decompositions; in this way the main
difficulty is to find the minimization over all decompositions of
the mixed state into pure states. However, our analytic method
provides a particular case, where ρG

Q is a rank 2 mixed state of
a qubit and a qudit in the basis of the three-qubit product states.
Thus we may discuss the properties of the entanglement of a
three-qubit system using the I tangle proposed by Osborne
et al. [59]. As a good mixed-state entanglement measure for
three qubits, the I tangle τAB(t) between one qubit (subsystem
A) and the other two qubits (subsystem B) is given by the
formula [59]

τAB(t) = tr(ρQρ̃Q) + 2λmin
[
1 − tr

(
ρ2

Q

)]
, (26)

where the universal state inverter is defined as ρ̃Q = IA ⊗
IB − ρA ⊗ IB − I ⊗ ρB + ρQ with ρA = trB(ρQ) and ρB =
trA(ρQ), and λmin is the smallest eigenvalue of a real symmetric
3 × 3 matrix M as defined in [59] and [60]. A tedious yet
straightforward calculation gives

M = 1

3(1 + 3|S(t,2ω)|2)

×

⎛
⎜⎜⎝

2 + 2|S(t,2ω)|2 0 4|S(t,2ω)|√
3

0 −1−|S(t,2ω)2

2 0
4|S(t,2ω)|√

3
0 −1+9|S(t,2ω)|2

3

⎞
⎟⎟⎠
(27)

and λmin = −(1 + |S(t,2ω)|2)/(6 + 18|S(t,2ω)|2). Inserting
this and the analytic expression (23) into Eq. (26) gives a
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FIG. 4. Time evolution of the negativity inside the qubits with
the initial GHZ (left) and W (right) states given by the analytical
calculation. The corresponding parameters are the same as in Fig. 3.

very simple result for the bipartite entanglement

τG
AB(t) = 5 + 20|S(t,2ω)|2 + 7|S(t,2ω)|4

8(1 + 3|S(t,2ω)|2)
. (28)

An alternative way to quantify the entanglement of a bipartite
system is the negativity, defined as [61]

N (t) = 2
∑

i

|λi |, (29)

where λi are the negative eigenvalues of the partial transpose of
ρQ with respect to system A or, equivalently, to system B. For
ρG

Q , we find only one negative eigenvalue, which immediately
gives

N G(t) =
√

1 + |S(t,2ω)|2)

2
. (30)

The I tangle is then related to the negativity by

τG
AB(t) = 7[N G(t)]4 + 3[N G(t)]2 − 2

4(3[N G(t)]2 − 1)
. (31)

The evolution of the negativity for three qubits is plotted in
Figs. 4(a)–4(d). In contrast to the field-qubit entanglement
τG
FQ(t), the negativity starts from the maximum value and

then decreases to a finite steady value where entanglement
sudden death is absent. When the field-qubit entanglement
becomes rather weak this qubit-qubit entanglement increases
rapidly to a large value, as can be seen in Figs. 3(a)–3(d) and
Figs. 4(a)–4(d). From Eq. (31), the I tangle τG

AB(t) is found to
be a monotonically increasing and decreasing function of the
negativity N G(t). It turns out that the decrease in τG

FQ(t) is
directly related to the growth of τG

AB(t) in the form of Eq. (25)
and Eq. (28), which predict correctly the time, height, and
width of the individual entanglement oscillation. This indicates
that the initial entanglement between the qubits withstands the
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interaction and the energy exchange between the qubits and
the field. In this way we provide for the first time an explicit
analytical formula for the robustness of the GHZ state in the
three-qubit Dicke model.

We now turn to entanglement dynamics of another three-
qubit state, the W state 1√

3
(|egg〉 + |geg〉 + |gge〉), which has

also attracted considerable attention. We simply repeat the
calculation in the preceding paragraphs with the GHZ state
in the initial state |�(0)〉 replaced by the W state. To monitor
the time evolution of entanglement, we again need the explicit
expression for the reduced density matrix of the qubits in the
basis of spin Jx , given as

ρW
Q = 1

8

⎛
⎜⎜⎜⎜⎝

3
√

3S(t,ω) −√
3S(t,2ω) −3S(t,3ω)√

3S∗(t,ω) 1 −S(t,ω) −√
3S(t,2ω)

−√
3S∗(t,2ω) −S∗(t,ω) 1

√
3S(t,ω)

−3S∗(t,3ω) −√
3S∗(t,2ω)

√
3S∗(t,ω) 3

⎞
⎟⎟⎟⎟⎠. (32)

The reduced density matrix for the W state is obviously more
complex than (23) for the GHZ state with the contributions
from terms S(t,ω) and S(t,3ω). It nevertheless allows us to
compute analytically the entanglement between the field and
the qubits as

τW
FQ(t) = 22 − 7|S(t,ω)|2 − 6|S(t,2ω)|2 − 9|S(t,3ω)|2

16
. (33)

These three oscillating terms are clearly seen in the time
evolution of the I tangle τW

FQ(t) for various g values as
illustrated in Figs. 3(e)–3(h). Similarly to the GHZ state, it
does not reach the maximum entanglement value but, on the
whole, has a larger value than τG

FQ for the initial GHZ state.
Formula (26) for the I tangle is no longer applicable

because the rank of the density matrix ρW
Q (t) is larger than

2. We may, however, calculate the negativity for qubit-qubit
entanglement in the W state using definition (29), and the result
is shown in Figs. 4(e)–4(h). None of the eigenvalues of the
partial transpose density matrix is negative in some periods of
time, and sudden death of the qubit-qubit entanglement occurs
in N W (t) while the qubit-field entanglement τW

FQ(t) reaches
its maximum. This phenomenon indicates that entanglement
in the three-qubit GHZ state is surprisingly more robust
than that in the W state against the interaction and the
energy exchange between the qubits and the field, which is
clearly depicted in Figs. 3 and 4. The findings here are in
agreement with the robustness of multiparty entanglement
under local decoherence modeled by partially depolarizing
channels acting independently on each subsystem [62].

V. CONCLUSION

In conclusion, we have analyzed the population and
entanglement dynamics of three qubits within the adiabatic
approximation. It works very well in the ultrastrong-coupling

regime under the assumption that the qubit frequencies are
much lower than the field frequency. The remarkable feature
of population dynamics in the three-qubit model is that the
three revival sequences in the evolution of the probability
produce a three-frequency beat note. Moreover, the analytic
formulas of the I tangle for the pure state of a field-qubit
system and the mixed state of a three-qubit system exhibit their
excellence in entanglement characterization and distribution.
This is the first study to present the robustness of the GHZ
state in the form of the analytic expressions in the three-qubit
Dicke model. The sudden death of entanglement is avoided
in the three-qubit system with the initial GHZ state, which
is qualitatively different from the two-qubit case studied
in [25], [40], and [54]. The entanglement in the three-qubit
GHZ state is shown to be more robust than that in the
three-qubit W state. It is worth stressing that this method can
be extended to the N -qubit Dicke model, but an increase in
the detailed computational complexity should be noted. As
a result, N + 1 eigensolutions could be derived within the
adiabatic approximation for the N + 1–dimensional primitive
block in the spin subspace of j = N/2, which results in as
many as N oscillating frequencies for the W-like state in
the dynamical evolution of the system. A practically relevant
application of our result lies in the quantum information
process with circuit QED, where three-qubit entangled states
are involved.
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