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Quantum walks and discrete gauge theories
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A particular example is produced to prove that quantum walks can be used to simulate full-fledged discrete
gauge theories. A family of two-dimensional walks is introduced and its continuous limit is shown to coincide with
the dynamics of a Dirac fermion coupled to arbitrary electromagnetic fields. The electromagnetic interpretation
is extended beyond the continuous limit by proving that these discrete-time quantum walks (DTQWs) exhibit an
exact discrete local U(1) gauge invariance and possess a discrete gauge-invariant conserved current. A discrete
gauge-invariant electromagnetic field is also constructed and that field is coupled to the conserved current by a
discrete generalization of Maxwell equations. The dynamics of the DTQWs under crossed electric and magnetic
fields is finally explored outside the continuous limit by numerical simulations. Bloch oscillations and the
so-called E × B drift are recovered in the weak-field limit. Localization is observed for some values of the gauge
fields.
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I. INTRODUCTION

Discrete-time quantum walks (DTQWs) are formal general-
izations of classical random walks. They were first studied in a
systematic fashion by Meyer [1], whereas similar but different
quantum discrete dynamics was first considered in Refs. [2–4].
DTQWs have been realized experimentally with a wide range
of physical objects and setups [5–11] and are studied in a
large variety of contexts, ranging from fundamental quantum
physics [11,12] to quantum algorithmics [13,14], solid-state
physics [15–18], and biophysics [19,20].

Particular quantum cellular automata [21,22], among which
DTQWs [23] are defined on various regular lattices [24], are
known to reproduce, in the continuous limit, the dynamics of
free Dirac fermions in one, two, or three spatial dimensions.
Recently, such connections have been extensively extended
to Dirac fermions coupled to gauge fields [25–32]. More
precisely, one-dimensional (1D) DTQWs have been proposed
which reproduce the dynamics of Dirac fermions coupled to
arbitrary electric [25–27] and/or gravitational [28–31] fields,
and a two-dimensional (2D) DTQW simulating the coupling
of a Dirac fermion to a constant uniform magnetic field was
proposed in Ref. [32].

For all existing DTQWs, the gauge fields are encoded in
the time and space dependence of the operator advancing the
fermion in discrete space-time. They act on the fermion but the
dynamics of the fermion has no effect on the gauge fields. In
other words, the gauge fields play the roles of imposed external
fields. In particular, they are not advanced by their own discrete
dynamical equations, as is for example the case in lattice gauge
theories (LGTs). The main purpose of this article is to remedy
this problem and introduce a complete self-consistent model
based on DTQWs where both the fermions and the fields are
advanced by compatible discrete dynamical equations.

The first brick in such a self-consistent model is a family
of DTQWs which exhibit an exact discrete gauge invariance
associated to a certain group G and which describes the

*pablo-arnault@hotmail.fr
†fabrice.debbasch@gmail.com

coupling of Dirac fermions to arbitrary G-gauge fields.
The existing literature contains only one such family. The
associated gauge group is U(1) and the DTQWs describe
the coupling of 1D Dirac fermions to arbitrary electric fields.
Electromagnetism is, however, degenerate in one dimension.
There is no magnetic field and Maxwell equations reduce to the
Maxwell-Gauss equation, which contains no time derivative.
We therefore switch to two dimensions and introduce a
family of DTQWs whose continuous limit coincides with
the dynamics of a Dirac fermion coupled to 2D arbitrary
electromagnetic fields. We then show that these DTQWs
admit (i) an exact discrete U(1) gauge invariance, (ii) a
gauge-invariant discrete electromagnetic tensor (i.e., gauge-
invariant electric and magnetic fields defined on the discrete
lattice of the DTQWs), and (iii) a discrete conserved current.
We finally combine the discrete electromagnetic tensor and
the discrete conserved current into discrete gauge-invariant
Maxwell equations which imply current conservation. This
literal material is complemented by numerical computations
which explore how the DTQWs which serve as a basis for
the whole construct behave outside the continuous limit. Even
outside this limit, the DTQWs display in the weak-field regime
several well-known features usually associated to standard
continuous motions in electromagnetic fields, including Bloch
oscillations and the so-called E × B drift. In the regime of
strong fields, the discrete dynamics depends crucially on
whether the fields are rational or not, as expected from previous
work on other DTQWs [26,27,33]. We finally discuss possible
applications of our results to quantum simulation and quantum
algorithmics and highlight how the discrete gauge theory based
on DTQWs differs from standard LGTs.

II. ELECTROMAGNETIC DTQWS

A. The walks and their formal continuous limit

We consider DTQWs with two-component wave functions
(2D coin or spin space) defined on a discrete (1 + 2)-
dimensional space-time where instants are labeled by the index
j ∈ N and space points on the 2D square lattice are labeled by
the indices (p,q) ∈ Z2. The evolution equation for the wave
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function reads

�j+1,p,q = U(θ−(εm,m),εAA2
j,p,q ,εAA0

j,p,q)T2

× U(θ+(εm,m),εAA1
j,p,q ,0)T1 �j,p,q, (1)

where the action of the shift operators T1 and T2 on the
2D wave function �j,p,q = (ψ−

j,p,q ,ψ
+
j,p,q )

�
(the superscript

� denotes the transposition) is

T1�j,p,q = (ψ−
j,p+1,q ,ψ

+
j,p−1,q )�,

(2)
T2�j,p,q = (ψ−

j,p,q+1,ψ
+
j,p,q−1)�.

The coin operator U(θ,ξ,α) ∈ U(2) is the product of three
simpler operators:

U(θ,ξ,α) = eiα1 × C(θ ) × S(ξ )

=
[
eiα 0
0 eiα

][
cos θ i sin θ

i sin θ cos θ

][
eiξ 0
0 e−iξ

]
. (3)

The first operator S(ξ ) is a spin-dependent phase shift
parametrized by the angle ξ , the second operator C(θ ) is a
standard coin operator with angle θ , and the third operator
performs a global multiplication by the phase α.

In the continuous limit, the parameter m, which enters the
definition of the constant angles θ±(εm,m) = ±π

4 − εm
m
2 , is

interpreted as the mass of the walk and the three angles A0,
A1, and A2, which may depend on (j,p,q), are interpreted as
the components of an electromagnetic potential. The positive
parameters εm and εA are introduced to trace the importance
of m and A and tend to zero in the continuous limit. All the
parameters and angles are dimensionless.

The formal continuous limit of the DTQWs, Eq. (1), can
be determined by the method used in Refs. [28,29,32,34–36]:
we first introduce a (dimensionless) spacetime-lattice step εl

and interpret any (j,p,q)-dependent quantity Qj,p,q as the
value taken by a function Q(X0,X1,X2) at time X0

j = jεl and
spatial position (X1

p = pεl , X2
q = qεl). We then consider the

scaling εm = εA = εl = ε and let ε tend to zero. We expand
Eq. (1) at first order in ε around the generic space-time point
(X0

j ,X
1
p,X2

q). For the continuous limit to exist, the zero-order
terms of the expansion must balance each other; this constraint
is automatically verified by the DTQWs defined by Eq. (1).

The first-order terms of the expansion in ε deliver the
differential equation which determines the dynamics of the
walker in the continuous limit. This equation reads

(iγ μDμ − m)� = 0. (4)

Here, the γ matrices are defined by γ 0 = σ1, γ 1 = iσ2, and
γ 2 = iσ3, where the Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, (5)

and Dμ = ∂μ − iAμ is the covariant derivative associ-
ated to Maxwell electromagnetism, with A0 = A0, A1 =
−A1, and A2 = −A2. The γ matrices satisfy the (1 + 2)-
dimensional flat-space-time Clifford algebra γ μγ ν + γ νγ μ =
2ημν1, where [ημν] = diag(1, − 1, − 1) is the Minkowskian
metric. Equation (4) is the Dirac equation describing the
dynamics of a spin-1/2 fermion of mass m and charge −1
coupled to the electromagnetic potential A. To consider a

generic charge g, just perform the substitution A → −gA. In
Eq. (4), the characteristic speed is 1 because we have chosen
the same value εl for the dimensionless time and space steps.

B. Rate of convergence towards the continuous limit

Since the formal continuous limit is obtained from the
DTQW dynamics by keeping terms that are first order in ε, one
expects the discrepancy between a solution of the DTQW and
the corresponding solution of the Dirac equation to scale as
ε2. This can be tested numerically by computing the distance
between an exact time-independent solution of the Dirac
equation and the time evolution of this solution by the DTQW.
For simplicity we choose A0 = −EX1, A1 = 0, and A2 =
−BX1, which do not depend on X2 and generate crossed,
constant, and uniform electric and magnetic fields. The
Hamiltonian and the momentum in the X2 direction can then
be diagonalized simultaneously. For E = 0, the eigenstates are
called relativistic Landau levels [32]. For 0 < β = E/B < 1,
the eigenstates can be obtained from the relativistic Landau
levels by a boost of velocity β. The resulting eigenstates
φl,K (X1,X2) = �l(X1,K) exp(iKX2) and eigenenergies El,K

are labeled by a couple (l,K) where l = 0 or l = (±,n) with
n ∈ N∗ and K is the eigenmomentum in the X2 direction. In
one time step ε, the DTQW evolves �l(X1,K) into a certain
function Wl(X1,K) which should be approximated, at first
order in ε, by W̃l(X1,K) = exp(−iEl,K × ε)�l(X1,K). For
each K , the distance between the two functions Wl(·,K) and
W̃l(·,K) can be evaluated by

δl(K) ≡ ‖Wl(·,K) − W̃l(·,K)‖
‖W̃l(·,K)‖ , (6)

where ‖ · ‖ stands for the L2 norm of a position-dependent
(i.e., X1-dependent) function � defined on the lattice:

‖�‖ =
⎡
⎣ pmax(ε)∑

p = −pmax(ε)

(∣∣ψ−(
X1

p

)∣∣2 + ∣∣ψ+(
X1

p

)∣∣2)
ε

⎤
⎦

1
2

, (7)

where pmax(ε) scales as 1/ε. Figures 1 and 2 display how
δl(K = 0) scales with ε for various values of l = (+,n) and
for various values of β, having fixed B = 1 and m = 1. These
figures clearly confirm that δl(K = 0) scales as ε2 for a large
range of ε values.

III. DISCRETE GAUGE INVARIANCE
AND ELECTROMAGNETIC FIELDS

The discrete equations (1) are invariant, not only under a
global phase change of the spinor �, but also under the more
general, local gauge transformation

�j,p,q → � ′
j,p,q = e−iφj,p,q �j,p,q ,

(8)
(Aμ)j,p,q → (A′

μ)j,p,q = (Aμ)j,p,q − (dμφ)j,p,q ,

where the three “discrete-derivative” (finite-difference) oper-
ators dμ are defined by

d0 = (L − �2�1)/εA, d1 = �1/εA, d2 = �2�1/εA, (9)
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FIG. 1. Distance δl(K = 0) as a function of ε for various values
of l = (+,n).

with

(LQ)j,p,q = Qj+1,p,q ,

(�1Q)j,p,q = (Qj,p+1,q + Qj,p−1,q )/2,

(�2Q)j,p,q = (Qj,p,q+1 + Qj,p,q−1)/2, (10)

(�1Q)j,p,q = (Qj,p+1,q − Qj,p−1,q )/2,

(�2Q)j,p,q = (Qj,p,q+1 − Qj,p,q−1)/2.

This local gauge invariance is a discrete version of the
standard continuous U(1) local gauge invariance associated to
electromagnetism and displayed by the Dirac equation (4).
A straightforward computation now shows that the three
quantities F01, F02, and F12 defined by

(Fμν)j,p,q = (dμAν)j,p,q − (dνAμ)j,p,q (11)
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FIG. 2. Distance δl(K = 0) as a function of ε for various values
of β.

are gauge invariant. These are clearly discrete versions of
the usual electromagnetic tensor components Fμν = ∂μAν −
∂νAμ. In particular, F01 and F02 represent respectively the two
components E1 and E2 of a 2D discrete electric field [parallel
to the plan of the (p,q) grid] and the component F12 represents
a discrete magnetic field B3 perpendicular to the plan of the
(p,q) grid.

IV. GAUGE-INVARIANT CONSERVED CURRENT
AND DISCRETE MAXWELL EQUATIONS

Let

�̃j,p,q = U(θ+(εm,m),εAA1
j,p,q ,0)T1 �j,p,q (12)

be the state of the walker after the shift along the p direction
and the first coin operation. The spatial density associated to
�̃j,p,q is

�̃
†
j,p,q�̃j,p,q = |�−

j,p+1,q |2 + |�+
j,p−1,q |2. (13)

Introducing notations ρ = |�−|2 + |�+|2 and J = |�+|2 −
|�−|2, we can rewrite the previous equation as

ρ̃j,p,q = (�1ρ)j,p,q − (�1J )j,p,q . (14)

The same computation carried out for �j+1,p,q =U(θ−(εm,m),
εAA2

j,p,q ,εAA0
j,p,q)T2 �̃j,p,q results in

(Lρ)j,p,q = (�2ρ̃)j,p,q − (�2J̃ )j,p,q . (15)

Inserting Eq. (14) into Eq. (15) gives the discrete conservation
equation

(Lρ)j,p,q = (�2�1ρ)j,p,q − (�2�1J )j,p,q − (�2J̃ )j,p,q .

(16)
All operators defined in Eqs. (10) commute with each other;

in particular, �2�1 = �1�2, so that the conservation equation
can be written

(DμJμ)j,p,q = 0, (17)

where the new finite-difference operators Dμ read

D0 = d0, D1 = d1�2, D2 = �2/εA, (18)

and the probability current on the square lattice is given by

J 0
j,p,q = ρj,p,q = |ψ+

j,p,q |2 + |ψ−
j,p,q |2,

J 1
j,p,q = Jj,p,q = |ψ+

j,p,q |2 − |ψ−
j,p,q |2, (19)

J 2
j,p,q = J̃j,p,q = |ψ̃+

j,p,q |2 − |ψ̃−
j,p,q |2.

In the continuous limit, the discrete conservation equation (17)
becomes the standard conservation equation ∂μjμ = 0 of the
2D Dirac current jμ = �̄γ μ�, with �̄ = �†γ 0.

Having identified the discrete current Jμ and the finite-
difference operators involved in the discrete continuity equa-
tion (17) makes it possible to write the following simple
discrete equivalent to Maxwell equations:

(DμFμν)j,p,q = (J ν)j,p,q , (20)

which connects the discrete electromagnetic tensor (Fμν)j,p,q

to the discrete current (Jμ)j,p,q . Indeed, Eq. (20) has the
standard Maxwell equations as a continuous limit and ensures
the conservation of the discrete current (Jμ)j,p,q because
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FIG. 3. Time evolution of the p mean for E walks with εAE = 0
(black, solid), 0.02 (magenta, dashed), 0.04 (blue, dot-dot-dashed),
0.08 (green, dot-dashed), 0.16 (red, doted), and 0.64 (cyan, solid).
The oscillating period is TBloch = 2π/(εAE) with an error of less than
one lattice site.

it implies (DνJ
ν)j,p,q = (DνDμFμν)j,p,q , which vanishes

identically because operators Dμ commute with each other
and because (Fμν)j,p,q is antisymmetric.

V. SIMULATIONS OUTSIDE THE CONTINUOUS LIMIT

We now focus on constant and uniform discrete electric and
magnetic fields, for example, E = Eu1 and B = Bu3 where
u1 and u3 are two unitary vectors respectively along the p

(or X1) axis of the grid and perpendicular to the plane of the
grid. A potential generating these fields is (A0)j,p,q = −Epεl ,
(A1)j,p,q = 0, (A2)j,p,q = −Bpεl . Walks with B = 0 (E = 0)
are referred to as E walks (B walks). Walks with E 	= 0 and
B 	= 0 are referred to as EB walks.

Quantities of particular interest are the probability of
presence of the walker Pj,p,q = |ψ−

j,p,q |2 + |ψ+
j,p,q |2 and, for

l = p or q, its time-dependent l mean (l spread), defined as
the time-dependent average (square-rooted average) value of
l (l2) computed with P as time-dependent probability law on
(p,q).

All computations are carried out with εmm = 1, εl = 1
and the same simple initial condition: ψ−(j = 0,p,q) = 1
if (p,q) = (0,0) and 0 elsewhere; ψ+(j = 0,p,q) = 0 for all
(p,q). The only remaining free parameters are εAE and εAB.
As now discussed, DTQWs for which both εAE and εAB

are much smaller than unity exhibit regimes which resemble
continuous physics. DTQWs with larger values of εAE and
εAB behave very differently, and can even localize.

Figure 3 shows the time evolution of the p mean for several
E walks. For εAE = 0, the p mean varies linearly with time.
This ballistic transport is typical of homogeneous DTQWs,
i.e., DTQWs whose coin operators do not depend on the
space-time point. Moreover, transport occurs towards negative
values of p only because the initial state has a vanishing
ψ+. For εAE 	= 0, the p mean oscillates in time around
the value X1 = −0.5 [37] with a period which coincides
with the so-called Bloch period TBloch = 2π/(εAE) with an
error smaller than one time step. Bloch oscillations were first
predicted by Bloch [38] and Zener [39] for electrons moving in
solids. They have been observed in 2D photonic lattices [40]
and 1D electric DTQWs [26,41]. As εAE reaches a sizable
fraction of 2π , TBloch becomes of the order of a few time steps.
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FIG. 4. Probability density, at time j = 500, for EB walks with
εAB = 0.16. From left to right, εAE = 0, 0.01, 0.02, 0.03, 0.04, and
Pmax = 0.0943, 0.0578, 0.0209, 0.0181, 0.0178. The bottom front
corresponds essentially to the classical E × B drift.

Another oscillating mode with period of the order of one time
step then appears and dominates the dynamics.

Figure 4 displays the probability densities at time j = 500
for several EB walks with εAB = 0.16. For εAE = 0 (left),
the walker is quasiconfined around the origin, with a typical
radius which slowly increases with the time j and is, at
each j , a decreasing function of εAB (data not shown; see
Ref. [32] for details). When εAE 	= 0, the walker spreads in
the q direction, up and down. The bottom front propagates
with a speed which coincides with E/B, as supported by
Fig. 5. This corresponds to the classical so-called E × B drift
of a charged particle under crossed constant and uniform
electric and magnetic fields (see, e.g., Ref. [42]). The roughly
circularly symmetric “Landau profile” obtained for εAE = 0
seems to be transported at the drift velocity. The behavior of
the top front is counterintuitive from the classical perspective.
The top front spreads with a speed which seems independent
of εAE. A very similar behavior has already been pointed out
in Ref. [43] for quantum particles moving under the influence
of superimposed electric and magnetic fields in a 2D periodic
potential with tight binding.

Previous work on DTQWs coupled to electric or magnetic
fields [26,27,33] has shown that walks with field values which
are rational multiples of 2π (“rational fields”) follow very
peculiar dynamics. Figure 6 displays the q spread of EB walks
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j

−160
−140
−120
−100
−80
−60
−40
−20

0

FIG. 5. Time evolution of the q coordinate of the bottom-front
local maximum of the probability density, for EB walks with B =
0.16. From top to bottom, E = 0 (black), 0.01 (magenta), 0.02 (blue),
0.03 (green), 0.04 (red), and 0.05 (cyan). This maximum propagates
in the direction of E × B (up to small oscillations in the p direction)
and with speed E/B up to a 1% precision.
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FIG. 6. Evolution of the q spread as a function of εAE for EB

walks with magnetic field εAB = 0.16 at times j = 100 (red, dot-
dashed) and j = 500 (magenta, solid), εAB = 1 at times j = 100
(black, dashed) and j = 500 (blue, dot-dot-dashed), and B = π/3 

1.047 (green, dotted) at time j = 500.

as a function of εAE at two times and different values of εAB.
For εAB = 0.16, which is not a rational multiple of 2π , there
is a weak E-field regime (from εAE = 0 to εAE 
 0.06) in
which the q spread increases essentially linearly with εAE.
This is the regime of Figs. 4 and 5. For εAE > 0.06, the
q spread decreases considerably. This weak E-field regime
breaks down partially for εAB = 1 and completely for εAB =
π/3, while the q spreading is essentially enhanced for strong
values of εAE. For εAE = π/2 and values of εAB which are
not rational multiples of 2π , the walk seems to be almost
localized in q (this is also the case in the p direction; data
not shown). Figure 7 focuses on this apparent localization.
In the long-time limit, the walker spreads ballistically for
values of εAB which are rational multiples of 2π . This
ballistic spreading is considerably reduced (quasilocalization)
for εAB = π/4 + ε and π/3 + ε, and the walk seems to really
localize for εAB = π/2 + ε. The p spread displays the same
qualitative behaviors (data not shown).

VI. CONCLUSION AND DISCUSSION

We have introduced a family of 2D DTQWs which
coincides, in the continuous limit, with the dynamics of a
Dirac fermion coupled to arbitrary electromagnetic fields.
The wave function of these DTQWs has two components
and the DTQWs explore the 2D square lattice by advancing
alternately in each of the orthogonal directions. Similar, albeit
simpler, 2D DTQWs have been discussed, for example, in
Refs. [36,44]. We have shown that the DTQWs introduced
in this article possess an exact discrete local U(1) gauge
invariance, a discrete gauge-invariant conserved current, and a
discrete gauge-invariant electromagnetic field, and that field
and current can be coupled by discrete generalizations of
Maxwell equations. We have also explored the behavior of the
DTQWs outside the continuous limit, under weak and strong
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FIG. 7. Time evolution of the q spread for EB walks with εAE =
π/2 and εAB = 0.16 (black, solid), π/4 (red, dashed), π/4 + ε (red,
solid), π/3 (blue, dashed), π/3 + ε (blue, solid), π/2 (green, dashed),
and π/2 + ε (green, solid), with ε = 0.04.

fields. For weak fields, we have observed discrete versions of
the Bloch oscillations and of the so-called E × B drift. We
have also observed localization for some higher values of the
fields.

The results of this article prove that DTQWs can be
used to build full-fledged discrete gauge theories and that
laboratory experiments based on quantum walks can, at
least in principle, simulate these theories (see, for example,
Ref. [26] for a discussion of a quantum-walk experiment
already carried out which simulates Dirac fermions coupled
to 1D electric fields). On the technical side, the construction
we have presented should naturally be extended, not only to
Maxwell electromagnetism in four-dimensional space-time,
but also to other Yang-Mills gauge theories. Developing
second-quantized versions of these discrete theories should
also prove interesting.

A full comparison of possible discrete gauge theories based
on DTQWs with the usual LGTs [45,46] is beyond the scope of
this article. Let us simply mention two differences. First, unlike
the “U” parallel transporters in LGTs, gauge fields do not have
to be added by hand to the DTQW dynamics, as the connection
is already part of the basic definition of DTQWs and most
DTQWs are by definition locally gauge invariant [29]. Second,
the difference operators (discrete derivatives) which arise in
conjunction with the local gauge invariance of DTQWs are
more complicated than the usual finite-difference operators
used in lattice gauge theories. The mathematical properties of
discrete gauge theories based on DTQWs are thus probably
very different from the mathematical properties of LGTs.

Finally, DTQWs are useful in a much wider context
than high-energy or condensed-matter physics. DTQWs are
in particular universal building blocks of quantum algo-
rithms [47] and our results therefore have implications for
quantum information. For example, the exploration of graphs
by DTQWs could be influenced by creating discrete gauge
fields on these graphs. Indeed, not only do gauge fields
influence the transport of single DTQWs, but gauge theories
provide a novel manner to implement interaction between
DTQWs.
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