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In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel
stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally,
the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which
degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository,
quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied
to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one
needs a balance between the information gained by measuring the system and the information fed back to the
system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine,
the external driving, the measurement, and the feedback operations.
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I. INTRODUCTION

A flywheel is a device that stores kinetic energy in the
rotational motion of the wheel and supplies it on demand.
In many devices the flywheel is an essential component for
extracting work from an engine. The main tasks of a flywheel
are twofold: transducing discrete energy into continuous power
and storing useful work. This energy reserve can be rapidly
drained on demand, ultimately extracting more power than
the charging engine can supply. Miniaturizing heat engines
and refrigerators received much attention in the past decade.
Experimental setups of such devices were constructed in the
micrometers domain [1,2], and recently the operation of a
single-atom heat engine was reported [3]. Many theoretical
studies of these devices were extended to the quantum domain,
concentrated on the study of efficiency, power extraction,
and thermodynamic laws (see reviews [4–8] and references
therein). Work extraction from quantum systems and their
charging were also studied extensively [9–12].

Any realistic engine is regulated by monitoring and a
feedback loop. The purpose is to control its timing, adjust its
frequency and amplitude to match the other parts of the device,
and to compensate for unpredictable disturbances. Recent
theoretical studies demonstrated that quantum properties such
as coherence and correlations enhance the work extracted from
the system [13–17]. Future quantum technologies aiming to
exploit these quantum features will encounter the issue of
regulating the device. Standard ideal quantum measurements
will demolish these features. Therefore, to overcome this
problem a conceivable approach to regulate the quantum
device is by continuous weak measurements (monitoring)
and feedback control. Another fundamental problem which is
demonstrated in this study and that is resolved by monitoring
and feedback control is the unlimited entropy increase of the
work repository; i.e., proliferating fluctuations catastrophically
heat up the flywheel.

In this paper we introduce the concept of a quantum
flywheel as part of a quantum heat engine. The flywheel is
composed of a quantum harmonic oscillator (HO) interacting
with a two-qubit quantum heat engine. It is worth comparing
this setup to two cases. The first is when the HO (the flywheel)

is driven by a laser field in the semiclassical approximation
instead of being driven by a quantum heat engine. In this case,
energy is constantly flowing into the HO and in principle can
be fully extracted back as useful work. The entropy of the
HO will not change under the driving of the laser field. The
second is when the flywheel (the HO) is replaced by an external
classical field. In such case the engine would operate in steady
state and power can continuously be extracted from the engine
(see Appendix A). However, we will see that when all the parts
of the device are quantized, i.e., the medium of the engine is
a single qubit and the work repository is a quantum HO, the
flywheel will be subject to a fatal growth of fluctuations and
establishment of steady state is impossible. The HO is unstable
even when an external driving field is utilized to extract power
and stabilize it. Note that the instability we are facing is not the
amplification of the energy in the flywheel. Such instability
will accrue in any unbounded system that is constantly fed
with energy. In this study we are interested in the quality of the
energy stored in the flywheel and in overcoming the destructive
fluctuations. By applying monitoring and feedback control we
obtain a steady-state operation for the flywheel, continuously
gaining power, and storing useful work in the flywheel that
later can be extracted.

Monitored and controlled quantum heat engines are still
to be realized experimentally; however, the individual compo-
nents already exist. Quantum monitoring and feedback control
experiments exists for various HO’s such as electromagnetic
cavity, nanomechanical oscillators, trapped particles, and
superconducting circuits; see the review [18] and references
therein. Single microscopic quantum heat engine realizations
are still under development with only a few examples available
[3,19].

II. HEAT ENGINE OPERATION

The basic concept of a quantum heat engine (similar to the
classical one) consists of two thermal heat baths at different
temperature, a working medium, and a work repository. In
the quantum counterpart the working medium is quantized
and the work repository can be an external classical field
[4,20] or it can be quantized as well [21]. Here we consider
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AMIKAM LEVY, LAJOS DIÓSI, AND RONNIE KOSLOFF PHYSICAL REVIEW A 93, 052119 (2016)

FIG. 1. General scheme of a heat engine with a flywheel.
(a) The state of two qubits of the heat engine, coupled to heat baths
at temperatures Th and Tc, is represented as a two-qubit state with
population inversion between the second and third energy levels. The
size of the sphere represents the population in each level. (b) The
population inversion in the engine corresponds to a heat bath with
the inverse negative temperature β−

e . This bath is coupled to the har-
monic oscillator (flywheel), increasing exponentially its energy and
the width of phase-space probability distribution. (c) Measurement
of the quadratures of the harmonic oscillator, resulting in the signal
c̄. The signal is then fed back to the oscillator to ensure a steady state.
(d) Energy flow chart of the different components in the steady state
of the flywheel.

the operation of a continuous quantum engine for which the
heat baths and the work repository are coupled simultaneously
and continuously to the working medium [4]. The working
medium is comprised of two qubits, with the Hamiltonians
Ĥa = ωhâ

†â and Ĥb = ωcb̂
†b̂. Each qubit is weakly coupled

to a different heat bath with the inverse temperature βh and
βc, where the indexes h and c stand for hot and cold.
The dynamics of the qubits follow the standard thermalizing
master equation of Lindblad-Gorini-Kossakowski-Sudarshan
(LGKS) [22–24]. The asymptotic two-qubit state ρ̂∞

h ⊗ ρ̂∞
c

is the product of the thermal equilibrium Gibbs states of the
two qubits, respectively, at hot and cold temperatures 1/βh

and 1/βc. Satisfying the heat engine conditions, βh/βc <

ωc/ωh < 1, population inversion is obtained between the third
level |10〉 and the second level |01〉 [see Fig. 1(a)]. The
populations of these states are given by p10 = nh(1 − nc) and
p01 = nc(1 − nh). Here, nh(c) = [exp(βh(c)ωh(c)) + 1]−1 are
the thermal occupation numbers in ρ̂∞

h(c). The second and the
third levels are treated as an effective two-level system (TLS)
with the energy gap ωo = ωh − ωc (we take � = kB = 1). The
state of this TLS is a Gibbs state with a negative effective
temperature

1

β−
e

= ωh − ωc

βhωh − βcωc

< 0. (1)

We exploit the TLS population inversion to “charge”
a quantum harmonic oscillator (HO) with useful work.
The Hamiltonian of the HO and the TLS-HO interaction
Hamiltonian are given by Ĥo = ωoĉ

†ĉ and K̂ = ig(â†b̂ĉ −
âb̂†ĉ†), respectively. Given that the thermalization time of
the qubits is much shorter then the internal time scale,
g
√

〈ĉ†ĉ〉 + 1 � �h(c)[1 + exp (−βh(c)ωh(c))], the TLS can be
considered heuristically as a heat bath with negative temper-
ature weakly coupled to the HO. We prove that indeed the
state ρ̂ of the HO satisfies the standard thermalizing master
equation extended to negative temperature 1/β−

e , which in the
interaction picture of Ĥo takes the form

dρ̂

dt
= Leρ̂ ≡ �e(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+�ee
−β−

e ωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂). (2)

The damping rate �e is proportional to the squared coupling
g2, and depends on the parameters of the engine, such as
the occupations nh(c) and the rates �h(c) (see Appendix B).
The notation H stands for the Hermitian part of everything
coming after it (different from the convention in Ref. [25]).
A rigorous derivation of Eq. (2) can be found in Appendix B.
The following results are not limited to the specific medium
of the engine and will apply to any dynamics that will lead to
the thermalizing master equation with negative temperature.
For example the two qubits can be replaced by a three-level
system or two HO’s. As long as the three-body interaction K̂

is kept, the structure of Eq. (2) with negative temperature is
preserved. The only difference would be the specifics of the
relaxation rate �e.

Since β−
e < 0 the master equation (2) has no steady-state

solution, energy will constantly flow into the flywheel. The
parameters containing the superscript − are negative. The
standard equations remain valid for the mean amplitude 〈ĉ〉t
and the occupation 〈ĉ†ĉ〉t :

d〈ĉ〉t
dt

= −(κ−
e + iωo)〈ĉ〉t , (3)

d〈ĉ†ĉ〉t
dt

= −2κ−
e 〈ĉ†ĉ〉t + �ee

−β−
e ωo , (4)

where the amplitude damping rate

κ−
e = 1

2�e(1 − e−β−
e ωo ) (5)

takes negative values since β−
e < 0 (Appendix B). Therefore

both 〈ĉ〉t and 〈ĉ†ĉ〉t (and all higher moments) diverge exponen-
tially with time [see Fig. 1(b)] resulting in the instability of the
dynamics against small perturbations. In particular, an initial
Gibbs state maintains its form but with an exponentially grow-
ing temperature 1/βt = ωo/ ln (1 + 〈ĉ†ĉ〉−1

t ). Thus, ρ̂(t) ∝
exp (−βtωoĉ

†ĉ) is an unstable solution of the master equation
(2). Any small perturbation will divert it from the class of Gibbs
states. A more general class of solutions, displaced Gibbs
states ρ̂(t) ∝ exp [−βtωo(ĉ − 〈ĉ〉t )†(ĉ − 〈ĉ〉t )], with effective
temperature 1/βt = ωo/ ln [1 + (〈ĉ†ĉ〉t − |〈ĉ〉t |2)

−1
] will, in

principle, be suitable for work extraction. But this option is
misleading since the instability of the above solutions is not
yet resolved.
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A reasonable approach to stabilize the flywheel while
extracting additional power is achieved by driving the HO
via a resonant oscillating external field. The field is expressed
by the time-dependent Hamiltonian, Ĥd (t) = −iεd ĉ

†e−iωot +
H.c. The master equation in the interaction picture (2) becomes
modified by a static Hamiltonian term (see Appendix C):

dρ̂

dt
= Leρ̂ − εd [ĉ† − ĉ,ρ̂o]. (6)

Indeed, Eq. (6) leads to a stationary amplitude with a rotating
phase: 〈ĉ〉t = −(εd/κ

−
e )e−iωot . Nevertheless, the stationary

state remains unstable, the occupation number and higher
moments diverge invariably. Driving in itself cannot solve the
instability issue. Unlimited growth of quantum and thermal
fluctuations must be suppressed by active control of the
flywheel.

III. MEASUREMENT AND FEEDBACK CONTROL

A. Monitoring

Continuous measurement, i.e., monitoring, is the first task
towards implementing feedback control [25]. By applying
monitoring and feedback control we can stabilize the flywheel
and charge it with useful work. Consider a time-continuous
measurement of both quadratures x̂ = 1√

2
(ĉ† + ĉ) and ŷ =

i√
2
(ĉ† − ĉ) of the HO. Generalizing the result of [26], we

simultaneously monitor x̂ and ŷ [see Fig. 1(c)]. The dynamics
is described by a stochastic master equation (SME) for
the density operator σ̂ conditioned on both measurement
signals x̄,ȳ (see Appendix D). The stochastic mean M of the
conditional state yields the unconditional state, i.e., Mσ̂ = ρ̂

satisfying a corresponding master equation of the usual LGKS
structure. It differs from the master equation of Eq. (6) by the
additional monitoring term

Lmρ̂ = γm

4
(ĉρ̂ĉ† − Hĉ†ĉρ̂ + ĉ†ρ̂ĉ − Hĉĉ†ρ̂), (7)

where γm is the measurement strength. This generator corre-
sponds to an infinite-temperature heat bath. Hence, the act of
monitoring additionally heats the flywheel and contributes to
the undesirable proliferating fluctuations of the HO.

B. Feedback control

Stabilization is accomplished by a feedback loop condi-
tioned on the measured signals x̄,ȳ. As a result, the HO is
kept in the vicinity of the constant rotating amplitude set
by the external driving. The feedback Hamiltonian in the
Schrödinger picture is given by Ĥf (t) = −iκf c̄(t)ĉ† + H.c.,
where c̄ = 1√

2
(x̄ + iȳ) is the complex representation of the

two real signals x̄ and ȳ, and κf is the feedback strength.
By setting the value of κf the steady state of the flywheel is
guaranteed. The feedback is applied on top of the monitored
evolution [27], σ̂ + dσ̂ → e−iĤf dt (σ̂ + dσ̂ )eiĤf dt , yielding a
SME for the conditional state, Appendix E. Averaging over
many realizations, the master equation of the unconditional
state reads

dρ̂

dt
= (Le + Lm + Lf )ρ̂ − εd [ĉ† − ĉ,ρ̂]. (8)

The dissipative contribution of the feedback is

Lf σ̂ =
(

κ2
f

γm

+ κf

)
(ĉσ̂ ĉ† − Hĉ†ĉσ̂ )

+
(

κ2
f

γm

− κf

)
(ĉ†σ̂ ĉ − Hĉĉ†σ̂ ). (9)

For κf > γm this corresponds to a thermal bath of positive
temperature. Entering the regime 0 < κf < γm, the cooling
effect of Lf within the sum Le + Lm + Lf becomes enhanced
although Lf ceases to be a mathematically correct dissipator
in itself. Equation (8) can be written in a compact form,

dρ̂

dt
= �(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+�e−βωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂) − εd [ĉ† − ĉ,ρ̂], (10)

where � and β are determined by

� = �e + γm

4
+ κ2

f

γm

+ κf , (11)

e−βωo� = �ee
−β−

e ωo + γm

4
+ κ2

f

γm

− κf . (12)

The effective temperature 1/β becomes positive by setting
the feedback strength above the threshold: κf > −κ−

e . To sum-
marize, as a result of the feedback the negative-temperature
heat bath and the negative amplitude damping rate κ−

e for HO
become an effective positive-temperature heat bath with the
amplitude damping rate κf + κ−

e > 0.

IV. STEADY STATE AND WORK EXTRACTION

For sufficiently strong feedback κf , satisfying κf + κ−
e >

0, Eq. (10) is a standard thermalizing master equation with
resonant external driving. It has a unique stationary state which
in the Schrödinger picture is a thermal state with rotating
displacement also known as a thermal coherent state (see
Appendix E),

ρ̂∞ ∝ exp[−βωo(ĉ − c∞e−iωot )†(ĉ − c∞e−iωot )]. (13)

where c∞ = − εd

κf +κ−
e

< 0. Hence, the mean amplitude rotates,

〈ĉ〉∞ = c∞e−iωot , its phase is shifted by −π/2 with respect to
the external driving. The average population is given by the
sum of the Bose statistic no and the yield of displacement

〈ĉ†ĉ〉∞ = 1

eβωo − 1
+ |c∞|2 ≡ no + |c∞|2. (14)

We distinguish two opposing regimes of the steady-state
operation of the flywheel. The first is the deep quantum
regime, no,|c∞|2 � 1, where the flywheel is operating in the
vicinity of its ground state. The second is the classical regime
in which both the thermal occupation and the displacement
are large numbers, no,|c∞|2 � 1. The two crossed regimes
also present peculiar quantum features. Recall that weak
coupling condition sets an asymptotic upper limit on the
total occupation in Eq. (14). This implies asymptotic upper
limits on the temperature 1/β, excluding too high thermal
occupations no, as well as on the driving strength εd , confining
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FIG. 2. Charging efficiency as function of measurement strength
γm and feedback strength κf . The percentage of useful work out
of the entire energy stored in the flywheel has a maximum for the
ratio γm/κf = 2, and it is further maximized for κf approaching its
threshold |κ−

e | = 5 × 10−8. Here: ωo = 1, β−
e = −10−1, �e = 10−6,

and εd = 9 × 10−2.

the displacements 〈ĉ〉∞. Thus, accessibility to the classical
regime depends on the physical properties of the two-qubit
heat engine and its coupling g to the flywheel. The steady
state (13) becomes a displaced Gibbs state and as such, it is
suitable for work extraction. The internal energy of the steady
state is given by E = ωo(no + |c∞|2). Applying a unitary
displacement transformation can bring the state in Eq. (13)
into a Gibbs state (passive state) with the temperature 1/β.
Thus, the part of the internal energy that is due to c∞ can all
be extracted by the unitary operation as the maximum useful
work

W = ωo|c∞|2 = ωoε
2
d

(κf + κ−
e )2

, (15)

which is independent of the strength γm of the monitoring. The
charging efficiency of the flywheel can be defined as the ratio
between useful work and the internal energy stored in the HO
(see Fig. 2),

η = W
E = 1

1 + no/|c∞|2 . (16)

The efficiency is improved for small thermal occupation no

and large displacement c∞. The occupation no becomes small
when the effective temperature 1/β is reduced. Interestingly,
this singles out the optimum measurement strength γm which
has so far remained unconstrained. From Eqs. (11) and (12)
we find that 1/β takes its minimum value with the choice
γm = 2κf obtaining minimum for no and maximum for the
charging efficiency:

η|γm=2κf
= 1

1 + �e

2ε2
d

e−β−
e ωo (κf + κ−

e )2
. (17)

The efficiency ηγm=2κf
together with the extractable work W

reach higher values if we increase the displacement |c∞|. In
particular, the efficiency approaches its maximal value 1 when
the feedback κf approaches its lower threshold, κf → −κ−

e .
A different technique to maximize both the efficiency and the
work is by increasing εd , i.e., applying a stronger driving field.

Nevertheless, as was already mentioned, these two approaches
are limited by the weak-coupling condition.

V. ENERGY FLOWS IN STEADY STATE

A macroscopic flywheel at rest requires an input work
(initial push) to reach the vicinity of steady state. At this point
the output power is larger than the input power. Regulating the
flywheel also has energetic costs that should be accounted for.
These energetic considerations, in principle, also apply to the
quantum flywheel. However, the related calculations require
a novel approach to heat flow and power in quantum systems
under stochastic control.

The standard definition of thermodynamic heat flow J and
power P in open quantum systems is given [28] by the time
derivative of the internal energy E = tr[ρ̂Ĥ ] in the following
manner:

dE = tr[dρ̂Ĥ ] + tr[ρ̂dĤ ] ≡ J dt + Pdt. (18)

The Hamiltonian and the state of the system are typi-
cally stochastic in the theory of monitoring and feedback
control. Since stochastic fluctuations are microscopic, the
thermodynamic definition of the internal energy is given by
the stochastic mean of the microscopic energy, Mtr(σ̂ Ĥ ).
This leads to the following generalization of the standard
thermodynamic relation:

dE = Mtr[dσ̂ Ĥ ] + Mtr[σ̂ dĤ ] ≡ J dt + Pdt. (19)

The differentials in Eq. (19) must be Stratonovich ones instead
of those of Ito. For the Ito differentials the right-hand side
should contain the so-called Ito correction Mtr[dσ̂dĤ ] which
would jeopardize the split of dE between heat flow and power.
In Appendix F we derive a lower bound on the extractable
power, demonstrating that the power is gained from the device
and not consumed by it.

We summarize the plausible structure of energy currents
[see Fig. 1(d)]. The steady-state energy balance contains five
different currents: Ė = Je + Jm + Jf + Pd + Pf = 0. The
heat flowing into the flywheel has two contributions, the first
is from the engine, Je, the second is from the monitoring
device, Jm. Power from the driving field, Pd , is also consumed
by the flywheel, and serves as an input power activating the
flywheel. This power is overcompensated by the output power
Pf realized by the feedback. In addition, the outflow Jf cools
the flywheel, thereby stabilizing it and lowering the entropy
produced in the flywheel as a result of the engine and the
monitoring operations. In the case β−

e → 0− of no population
inversion in the engine, the heat flow Je and the consumable
power must vanish. The work in Eq. (15) stored in the flywheel
reaches its minimal, yet positive, value W = ωoε

2
d/κ

2
f .

VI. SUMMARY

Population inversion, corresponding to negative tempera-
ture 1/β−

e in a few-level quantum heat engine was established
a long time ago [29] and has been considered in detail [30].
In this paper we have shown that the heat engine operation is
equivalent to a negative-temperature heat bath in the standard
dynamical sense. Thus, its influence on the work repository is
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the typical thermalizing master equation extended to negative
temperature 1/β−

e .
Work extraction is still an outstanding issue because of the

spread of thermal and quantum noise over the work repository,
which in our case is a quantum HO. If the HO is replaced by an
idealized classical field, all the energy flowing out of the engine
can in principle be extracted as power. If the HO is driven by
a coherent laser field instead of the quantum heat engine then
all energy stored in the flywheel can be extracted from it as
work. However, when the work repository is quantized and the
heat engine medium is a single qubit, the work exchange is
accompanied with heat exchange, which degrades the charging
efficiency. In this paper we introduced a generic approach
that can be applied to resolve such problems. Specifically,
we demonstrated the difficulties of storing useful work in
a quantum harmonic oscillator. Overcoming the unlimited
growth of fluctuations, regulating and stabilizing the flywheel
is achieved by applying monitoring and feedback control to
the system.

The steady state, the power, and the stored extractable
energy of the flywheel are determined analytically. While
the amount of work stored in the flywheel is independent
of the accuracy of the monitoring, the charging efficiency is
optimized for a particular ratio between the monitoring and the
feedback strength. Thus, a maximum is achieved by balancing
the information gained by monitoring the flywheel with the
information fed back to the flywheel. The balance coincides
with minimum temperature of the flywheel. Breaking this
balance implies that the phase-space distribution is no longer
optimal for work extraction from the flywheel. Note that
to obtain steady-state operation one could cool the HO
by coupling it to a cold thermal bath instead of applying
monitoring and feedback control. A second cold bath would
mean a new thermodynamic resource in addition to the heat
engine with its two heat baths. We wished, however, to
investigate how to exploit the thermodynamic resource given
by the heat engine itself, using additional control mechanisms
only. A more crucial point is that by monitoring and feedback
we can optimize the charging efficiency and obtain a regime of
operation that no thermal bath will allow. In this regime, where

κf < γm, the cooling is enhanced and the dynamics cannot be
described by a thermal bath.

This model is a prototype of an analytically tractable model
of a quantum heat engine coupled to a single degree-of-
freedom work repository, operating continuously in steady
state under quantum control. Experiments which employ quan-
tum monitoring and feedback strategies are becoming common
[18,31–33]. Future advances in quantum technologies depend
on our ability to control and manipulate quantum systems. A
firm theoretical foundation relating systems that are subject to
quantum monitoring and feedback control with basic concepts
of thermodynamics is still missing.
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APPENDIX A: POWER EXTRACTION VIA CLASSICAL
PERIODIC FIELD

Steady-state power extraction without storing work is
possible by just by driving the engine directly without the
flywheel. Power is gained by amplification of a classical
rotating field in resonance with the two TLS’s. The interaction
Hamiltonian is given by K̂(t) = −iε(âb̂† eiωot − â†b̂ e−iωot ).
For weak driving, the master equation for the two TLS’s, ρ̂hc,
in the interaction picture of Ĥh and Ĥc is

dρ̂hc

dt
= −[ε(âb̂† − â†b̂),ρ̂hc] + Lhρ̂hc + Lcρ̂hc, (A1)

where Lh(c) are defined in Eq. (B1). The master equation
(A1) possesses a unique stationary state. The stationary output
power

− P∞ = 4ε2ωo(nh − nc)

4ε2
[
�−1

h (1 − nh) + �−1
c (1 − nc)

] + �h(1 + e−βhωh) + �c(1 + e−βcωc )
> 0 (A2)

is positive. This implies that steady-state power extraction can
be obtained from a periodically driven field. Note that for
strong driving there is also a steady-state power extraction
from the engine. Nevertheless, the master equation (A1) must
be modified. Derivation of a master equation driven by a strong
periodic field can be found in [20].

APPENDIX B: TRIPARTITE HEAT ENGINE

We use an interaction picture for its convenience especially
for our master equations. The stochastic master equations of
monitoring and feedback are presented in the Schrödinger
picture for transparency. Heat flow and power are, as a rule,

defined in the Schrödinger picture. We derive the master
equation for the harmonic oscillator (HO) subject to the
operation of the engine. The quantum heat engine is comprised
of two two-level systems (TLS’s), with the Hamiltonians
Ĥh = ωhâ

†â and Ĥc = ωcb̂
†b̂. The two TLS’s are coupled to

a hot and a cold heat bath, respectively, at temperatures Th >

Tc. The dynamics follow the Lindblad-Gorini-Kossakowski-
Sudarshan dynamics [22,23], and in the interaction picture of
Ĥh(c) the corresponding master equations read

dρ̂h

dt
= �h[âρ̂hâ

† − Hâ†âρ̂h + e−βhωh (â†ρ̂hâ − Hââ†ρ̂h)]

≡ Lhρ̂h,
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dρ̂c

dt
= �c[b̂ρ̂cb̂

† − Hb̂†b̂ρ̂c + e−βcωc (b̂†ρ̂cb̂ − Hb̂b̂†ρ̂c)]

≡ Lcρ̂c, (B1)

where �h(c) are the damping rates. (In our convention, different
from that of Ref. [25], H denotes the Hermitian part of all that
stands after it.) The heat baths bring the TLS’s to thermal
equilibrium states ρ̂∞

h(c) with the occupation numbers nh(c) =
1/(eβh(c)ωh(c) + 1), and with the inverse temperatures βh(c) =
1/Th(c), respectively.

The two TLS’s are then weekly coupled to a quantum
HO of the self-Hamiltonian Ĥo = ωoĉ

†ĉ, via the tripartite
Hamiltonian

K̂ = −igâb̂†ĉ† + H.c. (B2)

We work in resonance, ωo = ωh − ωc, and in the weak
coupling regime for which a local master equation holds [34].
The master equation in the interaction picture for the tripartite
state ρ̂3 of the TLS’s coupled to the HO is written as

dρ̂3

dt
= (L + K)ρ̂3, (B3)

with L = Lh + Lc and

Kρ̂3 = −i[K̂,ρ̂3]. (B4)

We will derive the effective master equation for the HO state ρ̂

assuming that the TLS’s are initially in their equilibrium states
ρ̂∞

hc = ρ̂∞
h ⊗ ρ̂∞

c and the initial state of the tripartite system
is the product state ρ̂3(0) = ρ̂∞

hc ⊗ ρ̂(0). The solution of the
master equation (B3) can be written in the implicit form

ρ̂3(t) = ρ̂3(0) +
∫ t

0
ds eL(t−s)Kρ̂3(s), (B5)

which we can confirm by taking the time derivative of both
sides of the equation, and using the relation Lρ̂3(0) = 0.
Inserting the above solution into the right-hand side of
Eq. (B3), we obtain

dρ̂3(t)

dt
= Kρ̂3(0) + (L + K)

∫ t

0
ds eL(t−s)Kρ̂3(s). (B6)

We assume that ρ̂3(s) ≈ ρ̂∞
hc ⊗ ρ̂(s). This assumption is

justified when the thermalization time of the TLS’s is faster
than the time scale in which the system is changed significantly
due to coupling (B2). Taking the partial trace over the TLS’s

dρ̂(t)

dt
= trhc

[
K

∫ t

0
ds eL(t−s)Kρ̂∞

hc ⊗ ρ̂(s)

]
. (B7)

Here we have used the relations trhc[Kρ̂∞
hc ] = 0 and

trhc[L
∫ t

0 eL(t−s)Kρ̂∞
hc ] = 0. Performing the standard Marko-

vian approximations [24] we obtain

dρ̂(t)

dt
= trhc

[
K

∫ ∞

0
ds eLsKρ̂∞

hc ⊗ ρ̂(t)

]
, (B8)

which can be written explicitly as

dρ̂

dt
= −trhc

[
K̂,

∫ ∞

0
ds eLs

[
K̂,ρ̂∞

hc ⊗ ρ̂
]]

= −trhc

∫ ∞

0
ds[(eL

†sK̂),[K̂,ρ̂∞
hc ⊗ ρ̂]]. (B9)

Making use of the relation

eL
†sK̂ = K̂ exp

[
−1

2

∑
l=h,c

�l(1 + e−βlωl )s

]
, (B10)

we have

dρ̂

dt
= (2g)2∑

l=h,c �l(1 + e−βlωl )
[〈ââ†〉∞〈b̂†b̂〉∞(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+〈â†â〉∞〈b̂b̂†〉∞(ĉ†ρ̂ĉ − Hĉĉ†ρ̂)], (B11)

where 〈·〉∞ stands for the expectation value with respect to
the TLS’s thermal equilibrium states ρ̂∞

h(c). Finally, the master
equation for the HO subject to the engine operation takes the
form

dρ̂

dt
≡ Leρ̂ = �e(ĉρ̂ĉ† − Hĉ†ĉρ̂)

+�ee
−β−

e ωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂), (B12)

where

�e = (2g)2 (1 − nh)2(1 − nc)nc

�h(1 − nc) + �c(1 − nh)
, (B13)

and the output temperature of the heat engine is

β−
e = βhωh − βcωc

ωh − ωc

, (B14)

which is a function of the TLS’s excitation energies and
temperatures only. We operate the system as a heat engine,
i.e., Th/Tc > ωh/ωc > 1, the effective temperature is negative,
i.e., 1/β−

e < 0, and the HO will not reach a stable asymptotic
state, as we show below. The master equation (B12) together
with the Hamiltonian Ĥo yield closed evolution equations for
the mean amplitude 〈ĉ〉t as well as for the occupation 〈ĉ†ĉ〉t :

d〈ĉ〉t
dt

= −(κ−
e + iωo)〈ĉ〉t , (B15)

d〈ĉ†ĉ〉t
dt

= −2κ−
e 〈ĉ†ĉ〉t + �e e−β−

e ωo , (B16)

where

κ−
e = 1

2�e(1 − e−β−
e ωo ) < 0 (B17)

is the standard amplitude damping constant. This time it is
negative since β−

e < 0 therefore both 〈ĉ〉t and 〈ĉ†ĉ〉t diverge
exponentially with time. In particular, a thermal state remains
thermal, the temperature is increasing exponentially as can be
shown by the simple solution of Eq. (B16) for the occupation.
Note, however, that our model is only valid in the weak
coupling regime where the thermalization time is shorter than
the internal time scale. This implies that the occupation must
be limited by

g
√

〈ĉ†ĉ〉 + 1 � �h(c)(1 + e−βh(c)ωh(c) ). (B18)

APPENDIX C: EXTERNAL DRIVING

Coupling the HO to a resonant oscillating external field.
Via such driving one would expect to extract power. Consider
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the time-dependent Hamiltonian in the Schrödinger picture,

Ĥd (t) = −iεd (ĉ† e−iωot − ĉ eiωot ), (C1)

where εd > 0. In the interaction picture, the master equation
(B12) is modified by an additional static Hamiltonian:

dρ̂

dt
= Leρ̂ − εd [ĉ† − ĉ,ρ̂]. (C2)

Now the right-hand side of Eq. (B15) of the mean ampli-
tude acquires an additional term −εd e−iωot . This allows an
exceptional stationary solution of constant amplitude with the
rotating phase:

〈ĉ〉t = − εd

κ−
e

e−iωot = const × e−iωot . (C3)

This solution is unstable since all neighboring solutions
exponentially diverge with t . As to the occupation 〈ĉ†ĉ〉t , the
right-hand side of Eq. (B16) acquires the additional linear term
−εd (〈ĉ†〉t − 〈ĉ〉t ), hence the occupation remains exponentially
divergent; there is no steady-state solution under external
driving. The stability issue of the HO is still not resolved.

APPENDIX D: MONITORING

Continuous measurement, i.e., monitoring, is the first task
towards feedback control on the system [25]. Here we consider
the time-continuous measurement of both quadratures x̂ =

1√
2
(ĉ† + ĉ) and ŷ = i√

2
(ĉ† − ĉ) of the HO. Generalizing the

result of [26] for monitoring simultaneously x̂ and ŷ, we can
write the following stochastic master equation (SME) in the
Schrödinger picture for the density matrix σ̂ conditioned on
both measurement signals x̄,ȳ:

dσ̂ = −i[Ĥo,σ̂ ]dt − γm

8
[x̂,[x̂,σ̂ ]]dt − γm

8
[ŷ,[ŷ,σ̂ ]]dt

+H√
γm(x̂ − 〈x̂〉σ )σ̂ dξx + H√

γm(ŷ − 〈ŷ〉σ )σ̂ dξy.

(D1)

All expectation values 〈·〉σ are understood in the stochastic
conditional state σ̂ . The measurement signals satisfy

x̄dt = 〈x̂〉σ dt + dξx√
γm

, ȳdt = 〈ŷ〉σ dt + dξy√
γm

. (D2)

Here dξx,dξy are Ito increments of independent standard
Wiener processes, satisfying

(dξx)2 = (dξy)2 = dt, dξxdξy = 0, Mdξx = Mdξy = 0,

(D3)
with the symbol M for stochastic mean, and γm for the
measurement strength. (Note that we changed γm in Ref. [26]
for γm/2.) We can return to complex notation, i.e., we rewrite
the above equations in terms of ĉ,ĉ† and the corresponding
complex signal c̄ = (x̄ + iȳ)/

√
2. We define the complex

Wiener increment as

dξ = dξx + idξy√
2

, (D4)

which satisfies

(dξ )2 = (dξ ∗)2 = 0, dξ ∗dξ = dt, Mdξ = Mdξ ∗ = 0.

(D5)

The SME (D1) of the conditional state becomes

dσ̂ = −i[Ĥo,σ̂ ]dt + γm

4
(ĉρ̂ĉ† − Hĉ†ĉσ̂ + ĉ†ρ̂ĉ − Hĉĉ†σ̂ )

+√
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ ≡ −i[Ĥo,σ̂ ]dt

+Lmσ̂dt + √
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ . (D6)

Equations (D2) of the real signals take the following form for
the complex signal:

c̄ dt = 〈ĉ〉σ dt + dξ√
γm

. (D7)

Applying this time-continuous measurement to the HO which
is coupled to the heat engine and driven by the external field,
cf. Eq. (C2), we get the following SME:

dσ̂ = −i[Ĥo,σ̂ ]dt + (Le + Lm)σ̂ dt − εd [ĉ†eiωot − ĉ,σ̂ ]dt

+√
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ . (D8)

The state σ̂ of the HO is the conditioned state on the measured
signal (D7), its stochastic mean is the unconditional density
matrix: Mσ̂ = ρ̂. Taking the stochastic mean M of both sides
of the SME, we are left with the master equation of the
unconditional state:

dρ̂

dt
= (Le + Lm)ρ̂ − εd [ĉ† − ĉ,ρ̂]. (D9)

As a result of the measurement, additional heat flows into
the oscillator, the damping rate becomes �e + γm, and the
inverse “temperature” β−

e is modified but remains negative.
The exceptional steady amplitude (C3) exists with the modified
parameters, but it is unstable like all other solutions.

APPENDIX E: FEEDBACK CONTROL

Using the measured signal in Eq. (D7), we control the state
of the HO in the vicinity of the constant rotating amplitude set
by the external driving in such a way that we get a true stable
steady state. Consider the following feedback Hamiltonian in
the Schrödinger picture:

Ĥf (t) = −iκf c̄(t)ĉ† + H.c. (E1)

Here κf is the feedback strength. We apply the feedback [27]
on top of the monitored evolution described by Eq. (D8):

σ̂ + dσ̂ → e−iĤf dt (σ̂ + dσ̂ )eiĤf dt . (E2)

Expanding the right-hand side into a series, keeping first-order
terms in dt , and keeping in mind that |dξ |2 = dt , the terms
that are left for evaluation are −i[Hf dt,σ̂ ], −i[Hf dt,gσ̂ ],
and − 1

2 [Hf dt,[Hf dt,σ̂ ]]. The final SME including feedback
reads

dσ̂ = −i[Ĥo,σ̂ ]dt + (Le + Lm + Lf )σ̂ dt

− εd [ĉ†eiωot − ĉ e−iωot ,σ̂ ]dt − κf√
γm

[ĉ†dξ − ĉdξ ∗,σ̂ ]

+√
γmH[(ĉ − 〈ĉ〉σ )dξ ∗ + H.c.]σ̂ . (E3)
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The dissipative contribution of the feedback reads

Lf σ̂ =
(

κ2
f

γm

+ κf

)
(ĉσ̂ ĉ† − Hĉ†ĉσ̂ )

+
(

κ2
f

γm

− κf

)
(ĉ†σ̂ ĉ − Hĉĉ†σ̂ ). (E4)

For κf > γm this corresponds to a thermal bath of positive
temperature. Entering the regime 0 < κf < γm, the cooling
effect of Lf within the sum Le + Lm + Lf becomes enhanced
although Lf ceases to be a mathematically correct dissipator
in itself. Taking the stochastic mean over Eq. (E3) we obtain
the master equation of the unconditional state which in the
interaction picture takes this form:

dρ̂

dt
= (Le + Lm + Lf )ρ̂ − εd [ĉ† − ĉ,ρ̂]. (E5)

What we have for the HO dynamics is the following: The
HO is excited by the negative-temperature (1/β−

e ) bath Le due
to population inversion, heated by the infinite-temperature bath
Lm due to noise of monitoring, and cooled by the feedbackLf .
On top of this, the external driving shifts the Hamiltonian Ĥo.
We write the full master equation (E5) in a compact form:

dρ̂

dt
= �(ĉρ̂ĉ† − Hĉ†ĉρ̂) + �e−βωo (ĉ†ρ̂ĉ − Hĉĉ†ρ̂)

− εd [ĉ† − ĉ,ρ̂], (E6)

where � and β are determined by

� = �e + γm

4
+ κ2

f

γm

+ κf , (E7)

e−βωo� = �e e−β−
e ωo + γm

4
+ κ2

f

γm

− κf . (E8)

We turn the effective temperature β positive by choosing
the feedback strength above the following threshold:

κf > −κ−
e = 1

2�e(e−β−
e ωo − 1). (E9)

Note that the driving on the right-hand side of the master
equation (E6) can be absorbed into the standard thermal
dissipator at (inverse) temperature β if we displace ĉ,ĉ† by
a suitable real number. Accordingly, the master equation (E6)
must have a unique stationary state which is the following
displaced thermal state of the HO:

ρ̂∞ = N exp[−βωo(ĉ − c∞)†(ĉ − c∞)], (E10)

with the static real displacement in interaction picture:

c∞ = − εd

κf + κ−
e

< 0. (E11)

In the Schrödinger picture the stationary state is a thermal state
with the rotating displacement:

ρ̂∞ ⇒ N exp[−βωo(ĉ − c∞e−iωot )†(ĉ − c∞e−iωot )]. (E12)

Hence the mean amplitude rotates, and its phase is shifted by
−π/2 with respect to the external driving:

〈ĉ〉∞ = c∞ e−iωot . (E13)

The average population is the Planckian thermal value plus the
yield of displacement:

〈ĉ†ĉ〉∞ = 1

eβωo − 1
+ |c∞|2 ≡ no + |c∞|2. (E14)

We use the redundant expression |c∞|2 for c2
∞ to capture

an occasionally different phase convention of driving. Both
terms on the right-hand side diverge at the edge of the regime
of operation κf + κ−

e → +0 where the model breaks down
because it violates the weak coupling condition (B18).

APPENDIX F: ENERGY FLOWS IN STEADY STATE

Any systematic calculation of heat flow and power requires
us to transform the final SME from Ito into Stratonovich form.
We postpone this very novel task to future research. Rather,
we focus on the minimal calculations and considerations
confirming that our model represents a genuine heat engine.

Next, we show that there is a consumable output power
in the steady-state operation of the flywheel. The total
Hamiltonian has two time-dependent contributions Hd (t) and
Hf (t). Accordingly, the power P consists of two contributions
corresponding to the power invested by the driving and the
power gained from the feedback. The first, in the steady state
Mσ̂ = ρ̂∞, reads

Pd = Mtr

[
σ̂

dĤd

dt

]
= tr

[
ρ̂∞ d

dt
(−iεd ĉ

†e−iωot + H.c.)

]
= −2εdωoc∞ > 0, (F1)

where the positivity indicates power going into (consumed by)
the flywheel. We restrict our calculations for the deterministic
part of feedback, i.e., we replace Ĥf (t) by its deterministic
part Ĥf,det = −iκf 〈ĉ〉σ ĉ† + H.c. As was mentioned before,
considering the stochastic part Ĥf,sto = −iκf /

√
γmĉ†dξ +

H.c. requires the Stratonovich calculus. The power reads

Pf,det = Mtr

[
σ̂

dĤf,det

dt

]
= Mtr

[
σ̂

d

dt
(−κf 〈ĉ〉σ ĉ† + H.c.)

]

= −iκf Mtr

[
dσ̂

dt
ĉ

]
〈ĉ†〉σ + c.c. (F2)

The power in Eq. (F2) is proportional to the (weighted) mean
of the phase drift of the amplitude 〈ĉ〉σ . To calculate dσ̂ we
apply the final SME given in Appendix E. The only relevant
yield is the unitary rotation −iωo〈ĉ〉σ dt since the dissipative
part does not alter the phase of 〈ĉ〉σ and the Ito stochastic part
will cancel out by the mean operation M. Therefore we get

Pf,det = −2κf ωoM|〈ĉ〉σ |2 < 0. (F3)

Negativity means that power is gained (supplied) by feedback.
Although analytical solutions for similar SMEs such as ours
exist [35], we restrict ourselves to a simple guess. Using the
Cauchy-Schwartz relation M|〈ĉ〉σ |2 � |M〈ĉ〉σ |2, we obtain
the lower bound −Pf,det � 2κf ωo|c∞|2 for the stationary
power gained by feedback in the steady-state. Hence the overall
stationary power satisfies the inequality

−Pdet = −Pd − Pf,det � 2ωoε
2
d

−κ−
e

(κf + κ−
e )2

. (F4)
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The sign is negative and thus the consumable power of the
flywheel is positive and bounded from below. We conjecture

that the contribution of the stochastic part Ĥf,sto(t) of driving
cannot invalidate the positivity of the consumable power.
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